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Abstract. Peer punishment has been an effective means to en-
sure that norms are complied with in a population of self-interested
agents. However, current approaches to establishing norms have only
considered static punishments, which do not vary with the magnitude
or frequency of norm violation. Such static punishments are difficult
to apply because it is difficult to identify an appropriate fixed penalty:
one that is not too weak to disincentivise norm violations and not too
strong to lead to significant deleterious effects on the system as a
whole (such as those incurred by losing the benefits of a member
of the population). This paper addresses this concern by developing
an adaptive punishment technique that tailors penalty to norm vio-
lation. An experimental evaluation of the approach demonstrates its
value compared to static punishment. In particular, the results show
that our dynamic punishment technique is capable of achieving norm
emergence, even when starting with an amount of punishment that is
too low to achieve emergence in the traditional static approach.

1 Introduction

Norms can be seen as a very effective means of governing the be-
haviour of different members of decentralised open systems, such as
peer-to-peer (P2P) file sharing systems, in which the cooperation of
the members is vital in maintaining the benefits of the whole system.
However, the self-interest of some can lead to the temptation to profit
from the activities of others without reciprocating. For example, in
P2P file sharing, free riding peers download files from others with-
out sharing files, thus gaining the benefit of the files without wasting
their own bandwidth. Such agents can avoid punishment due to the
absence of a central authority to penalise such behaviour.

In this context, the enforcement of norms, rather than just the
norms themselves, as a potential means of ensuring cooperative be-
haviour has been proposed (e.g., [1, 15]); here, agents punish others
for behaviour that violates a norm. As Axelrod has shown, such pun-
ishment must apply not just to such norm violations, but also to the
failure of others to penalise norm violations when observed [1]. Sev-
eral different punishment schemes to address these concerns have
been considered [5, 6, 7], but all are static in that they consist of
applying the same fixed penalty regardless of the circumstances. As
such, they rely on the system developer to find an appropriate such
fixed penalty, yet the consequences of employing an inappropriate
penalty are considerable. If it is too weak, punishment may be inef-
fective as a means of discouraging behaviour that does not support
norm establishment. If it is excessive, it risks undercutting the bene-
fits of cooperation. For example, in peer-to-peer file sharing systems,
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ostracising non-compliant individuals for extended periods of time
may encourage norm compliance in the long run, but at the expense
of losing the contributions of those individuals.

In response, this paper is concerned with how dynamic punish-
ment may help a norm to emerge in a population of agents that starts
out without any norm recognition. More specifically, the paper ad-
dresses the problem of determining the punishment most appropriate
to the violation context, by providing an adaptive punishment tech-
nique. In order to evaluate this dynamic punishment approach, it is
integrated with a variant of Axelrod’s metanorm model [1], the effec-
tiveness of which in achieving norm emergence has been considered
elsewhere [10], and which is not the concern of this paper. Axelrod’s
model has previously only been applied in the context of static pun-
ishment, providing a clear baseline against which to assess the con-
tributions here. While the notion of dynamic sanctioning, by which
the level of punishment is modified in response to circumstances,
has been suggested by Villatoro et al. [12], they consider only global
modifications for a population as a whole rather than dynamism in
relation to a particular agent’s circumstances, as we do here.

The key contribution of the paper is a novel technique for dynam-
ically adapting punishments to suit the circumstances of individual
agents so that an overall system is more efficient. This is extensively
evaluated with a series of experiments. The paper is structured as fol-
lows. Section 2 reviews the underlying metanorm model used as the
basis for our work, while Section 3 distinguishes between static and
dynamic punishment, and introduces our experiential dynamic pun-
ishment approach. Evaluation and experimental result analysis are
presented in Section 4, before concluding in Section 5.

2 Metanorms and Punishment

In seeking to develop a model capable of supporting norm emergence
in real world distributed systems, we integrate the dynamic punish-
ment approach just described, with Mahmoud et al.’s modification [9]
of the metanorm model originally introduced by Axelrod [1] as a
means of studying norm emergence. In what follows, we first intro-
duce the original model and the learning technique that agents adopt
in this model. After that, the integration of the new punishment ap-
proach in the metanorm model.

2.1 The Metanorm Model

Axelrod’s metanorm model [1] aims to simulate distributed systems
in which a community of self-interested agents is encouraged, with-
out being forced to do so by a central authority, to adhere to a be-
havioural constraint, or norm, that benefits the community but not
the individual agent adhering to the norm. The simulation of this
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model provides a means to test the conditions under which the norm
governs the behaviour of individual agents, leading to convergence.

Inspired by Axelrod’s model, our simulation focusses only on the
essential features of the problem. In the simulation, the agents play
a game iteratively; in each iteration, they make a number of binary
decisions. First, each agent decides whether to comply with the norm
or to defect. Defection brings a reward for the defecting agent called
temptation, and a penalty to all other agents called hurt, but each
defector risks being observed by the other agents and punished as a
result. These other agents thus decide whether to punish agents that
were observed defecting, with a low penalty for the punisher known
as an enforcement cost, and a high penalty for the punished agent
known as a punishment cost. Agents that do not punish those ob-
served defecting risk being observed themselves, and potentially in-
cur metapunishment. Thus, each agent decides whether to metapun-
ish agents observed to spare defecting agents. Again, metapunish-
ment brings a high penalty for the punished agent and a low penalty
for the punisher, the punishment and enforcement costs respectively.

The behaviour of agents in each round of the game is random,
but governed by two variables: boldness, and vengefulness, which
are initialised at the start of any run with the use of a uniform dis-
tribution function. In each round, agents are given a fixed number
of opportunities to defect, in which boldness determines the proba-
bility that an agent defects. Conversely, vengefulness is the proba-
bility that an agent punishes or metapunishes another agent. Thus,
the boldness and vengefulness of an agent are said to comprise that
agent’s policies. After several rounds of the game, each agent’s re-
wards and penalties are tallied, and successful and unsuccessful poli-
cies are identified. By comparing themselves to other agents on this
basis, the policies of poorly performing agents are revised such that
features of successful policies are more likely to be retained.

A final remark is that agents are situated in this simulation accord-
ing to a specific topological structure, which limits the observabil-
ity of agents’ actions such that agents are only able to observe their
neighbours. Moreover, this implies that agent are only able to punish
and metapunish their neighbours.

2.2 Dynamic Policy Adaptation

To be able to learn from experience, agents change their policies
at the end of each round of the simulation. This is accomplished
through the use of a reinforcement learning technique embedded in
each agent; it is a form of q-learning [14], in which agents keep track
of different scores that determine the utility gained or lost from tak-
ing the different actions available to the agent.

Based on the comparison of these different scores, agents adapt
their policies using a dynamic policy adaptation approach (see [10]
for details) in order to enhance their utility. However, agents adapt
their policies in line with their own experiences, so that agents that
score badly change their policies considerably more than agents that
score much better, in a manner similar to the WOLF-PHC [3] rein-
forcement learning technique. In this adaptive policy review mecha-
nism, in which agents change their policy proportionally to the utility
gained or lost, policy changes are thus greater when the utility lost
from taking a certain action is high than when it is low.

3 Dynamic Punishment

3.1 Dynamic and Static Punishment

Consider again the example of peer-to-peer (P2P) file sharing men-
tioned in the introduction, in which agents are able to download files

from each other. Here, there is a norm obliging agents participating
in the system to upload the files they have downloaded in order to
share them with others, and to maintain the availability of these files
on the network. However, since uploading consumes bandwidth, and
in the absence of an appropriate punishment, self interested agents
could choose not to share (upload) files they have downloaded in or-
der to preserve bandwidth for their own use. In the case of frequent
occurrences of such selfish behaviour, the efficiency of the entire P2P
network can be threatened. In response to this problem, de Pinninck
et al. [4] suggest that the punishment for such behaviour should be
blocking, by which all other agents cease interacting with an agent
that is observed not to share files after downloading them.

If punishment is static, it can be pre-specified at design time. In
the P2P example, such static punishment involves identifying agents
that violate the norm, and blocking them for the specified duration,
on each occurrence of a violation. While this fixed blocking period is
determined by the system designer, the challenge is to determine the
most appropriate blocking period. For example, if the blocking pe-
riod is fixed at 30 minutes for each violation, this may be just the right
penalty needed to regulate the behaviour of some agents, but others
may be persuaded to avoid violation (and upload files as demanded
by the norm) with a shorter blocking period of only 10 minutes. Such
a situation suggests that the network is losing the potentially valuable
participation of some agents for a period of 20 minutes. Conversely,
there may be still more agents for whom 30 minutes is insufficient
to convince them to cease violations, for example due to the gain
from violation exceeding the loss incurred through being blocked for
30 minutes. It is in this sense that determining an appropriate block-
ing period can be crucial to the performance of the overall system,
especially those that rely on the participation of members for their
functionality and effectiveness (as with P2P networks). However, de-
termining such an appropriate blocking period can be difficult, if not
impossible, simply because there is no single fixed period that is ef-
fective when dealing with different types of agents.

In consequence, dynamic punishment can play an important role
in overall system performance by adapting punishment values in line
with available information about the violating agent, so that punish-
ment is increased when the current value is found to be ineffective,
and decreased when it is excessive. Returning to our example, if the
agent does not take the opportunity to share files at the first opportu-
nity after the blocking period has ended, then it can be blocked again,
this time for a longer period, with the aim of bringing about compli-
ant behaviour. This can continue until the agent begins to comply (at
least occasionally), when the duration of blocking for for subsequent
infrequent violations may now be reduced.

Clearly, as the example above suggests, the appropriate punish-
ment at any moment should be determined by an agent’s prior be-
haviour: an agent that has a history of violation should be punished
more than one with a history of compliance, in order to bring about
a change to ingrained behaviour. Now, since agents themselves must
apply punishments, they must maintain a record of their prior inter-
actions (involving requests for files and decisions about whether or
not to share these files) with others and build up a repository of ex-
perience to determine the level of punishment to apply.

3.2 Recording Experience of Violation

Two things must be recorded by each agent involved in any such
interaction in which one agent requests a file and the other decides
whether to share it (cooperating, and thus complying with the norm)
or not (and defecting, and thus violating the norm): the identity of the
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other agent involved in the interaction; and the type of action taken
by this other agent, whether cooperating or defecting. Each agent
can thus build up a repository of of records of interactions in this
way over time, providing a store of information on which to base
punishment decisions.

A limitless repository, however, can cause problems. Since our aim
is to encourage norm-compliant behaviour in individual agents, and
since the mechanism we propose seeks to amplify punishments in
the case of repeat violations, clearly a key target is to modify be-
haviour of such repeat offenders. Yet if we consider only the average
prior behaviour of such repeat offenders over a long period, any re-
cent adjustments towards compliance may be vastly outweighed in
the repository by the long history of violations, bringing further in-
creased punishment rather than the reduction in punishment that is
warranted. In order to address this, therefore, we need some means to
determine punishments in light of more recent interactions between
agents rather than much older interactions that do not reflect current
reality: agents that start to act in support of societal norms should not
be punished severely just because they had previously behaved badly.
A window over the repository, with a particular window size, can thus
be used to limit the interactions that are considered to a specific pe-
riod of recent time, allowing agents to forget old violations and adapt
their punishments to changes in the behaviour of others much more
quickly and effectively. In this way, the prior defections of an agent
that defected regularly in the past, but that has recently begun to co-
operate, will be weighted much less in comparison to more recent
compliance when determining the punishment value.

We define the memory, Mi, of an agent i, to be a set of cells, each
containing the identifier agID of the other agent, j, involved in an
interaction and the action act taken by that agent in the interaction:

Mi = {m1,m2, ..,mn}
where n is the window size, and mj is the jth cell:

mj = 〈agID, act〉

3.3 Dynamic Punishment

Given this notion of memory, and within the available window of
data, we can specify two useful measures from agent i’s perspective
(from its memory): the number of previous instances of defection of
agent j (ndj), and the number of previous instances of compliance of
j (ncj). In turn, this gives the defection proportion, dpj , as follows:

dpj =
ndj

ndj + ncj

This alone is not enough to determine the level of punishment,
since the absolute number of defections is also relevant. An agent
that violates a norm ten times merits a greater sanction that one that
violates it just once. Moreover, an agent that violates a norm once in
ten instances merits a lower sanction than one that violates it norms
ten times from 100, since this indicates persistent and repeated of-
fence. We reflect these concerns in what we call the local defection
view of agent i on agent j, as follows.

LocalV iew : AGENT ×AGENT → R

∀agi, agj ∈ AGENT : LocalV iew(agi, agj) = dpj × ndj

where agi is the punishing agent; agj is the defecting agent; dpj is
the defection proportion of agent j in agent i’s memory; and ndj is
the number of defections of agent j in agent i’s memory.

Now, while we are interested in modifying punishments to suit the
circumstances, we need an initial punishment unit (pu) as a basis
for such modification. In this way, an applied punishment can be de-
termined by multiplying the defection proportion with the absolute
number of defections and the punishment unit. Punishment can thus
be seen as a function that takes two agents and returns the punish-
ment value applied by the first agent to the second.

ExpPunish : AGENT ×AGENT → R

∀agi, agj ∈ AGENT :

ExpPunish(agi, agj) = LocalV iew(agi, agj)× pu

As indicated above, non-compliance with both norms and
metanorms (not punishing a norm defector) are considered to be de-
fections. As a result, each agent must make two punishment deci-
sions: whether to punish a norm defector and whether to metapunish
an agent that does not itself punish a defector.

The metapunishment decision is slightly different to the punish-
ment decision, and calculated by replacing the number of defec-
tions with the number of previously unpunished (or spared) defec-
tors (nds), and the number of times of compliance with the number
of previously punished defectors (ndp), giving a sparing proportion,
spj :

spj =
ndsj

ndsj + ndpj

4 Evaluation

Based on the model just described, we carried out several experi-
ments to understand the impact and potential of dynamic punishment
Before introducing the results obtained through experiments with
this model, however, it is important to explain the specific meaning
of norm emergence here, and how it can be observed in the results.
To be precise, norm emergence is achieved when the population of
agents has low boldness and high vengefulness, with the former indi-
cating that agents will not defect, and the latter indicating that agents
will defend the norm by punishing its defectors. In this context, the
higher the vengefulness, the more stable the norm is. Importantly, all
of our experiments are undertaken over a scale-free network (gener-
ated with Barabasi’s algorithm [2]) since this has been shown to be
the most challenging [13, 11] in which to engineer emergence due to
the complexities arising from the distribution of connections between
nodes. In particular, in scale-free networks, there are hubs with very
many connections to other nodes, and outliers with very few. Our ex-
periments were run over 1,000,000 time steps, with 1,000 agents for
1,000 runs, and with a temptation value of 3, a hurt value of −1 and
an enforcement cost of −2.

4.1 Original Model Baseline

The results obtained from the initial modification of Axelrod’s orig-
inal model, before integrating dynamic punishment, are shown in
Figure 1, indicating that the model is successful to some degree in
achieving norm emergence in an agent population over a scale-free
network. While the approach is able to regulate agent behaviour with
regard to norm defection (which can be seen from the near 0 aver-
age boldness of the population), the level of average vengefulness
achieved is between 0.4 and 0.7, suggesting that norm emergence is
good but not optimal; an agent can still defect without punishment.

The punishments that agents apply to each other are thus sufficient
to learn that high boldness is harmful and should be reduced. How-
ever, while metapunishments are sufficient to prevent vengefulness
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Figure 1. Baseline metanorms results
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Figure 2. Experiential dynamic punishment results

from dropping below the midrange level, they do not cause agents
to increase vengefulness adequately. We will not dwell further on
these results, since a more detailed analysis of this situation is pro-
vided elsewhere [8], but the important point to note is that the static
punishment unit used here is −9 which, as will be shown later, is
unnecessary and excessive.

4.2 Dynamic Punishment Experiments

By introducing dynamic punishment as described in this paper, how-
ever, we are able to improve the results as shown in Figure 2, in
which the level of vengefulness has increased to be between 0.7 and
0.9. This is much more stable than previously, with high probability
of punishing defectors and metapunishing those agents that do not
punish defectors. The improvement can be explained by the flexibil-
ity brought about by dynamic punishment, since if a previous meta-
punishment does not succeed in changing behaviour, the metapun-
ishment cost can be increased. Consequently, agents are encouraged
to increase their vengefulness and punish norm defectors in the fu-
ture. A more detailed analysis of the effect of this dynamic approach
to punishment follows.
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4.3 Punishment and Metapunishment Costs

While we can see that results improve through dynamic punishment,
punishment and metapunishment values change in different ways
depending on the situation. Figure 3 illustrates how two vengeful
agents, a hub and an outlier (that punish regularly), adapt punish-
ment when applying to hubs and outliers that have low boldness and
high boldness. In addition, and for comparison, the figure includes a
representation the static punishment of 9 that is used in the original
model (shown as the horizontal line). Note that the x-axis represents
the number of occurrences of punishment, rather than time-steps, so
that line each indicates merely the trend of punishment applied by
one agent to another. While the figure is limited to some illustrative
cases due to space constraints, this is adequate to illuminate the dy-
namic punishment approach.

It can be seen from Figure 3 that bold agents incur high punish-
ments regardless of whether the punishing agent is a vengeful hub or
a vengeful outlier. However, in the case of the bold hub, the maxi-
mum value of punishment is much less than in the case of the bold
outlier (about 23 compared to 54). This is because, since a hub is
more exposed (and has very many connections), it will be punished
by many other agents, and punishment that is applied to a hub thus
need not be as high as for an outlier. Conversely, an outlier has few
connections, requiring the punishment of a single agent to be suffi-
ciently high to convince it to stop defecting. In addition, it can be
seen that the high punishment does not persist for many occurrences
since it drops to a very low level after very few occurrences, because
bold agents respond positively to the punishment and the high level
ceases to be required. In this way, occasional stricter punishments
bring about a relatively quick response when compared to the static
approach, but demand a cumulatively lower amount of punishment,
suggesting that dynamic punishment can be more efficient.

Interestingly, Figure 3 also shows that when a vengeful agent in-
teracts with a low boldness agent, both the vengeful hub and the
vengeful outlier always apply less punishment than in the static ap-
proach. This is because a low boldness outlier rarely defects and little
is needed to prevent it defecting. Overall, it seems clear that the pun-
ishment cost here is much less than in the static approach, especially
over an extended period (the duration of the simulation).

Since punishment counters the tendency to defect, it needs to out-
weigh the impact of the temptation value (the reward from defect-
ing). Importantly, an agent gains only one instance of this temptation
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value as reward, but can incur multiple punishments (from each agent
to which it is connected) in response. In contrast, because metapun-
ishment instead counters the enforcement cost, instances of which
are incurred for each agent that should be punished or metapunished,
this can lead to much higher metapunishment, as shown in Figure 4.
Enforcement costs cause agents to decrease their vengefulness be-
cause they lose utility, but metapunishment seeks to balance with
the threat of losing even more utility by not punishing. The results
in Figure 4 show that in our experiments, the metapunishment cost
peaks at a level of 180, even though it is less than 9 (the fixed static
metapunishment) in the majority of cases.

In fact, the different lines shown on the graph can be divided
into two main categories: strongly vengeful agents metapunishing
weakly vengeful agents, and highly vengeful agents metapunishing
other highly vengeful agents. With regard to the first category of
weakly vengeful agents, it is clear that very high metapunishments
are needed to deal with agents that have low vengefulness. This is
because such agents are less likely to impose punishments, espe-
cially given the enforcement costs that they are required to pay by
increasing their vengefulness and punishing more agents as a result.
However, such high metapunishment does not persist for long: it in-
creases until around the 20th occurrence in the case of a hub, and
until the 25th occurrence for an outlier. Then, metapunishment drops
and remains below the traditional level of the static metapunishment.

With regard to the second category of highly vengeful agents,
metapunishment only rises to a peak that is much lower than with
weakly vengeful agents. Moreover, within this, a high level of meta-
punishment persists much longer for the vengeful hub than for the
vengeful outlier. This is because hubs have many more connections
than outliers, so that they are responsible for very many punishments
and incur high enforcement costs. In consequence, metapunishment
is needed to be much higher in order to counter this and to prevent
the vengeful hub from decreasing its vengefulness to too low a level.
While the same is true for vengeful outliers, it is for a much shorter
period and for a lower cost, since outliers have far fewer connections.

4.4 Impact of Punishment Unit

In the previous experiments, an initial punishment unit of -9 was
used, resulting in very high punishment. This is because, when a bold
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Figure 5. Impact of punishment unit when pu = −1

agent engages in a sequence of defections, the effect of the this high
initial value multiplies the relatively high initial punishment unit. In
seeking to understand the effect of this punishment value, we under-
took several experiments to vary the initial value. While experiments
were conducted with all integer values between −9 and −1, we show
in Figure 5 only the results of using a punishment unit of −1 due to
space constraints. However, all other experiments with these other
values give very similar results. From the figure, it seems clear that
even a punishment unit of −1 is sufficient to achieve norm emer-
gence, since the average level of boldness is still low and the average
level of vengefulness is high.

However, a deeper analysis reveals that establishment of the norm
takes slightly longer with the use of lower punishment units. This is
due to the cumulative effect of dynamic metapunishment requiring
a longer period to overcome the high cumulative enforcement cost,
especially in the case of hubs. In addition, smaller punishment units
ensure that much more appropriate levels of punishment are applied.
For example, while a punishment of −4 can be sufficient to disincen-
tivise an agent from defecting, such an actual level of punishment is
unlikely to arise when a high punishment unit, such as −9, is used
since it takes too long to reduce to that level. Moreover, only the
dynamic approach is able to achieve norm emergence when a low
punishment unit is used. For example, the static punishment model
does not succeed in achieving norm emergence if the static punish-
ment cost is −1.

As can be observed from Figure 6, which shows the change in
value of punishments over their different occurrences when a unit
of −1 is used, it is clear that in the vast majority of cases, the pun-
ishment applied does not exceed the fixed static punishment used in
the original model. In fact, punishment exceeds 9 (but only going as
high as 12) only in the difficult case of bold outliers, which have few
connections and require much more effort to regulate their behaviour.

In terms of metapunishment, as shown in Figure 7, the same trend
is observed when using a punishment unit of −1, but with some im-
portant differences. First, the maximum metapunishment here is 60,
as opposed to 180 in the case of punishment. This is because the
value here is much lower, and this brings a much lower multiplier
into the equation. However, it requires about 140 metapunishment
occurrences to regulate a weakly vengeful agent, rather than 25 oc-
currences previously (not shown). In total, much less metapunish-
ment can be used to regulate agent behaviour than with higher pun-
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ishment units, and with static punishment.

4.5 Agreement of Punishment

Based on the analysis of the results obtained from using the dy-
namic punishment approach with a variation of basic punishment
units, there is a very interesting characteristic observed in relation
to the agreement of punishment value. The agreement of punishment
value means that all agents that decide to punish a defector are go-
ing to punish it with exactly the same amount. So for example, if an
agent has three different neighbours and the agent has defected twice
already. According to the model, all the neighbours would have ob-
served the previous defections and would have recorded them in their
memory regardless if they have punished the defecting agent in re-
turn of these defections or not. Because all agents are following the
same technique in calculating their punishment, all of them will de-
cide on using the same punishment and it make it look like all of them
have come to a punishment agreement on what punishment should be
used. This can be seen in-line with some interesting recent thread of
research in which agents cooperate with each other to arrange on a
common punishment value.

5 Conclusions

Punishment has been shown to be effective in encouraging norm es-
tablishment among groups of self interested agents. In this context,
the classic view of punishment has adopted static punishments so
that agents violating norms always incur the same degree of penalty.
However, determining an appropriate level of punishment is difficult,
with punishments being excessive in some cases. Importantly, such
punishments can themselves decrease the utility of the overall sys-
tem, by reducing the number of participants (as in P2P networks, for
example), bringing counterproductive effects.

In response, in this paper, we described a mechanism for deter-
mining punishment values dynamically, using the prior experience
of agents with those they are interacting, in order to specify the ap-
propriate level. Through simulation experiments and results, the pa-
per has shown that our technique helps to achieve norm emergence,
but at a much lower cost to the system in terms of the punishment
incurred, bringing benefits the society or system as a whole, and im-
proving efficiency in ways that suggest potential value in real-world
cases.
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