
Improving Local Search for Random 3-SAT Using
Quantitative Configuration Checking

Chuan Luo1 and Kaile Su2 and Shaowei Cai2,1

Abstract. Configuration Checking (CC) was proposed as a new
diversification strategy for Stochastic Local Search (SLS) algorithm
for solving Minimum Vertex Cover, and has been successfully used
for solving the Boolean Satisfiability problems, leading to an SLS
algorithm called Swcc. However, the CC strategy for SAT is in the
early stage of study, and Swcc cannot compete with the best SLS
solvers for SAT in SAT Competition 2011. This paper presents a new
strategy called Quantitative Configuration Checking (QCC), which is
a quantitative version of the CC strategy for SAT. QCC is based on a
new definition of “configuration” and works in a different way from
the CC strategy does. Specifically, while previous CC strategies work
only in the greedy mode, QCC firstly works in the random mode. We
use QCC to improve the Swcc algorithm, resulting in a new SLS
algorithm for SAT called Swqcc. Experimental results show that the
QCC strategy is more effective than the CC strategy. Furthermore,
Swqcc outperforms the best local search SAT solver in SAT Compe-
tition 2011 called Sparrow2011 on random 3-SAT instances.

1 INTRODUCTION

The Satisfiability problem (SAT), which has been widely studied in
the AI community due to its significant importance in both theo-
ry and applications [11], is one of the most important NP-complete
problems. Given a propositional formula in conjunctive normal form
(CNF) with variables {x1, · · · , xn}, the SAT problem consists in
finding an assignment for the variables so that all clauses are sat-
isfied. Besides interest in instances encoded from industry problems,
there is also much interest in random instances. Random SAT in-
stances provide a relatively “unbiased” sample for benchmarking
algorithms, and permit algorithms to be tested on statistically signif-
icant samples of hard problems. Indeed, random SAT instances have
been widely studied and are underlying one of the three categories in
the SAT competition [3].

The algorithms used to solve SAT problems can be categorized
into two classes: complete algorithms based on the DPLL algorithm
and stochastic local search (SLS) algorithms. In this paper, we fo-
cus on the latter one. Although SLS solvers are usually incomplete,
i.e., they cannot determine with certainty that a given propositional
formula is unsatisfiable, they are very efficient in solving satisfiable
instances, especially the randomly generated ones.

The main scheme of an SLS algorithm for SAT can be described as
follows: In the beginning, the algorithm generates a random assign-

1 Key Laboratory of High Confidence Software Technologies,
Peking University, Beijing, China.
Email: { chuanluosaber@gmail.com }

2 Institute for Integrated and Intelligent Systems,
Griffith University, Brisbane, Australia.
Email: { k.su@griffith.edu.au; shaowei cai@126.com }

ment of boolean values to the variables appear in the formula. Then
the algorithm flips a variable in each search step using a function
for selecting the variable to be flipped. The SLS algorithm executes
search steps iteratively until it seeks out a satisfiable assignment or
timeout. Therefore, the function for selecting the flipping variable is
the essential part of an SLS algorithm for SAT.

SLS algorithms for SAT usually work in two different modes,
i.e., the greedy mode and the random mode. In the greedy mode,
they prefer variables whose flips can decrease the number of unsat-
isfied clauses; while in the random mode, they tend to better explore
the search space and avoid local optima, usually using randomized
strategies to pick a variable.

Recently, a diversification strategy called configuration checking
(CC), which may help deal with the cycling problem, i.e. return-
ing to a candidate solution that has been visited recently [13], was
proposed. This CC strategy was first used to improve a state-of-the-
art local search algorithm EWLS [5] for Minimum Vertex Cover
(MVC), leading to the much more efficient SLS solver EWCC for
MVC [6]. Furthermore, the CC strategy is a general local search
strategy and a direct application of CC in SAT has resulted in an
SLS algorithm called Swcc [3]. The CC strategy for SAT forbids a
variable to flip if all its neighboring variables have not changed their
truth values since its last flip. The experimental results in [3] show
that Swcc outperforms the best SLS solver in SAT Competition 2009
called TNM on random 3-SAT instances, and also indicate that CC
is more effective than the tabu method [9, 10], which is an influential
method for dealing with the cycling problem.

However, the CC strategy is still in its infancy, and Swcc cannot
compete with the winner in random satisfiable category of SAT Com-
petition 2011, namely Sparrow2011, which is an improved version of
Sparrow [2]. A natural extension of the CC strategy is to consider the
quantitative variation of configurations, and prefer to flip those vari-
ables whose quantitative variations of configuration are greater. In
this paper, we carry out some research towards this direction. Specif-
ically, we propose a new local search strategy called Quantitative
Configuration Checking (QCC), which can be seen as a quantiza-
tion version of CC. Although QCC stems from the configuration
checking idea, it is rather different from the CC strategy, in terms
of the definitions of configuration and the ways they work. In QCC,
a variable’s configuration refers to the states of the clauses in which it
appears; also, QCC utilizes variation information of configurations to
select the flipping variable. Moreover, while previous CC strategies
work only in the greedy mode, QCC is used in the random mode, and
QCC improves the performance of our algorithm significantly. For
more discussions about the differences the CC and QCC strategies,
refer to the discussion section. We would also like to note that the
recent work [4], done in parallel to ours, combines the CC strategy

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-570

570



with an aspiration mechanism, resulting in a new heuristic called
CCA. CCA was used to design an SLS algorithm for SAT called
Swcca [4], which achieves very good performance on both random
3-SAT and structured SAT instances.

We use QCC to improve the Swcc algorithm, resulting in a new
SLS algorithm for SAT called Swqcc. The experimental results show
that Swqcc performs consistently significantly better than Swcc, in-
dicating that the QCC strategy is more efficient than the CC strategy.
Moreover, to convince the superior performance of Swqcc, we com-
pare Swqcc with Sparrow2011, which is the winner of the ran-
dom satisfiable category of the SAT Competition 2011. Note that
Sparrow2011 makes a breakthrough in solving random 3-SAT in-
stances, and is especially considered to be the best local search solver
for random 3-SAT instances. The experimental results show that
Swqcc outperforms Sparrow2011 on random 3-SAT instances.

The remainder of the paper is structured as follows. Next sec-
tion provides some definitions and notions used in this paper. Then
we present the CC strategy and the QCC strategy. After that, we
use QCC to develop an SLS algorithm for SAT called Swqcc. Ex-
periments demonstrating the effectiveness of QCC and Swqcc are
presented next. This is followed by further discussions about QCC.
Finally we conclude the paper and give some future work.

2 PRELIMINARIES

Given a set of n boolean variables V = {x1, · · · , xn} and the set
of corresponding literals L = {x1,¬x1, · · · , xn,¬xn}, a clause is
a disjunction of literals. In k-SAT, each clause contains exactly k
different literals. Using clauses and the logical operation AND (∧),
we can construct a CNF formula, i.e., F = c1 ∧ · · · ∧ cm, where
the number of clauses in the given formula F is denoted m, and
r = m/n is its ratio. A formula can be understood as a set of clauses.
We use V (F ) to denote the set of all variables appear in the formula
F . Two different variables are neighbors when they share at least one
clause, and N(x) = {y | y ∈ V (F ), y and x are neighbors} is
the set of all neighbors of variable x. We also define that CL(x) =
{c | c is a clause which x appears in}.

A (possibly partial) mapping α : V (F ) → {True, False} is
called an assignment. If α maps all variables to a Boolean value, it
is called complete. For local search algorithms for SAT, a candidate
solution is a complete assignment. Given a complete assignment α,
each clause has two possible states: satisfied or unsatisfied: a clause
is satisfied if at least one literal in that clause is true under α; oth-
erwise, it is unsatisfied. An assignment α satisfies a formula F if α
satisfies all clauses in F . Given a CNF formula F , the SAT problem
is to find an assignment that make all clauses in F satisfied.

As Swqcc, which uses clause weighting scheme, is a dynamic lo-
cal search, here we introduce some notations about dynamic local
search. In a dynamic local search algorithm for SAT, each clause
c ∈ F is associated with a nonnegative integer weight(c) as its
weight. The averaged clause weight over all clauses is denoted by w.
We use cost(F, α) to denote the total weight of unsatisfied clauses
under an assignment α. For each variable x in F , we define that
score(x) = cost(F, α)− cost(F, α′), where α′ is obtained from α
by flipping the boolean value of x.

3 THE CONFIGURATION CHECKING
STRATEGY (CC) FOR SAT

This section introduces the CC strategy for SAT, as QCC is an im-
proved version of CC. The CC strategy remembers each variable’s

circumstance information, and forbids flipping variables whose cir-
cumstance information has not been changed since its last flip.

3.1 The Definition of Configuration Checking

The CC strategy is based on the concept of configuration. In the
context of SAT, the configuration of a variable refers to the truth val-
ues of all its neighboring variables. Formally, we have the following
definition.

Definition 1 Given a CNF formula F and the current assignment α
to V (F ), the configuration of a variable x ∈ V (F ) is a vector
T (x) consisting of boolean values of all variables in N(x) under
assignment α.

Given a CNF formula F , the CC strategy can be described as fol-
lows. When selecting a variable to flip, for a variable x ∈ V (F ), if
the configuration of x has not changed since x’s last flip, meaning
the circumstance of x never changes, then it should not be flipped.
This strategy serves as a diversification form, which prevents the
algorithm from facing a scenario it recently faced. As stated in [3],
previous SLS algorithms for SAT never take circumstance informa-
tion of variables into consideration. They usually select the flipping
variable according to the information of variables, such as score
[15, 12], break-count [14], and age [8]. However, the CC strategy
combines the circumstance information with the traditional heuris-
tics on selecting the flipping variable. This is the essential difference
between the CC strategy and the previous works.

3.2 An Implementation of Configuration Checking

In Cai and Su’s work on the CC strategy for SAT [3], the CC strategy
is implemented with a boolean array confchange, whose element
refers whether the configuration of a variable is changed or not since
its last flip. If confchange(x) is true, it means the configuration of
variable x is changed; otherwise on the contrary. During the search
procedure, the variables whose confchange values are false are for-
bidden to be flipped. The confchange array is maintained according
to the following rules:

• Rule 1: At the start of local search, all the variables’ confchange
is initialized as true.

• Rule 2: When flipping variable x , confchange(x) is reset to
false, and for each variable y ∈ N(x), confchange(y) is reset to
true.

4 THE QUANTITATIVE CONFIGURATION
CHECKING STRATEGY (QCC) FOR SAT

The CC strategy for SAT as presented in the previous section
only considers whether the configuration of a variable is changed,
and does not care the quantity of times the configuration of a
variable is changed. In this section, we introduce a new strategy,
called Quantitative Configuration Checking (QCC), by combining
the quantity of configurations’ variations into the CC strategy.

4.1 Definitions and Notations in QCC

We first give some related definitions and notations in the QCC
strategy. Different from the CC strategy, where the configuration
of a variable refers to the truth values of all its neighboring vari-
ables, in the QCC strategy the configuration of a variable refers to

C. Luo et al. / Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking 571



the states of all clauses it appears in. We give the formal definition of
configuration in QCC as follows:

Definition 2 Given a CNF formula F and an assignment α to
V (F ), the configuration of a variable x ∈ V (F ) is a vector
configuration(x) consisting of the states of all clauses in CL(x)
under assignment α.

For a variable x, a change on any bit of configuration(x) is
considered as a change on the whole configuration(x) vector. We
use TCC(x) (short for “times of configuration changes”) to denote
the number of times that configuration(x) has been changed since

x’s last flip. The QCC strategy prefers to pick the variables whose
configurations have been changed more times since their last flips.

4.2 An Implementation of Quantitative
Configuration Checking

In order to implement the QCC strategy in local search algorithms
for SAT, we employ an integer array ConfV ariation, whose size
equals the number of variables in the formula. For a variable x,
ConfV ariation(x) can be seen as a smoothed version of TCC(x).
Inspired by the success of smoothing techniques in clause weighting
SLS algorithms for SAT, we use a smoothing mechanism to decrease
TCC values periodically. These smoothed TCC values are stored
in the ConfV ariation array.

Due to the smoothing mechanism, recent changes on configura-
tions contribute more to the ConfV ariation values. Therefore, for
a variable, the greater its ConfV ariation value is, the more its
configuration was changed recently. In the QCC strategy, the vari-
ables with greater ConfV ariation values have more priorities to
be flipped. We maintain the ConfV ariation array as follow:

• Rule 3: At the start of local search, all the variables’
ConfV ariations are set to 1.

• Rule 4: When flipping x, ConfV ariation(x) is reset to 0; and if
flipping x makes some clauses change their states (from satisfied
to unsatisfied or from unsatisfied to satisfied), for each variable
y appearing in those clauses (except x), ConfV ariation(y) is
increased by 1.

• Rule 5: When the averaged clause weight w is greater than a con-
stant value δ, for each variable x with ConfV ariation(x) > 0,
ConfV ariation(x) is smoothed using the formula:
ConfV ariation(x) = ConfV ariation(x) ∗ β + 1, where
0 ≤ β ≤ 1.

In Swqcc, we utilize ConfV ariation to select the variable to
flip. Specifically, in the greedy mode, the algorithm picks the vari-
able with the greatest score, preferring the one with the greatest
ConfV ariation value to break ties. In the random mode, firstly
a random unsatisfied clause is selected; then the algorithm picks the
variable whose ConfV ariation is the greatest in the clause as the
flipping variable.

5 LOCAL SEARCH USING QUANTITATIVE
CONFIGURATION CHECKING

We use the QCC strategy to improve the Swcc algorithm, whose
pseudo-code can be found in [3], resulting in a new SLS algorithm
for SAT, which is called Swqcc (Smoothed Weighting with
Quantitative Configuration Checking).

5.1 Smoothing Clause Weighting Scheme

Swqcc uses a smoothed clause weighting scheme, as its original
version Swcc does. It is well acknowledged that clause weighting
scheme especially those with smoothing mechanisms, can signifi-
cantly improve the performance of SLS algorithms for SAT [11].
These smoothed clause weighting schemes have been used in some
state-of-the-art local search algorithms, such as Sparrow2011 and
EagleUP [7] which are the best SLS solvers in SAT Competition
2011.

In the Swqcc algorithm, every clause is combined with a weight
which is a nonnegative integer, and we use weight(c) to denote
clause c’s weight. At the start of the algorithm, all the weights is
set to 1. When the algorithm gets stuck in local optima, the weights
of unsatisfied clauses are increased by 1. Moreover, Swqcc uses a
smoothing mechanism to periodically smooth clause weights. The
smoothing mechanism in Swqcc is simple:

• Rule 6: When the averaged clause weight w is greater than
a threshold value δ, all clause weights are smoothed as
weight(ci) := �γ ·weight(ci)�+�(1−γ)w�, where 0 < γ < 1.

5.2 The Swqcc Algorithm

As mentioned in the introduction section, the most important part of
an SLS algorithm for SAT is the function for selecting the flipping
variable. On the basis of the selecting function, the SLS algorithms
for SAT can be divided into three main classes: GSAT, WalkSAT
and Dynamic Local Search. State-of-the-art SLS solvers mix these
classes in their selecting function, such as the three winners of the
random satisfiable category in the SAT Competition 2011, namely
Sparrow2011, Sattime2011 and EagleUP [7]. Swqcc also combines
heuristics from these classes in its selecting function. We outline the
algorithm Swqcc in Algorithm 1, as described below.

In the beginning, the candidate assignment α is initialized ran-
domly. All the clause weights are initialized as 1, and the scores for
all variables are computed accordingly. Also, ConfV ariation(x)
is initialized as 1 for each variable x. Then the algorithm puts the
variables with score(x) > 0 into a candidate variable set named G.
G is the candidate variable set, which is maintained during the search
process(line 15 and 19), consisting of “good” variables.

After the initialization, the algorithm executes a loop until the
number of search steps reaches maxSteps or a satisfiable assign-
ment is found. Swqcc switches between the greedy mode and the
random mode to select a variable to be flipped. Which mode the
algorithm chooses to select the flipping variable depends on G is
empty or not. If G is not empty, the algorithm works in greedy mode
and chooses the flipping variable from G; otherwise, the algorithm
picks the flipping variable in the random mode. How these two mode
work can be described as follows.

The greedy mode: The algorithm chooses a variable x ∈ G with
the greatest score as the flipping variable, breaking ties by preferring
the one with the greatest ConfV ariation(x) (line 10).

The random mode: All unsatisfied clauses’ weights are in-
creased by 1. If average weight w exceeds δ, all the variables’
configurations and clauses’ weights are smoothed, referring to Rule
5 and 6. After that, the algorithm randomly picks an unsatisfied
clause c, and chooses the variable x whose ConfV ariation(x) is
the greatest in c as the flipping variable, breaking ties by preferring
the least recently flipped one (line 12 to 17).

After picking the flipping variable, the algorithm flips the chosen
variable and performs some updating work, such as updating scores

C. Luo et al. / Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking572



and ConfV ariations (line 18). Swqcc repeats picking and flipping
a variable until it finds a satisfiable assignment α or reaches the step
limit. If the algorithm finds a satisfiable assignment, it outputs the
satisfiable assignment; otherwise it outputs Unknown.

Algorithm 1: Swqcc

Swqcc(F,maxSteps)1

Input: CNF-formula F , maxSteps
Output: A satisfying truth assignment α of F or Unknown
begin2

initialize a random assignment α;3

initialize all weight(c) as 1 and compute socre(x) for each4

variable x;
initialize ConfV ariation(x) as 1 for each variable x;5

put variables with score(x) > 0 into the G set;6

for step ← 1 to maxSteps do7

if α satisfies F then return α;8

if G is not empty then9

v ← x with the greatest score(x) in G, breaking10

ties by preferring the one with the greatest
ConfV ariation(x);

else11

increase all unsatisfied clauses’ weights by 1;12

if w > δ then13

smooth ConfV ariations by Rule 5 and14

smooth clause weights by Rule 6;
G ← G ∪ {y | score(y) > 0 &15

ConfV ariation(y) > 0};
c ← randomly choose an unsatisfied clause;16

v ← the greatest ConfV ariation(x) variable in17

clause c, breaking tie by choosing least recently
flipped variable;

flip v; update ConfV ariations by Rule 4 and scores;18

G ← (G− {y | score(y) ≤ 0}) ∪19

{y | score(y) > 0 & y ∈ N(x)};
if α satisfies F then20

return α;21

else22

return Unknown;23

end24

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of Swqcc on random
3-SAT instances. The experiments are divided into two parts. In the
first part, we compare Swqcc with Swcc and Sparrow2011 on the
large random 3-SAT instances from the SAT Competition 2011. In
the second part, we compare Swqcc with Swcc and Sparrow2011
on some huge random 3-SAT instances according to the fixed clause
length model. Finally, we conclude the results of the comparisons.

6.1 Software and Hardware

The algorithm Swqcc is implemented in C++. We set δ to 300, β
to 0.3 and γ to 0.3, based on preliminary manual tuning. The code
of Swcc, which is also implemented in C++, is provided by its au-
thor. We re-implement the data structure of Swcc by using arrays to
replace double lists for literals and clauses, leading to a speedup of

about 26%, and we use this improved version of Swcc in our experi-
ments. We build our Swqcc solver on the top of this implementation.
The code of Sparrow2011 we test for comparison is the one submit-
ted to SAT Competition 2011 [1].

All experiments are run on 4 cores from Intel(R) Xeon(R) E7520
CPU(16 cores) with 1.87GHz and 15.7GB memory under Linux.

6.2 The Benchmarks

In our experiment, we set up two benchmarks. The first benchmark
contains all large random 3-SAT instances of the SAT Competition
2011 (2500 ≤ number of variables ≤ 50000) [1]. The second
benchmark is a set of formulas created according to the fixed clause
length model (no tautologies, no duplicate clauses, no duplicate lit-
erals in a clause, 52000 ≤ number of variables ≤ 60000).

For the first benchmark, there are 10 classes of instances and each
class has 10 instances. For the second benchmark, there are 5 classes
of instances and each class has 100 instances, and the size ranges
from 52000 to 60000 variables in increments of 2000. All instances
share the same ratio of 4.2 and are satisfiable, so they can be used to
evaluate the efficiency of SLS algorithms.

6.3 Evaluating Criterion and Result Reporting
Pattern

In this experiment, we adopt the evaluating criterion like the one SAT
competitions use. By comparing the executing time, the number of
searching steps and the success rate, we can evaluate the solvers in a
direct way. Each run terminates upon finding a satisfiable assignment
or exceeding the time limit which is set to 1000 seconds for the first
benchmark and 1500 seconds for the second benchmark.

For the first benchmark, all solvers run 100 times on each instance
and thus 1000 times for each class. For the second benchmark, all
solvers run 5 times on each instance and thus 500 times for each
class. We say a run is successful if the solver finds a satisfiable as-
signment. For each solver on each instance class, the averaged run
time, averaged steps and success rate (the number of successful runs
divided by the number of total runs) are reported.

6.4 Results

In this section, we discuss the performance of Swqcc, Swcc and
Sparrow2011 in the experiments.

Discussion on the first benchmark: Table 1 presents the perfor-
mance of Swqcc, Swcc and Sparrow2011 on large random 3-SAT
instances from the SAT Competition 2011. It is clear that Swqcc sig-
nificantly outperforms Swcc. Both the averaged time and the number
of averaged steps of Swqcc are less than Swcc’s. The success rate
of Swqcc is more than Swcc’s on each instance class. Moreover the
difference is more significant on those instances with at least 35000
variables.

Swqcc also outperforms Sparrow2011 on success rate, averaged
time and averaged steps for each class. On the classes with more
than 35000 variables, Swqcc’s success rates are obviously more than
those of Sparrow2011. Specially, for the k3-v50000 class which is
the most difficult class in the benchmark, the success rate of Swqcc
is about 30% more than that of Sparrow2011. Additionally, for three
instances in the k3-v5000 class, Swqcc succeeds to find satisfiable
assignments in 74, 68 and 59 runs respectively, while Sparrow2011
only succeeds in 22, 14 and 16 runs separately. The gaps on success
rate and averaged time can be seen clearly in Figure 1.

C. Luo et al. / Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking 573



Table 1 Comparing Swqcc with Swcc and Sparrow2011 on the large random 3-SAT instances in SAT Competition 2011

Instance Class
Swcc Swqcc Sparrow2011

succ rate avg time avg steps succ rate avg time avg steps succ rate avg time avg steps

k3-v2500 99.6% 32.9 40,043,150 99.8% 21.8 24,886,573 99.1% 39.2 40,365,308
k3-v5000 99.5% 65.1 57,738,399 100.0% 21.9 20,595,572 100.0% 25.9 24,068,133
k3-v10000 99.2% 96.9 63,612,896 100.0% 39.2 27,627,351 99.6% 54.1 42,469,154
k3-v15000 97.8% 156.9 77,438,850 99.9% 69.4 39,087,773 99.9% 79.3 56,856,478
k3-v20000 96.3% 246.9 98,828,157 99.9% 120.7 54,318,782 99.1% 138.5 89,391,880
k3-v25000 94.1% 339.7 115,923,056 99.4% 199.8 75,328,586 96.9% 233.8 139,605,914
k3-v30000 90.6% 396.0 118,562,251 99.1% 228.5 73,637,941 94.6% 284.1 156,394,900
k3-v35000 75.7% 568.9 151,716,114 97.2% 340.2 96,665,351 85.1% 465.4 235,298,103
k3-v40000 84.1% 467.7 111,274,783 96.4% 290.4 71,742,619 85.8% 407.4 192,945,177
k3-v50000 46.9% 796.3 152,118,922 86.8% 483.1 92,103,323 58.5% 675.5 283,724,973

Table 2 Comparing Swqcc with Swcc and Sparrow2011 on the huge random 3-SAT instances according to the fixed clause length model

Instance Class
Swcc Swqcc Sparrow2011

succ rate avg time avg steps succ rate avg time avg steps succ rate avg time avg steps

k3-v52000 66.2% 1028.6 179,795,225 98.6% 411.9 73,811,429 84.6% 723.5 296,249,010
k3-v54000 60.6% 1071.2 185,385,515 98.4% 423.8 72,286,463 81.0% 792.8 317,965,296
k3-v56000 41.4% 1254.5 205,058,562 98.0% 488.6 79,500,530 78.6% 851.5 338,833,676
k3-v58000 31.4% 1316.7 211,233,037 97.2% 544.3 84,458,959 79.6% 819.0 315,199,569
k3-v60000 23.4% 1390.5 213,633,129 95.2% 606.9 90,070,893 71.0% 944.9 359,898,174

Discussion on the second benchmark: We also compare these
solvers on the huge random 3-SAT instances. Seen from Table 2 and
also Figure 2, Swqcc significantly outperforms Sparrow2011, which
in turn significantly outperforms Swcc on these huge random 3-SAT
instances. Firstly we look at the success rates. On each class of the
benchmark, the success rate of Swqcc is about 20% more than that
of Sparrow2011. Specially, on the most difficult class k3-v60000, the
success rate of Swqcc is 95.2%, while that of Swcc and Sparrow2011
is only 23.4% and 71.0%.

Swqcc also outperforms the other two solvers in terms of aver-
aged time and averaged steps. There is only one class on which the
averaged time of Swqcc exceeds 600 seconds (which is 607 seconds
exactly), while the averaged time of Sparrow2011 varies from 723.5
to 944.9 seconds and that of Swcc varies from 1028 to 1390 seconds.
The averaged steps of Swqcc are dramatically less than those of Swcc
and Sparrow on these huge instances.

Summarization: The experiments show that Swqcc consistently
outperforms Sparrow2011 in solving random 3-SAT instances, while
Sparrow2011 in turn outperforms Swcc. We believe the better per-
formance of Swqcc is mainly attributed to the QCC strategy, since
Swqcc is derived from Swcc by replacing the CC strategy with QCC.

7 DISCUSSIONS

In this section, we further investigate the QCC strategy. Specifical-
ly, we discuss the differences between CC and QCC, and study the
effectiveness of the smoothing mechanism in QCC.

7.1 Differences between CC and QCC

Configuration checking is a general local search idea, and the CC and
QCC strategies are both evolved from this idea. However, these two
strategies have three significant differences, as described below:

• In CC, a variable’s configuration refers to the truth vales of its
neighboring variables, while in QCC, a variable’s configuration

refers to the states of the clauses in which it appears.
We have conducted some experiments to compare Swqcc with its
alternative version where the configuration is defined as in CC.
The experiments show that this alternative strategy of QCC de-
grades the performance of Swqcc. For example, over 100 runs on
the k3-v50000 group, it only achieves a success rate of 67%.

• The CC strategy only considers whether a variable’s configuration
has been changed; in contrast, the QCC strategy takes into account
the quantitative variation of a variable’s configuration.

• The CC strategy is only used as a condition for candidate variables
to be flipped in the greedy mode, while QCC is used to break ties
in the greedy mode and serves as the priority selecting criterion
in the random mode. This is the first time the CC idea is used in
random mode.
We have conducted some experiments to compare Swqcc with its
alternative version which directly picks the least recently flipped
variable from the selected unsatisfied clause in random mode. The
experiments show that this alternative version of Swqcc performs
significantly worse than Swqcc. For example, over 100 runs on the
k3-v50000 group, it only achieves a success rate of 27%.

7.2 Discussion on the Smoothing Mechanism in the
Quantitative Configuration Checking

To study the effectiveness of the smoothing mechanism in QCC
(Rule 5), we run the alternative version of Swqcc without Rule 5
on random 3-SAT instances from the SAT Competition 2011. This
alternative version of Swqcc performs worse, especially on large in-
stances. For example, over 100 runs on the k3-v50000 group, it only
achieves a success rate of 53%, compared to that of Swqcc is 86.8%.

An alternative smoothing mechanism in the QCC strategy to
smooth ConfV ariations based on the threshold of the mean val-
ue of all ConfV ariations. However, it is time consuming as we
should additionally maintain the mean value of ConfV ariations,
which may be updated in each step.

C. Luo et al. / Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking574



Figure 1 Success rate and averaged time of solvers on the large random 3-SAT instances in SAT Competition 2011

0 1 2 3 4 5

x 104

0

20

40

60

80

100

number of variables in CNF formula

su
cc

es
 ra

te
 (%

)

Swqcc
Swcc
Sparrow2011

0 1 2 3 4 5

x 104

0

100

200

300

400

500

600

700

800

number of variables in CNF formula

av
er

ag
ed

 ti
m

e 
(s

ec
on

d)

Swqcc
Swcc
Sparrow2011

Figure 2 Success rate and averaged time of solvers on the huge random 3-SAT instances according to the fixed clause length model

5.2 5.4 5.6 5.8 6

x 104

0

20

40

60

80

100

number of variables in CNF formula

su
cc

es
 ra

te
 (%

)

Swqcc
Swcc
Sparrow2011

5.2 5.4 5.6 5.8 6

x 104

0

200

400

600

800

1000

1200

1400

number of variables in CNF formula

av
er

ag
ed

 ti
m

e 
(s

ec
on

d)

Swqcc
Swcc
Sparrow2011

8 CONCLUSION AND FUTURE WORK

We proposed a new strategy called Quantitative Configuration
Checking (QCC) for local search SAT algorithms. The QCC strategy
is considered as a diversification strategy. Although QCC can be seen
as a quantitative version of the CC strategy, there are significant dif-
ferences between the two strategies. The QCC strategy considers the
quantitative variation of a variable’s configuration when choosing the
variable to flip, where the definition of configuration of a variable
is based on the states of the clauses it appears in.

We utilized the QCC strategy to derive a new SLS algorithm
called Swqcc from the Swcc algorithm, and validated its effective-
ness through experiments on random 3-SAT instances. By comparing
Swqcc with Swcc, we showed that the QCC strategy is more effec-
tive than the CC strategy. Furthermore, our experiments showed that
Swqcc outperforms the best SLS solver called Sparrow2011 in SAT
Competition on random 3-SAT instances, especially those large ones.

For future work, we plan to improve Swqcc by combining other
ideas such as the aspiration idea [4] used in Swcca or the probability
distribution idea [2] used in Sparrow2011. We would also like to im-
prove the QCC strategy by defining configuration in a more effective
way, and test our algorithm on the random k-SAT for k > 3.

9 ACKNOWLEDGEMENTS

This work is partially supported by National Basic Research Pro-
gram (973 Program) 2010CB328103, Australian Research Council
Discovery Project DP120102489, and Australian Research Council
Future Fellowship FT0991785. We would like to thank the anony-
mous referees for their helpful comments.

REFERENCES

[1] The SAT competition homepage. http://www.satcompetition.org.
[2] Adrian Balint and Andreas Fröhlich, ‘Improving stochastic local search

for SAT with a new probability distribution’, in Proc. of SAT-10, pp.
10–15, (2010).

[3] Shaowei Cai and Kaile Su, ‘Local search with configuration checking
for SAT’, in Proc. of ICTAI-11, pp. 59–66, (2011).

[4] Shaowei Cai and Kaile Su, ‘Configuration checking with aspiration in
local search for SAT’, in Proc. of AAAI-12, p. To appear, (2012).

[5] Shaowei Cai, Kaile Su, and Qingliang Chen, ‘EWLS: A new local
search for minimum vertex cover’, in Proc. of AAAI-10, pp. 45–50,
(2010).

[6] Shaowei Cai, Kaile Su, and Abdul Sattar, ‘Local search with edge
weighting and configuration checking heuristics for minimum vertex
cover’, Artif. Intell., 175(9-10), 1672–1696, (2011).

[7] Oliver Gableske and Marijn Heule, ‘EagleUP: Solving random 3-SAT
using SLS with unit propagation’, in Proc. of SAT-11, pp. 367–368,
(2011).

[8] Ian P. Gent and Toby Walsh, ‘Towards an understanding of hill-
climbing procedures for SAT’, in Proc. of AAAI-93, pp. 28–33, (1993).

[9] Fred Glover, ‘Tabu search – part i’, ORSA Journal on Computing, 1(3),
190–206, (1989).

[10] Fred Glover, ‘Tabu search – part ii’, ORSA Journal on Computing, 2(1),
4–32, (1990).

[11] Henry A. Kautz, Ashish Sabharwal, and Bart Selman, ‘Incomplete
algorithms’, in Handbook of Satisfiability, 185–203, IOS Press, (2009).

[12] Chu Min Li and Wen Qi Huang, ‘Diversification and determinism in
local search for satisfiability’, in Proc. of SAT-05, pp. 158–172, (2005).

[13] Wil Michiels, Emile H. L. Aarts, and Jan H. M. Korst, Theoretical as-
pects of local search, Springer, 2007.

[14] Bart Selman, Henry A. Kautz, and Bram Cohen, ‘Noise strategies for
improving local search’, in Proc. of AAAI-94, pp. 337–343, (1994).

[15] Bart Selman, Hector J. Levesque, and David G. Mitchell, ‘A new
method for solving hard satisfiability problems’, in Proc. of AAAI-92,
pp. 440–446, (1992).

C. Luo et al. / Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking 575


