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Abstract. We consider the problem of fairly allocating a set of
m indivisible objects to n agents having additive preferences over
them. In this paper we propose an extension of this classical problem,
where each object can possibly be in bad condition (e.g broken), in
which case its actual value is zero. We assume that the central author-
ity in charge of allocating the objects does not know beforehand the
objects conditions, but only has probabilistic information. The aim
of this work is to propose a formal model of this problem, to adapt
some classical fairness criteria to this extended setting, and to in-
troduce several approaches to compute optimal allocations for small
instances as well as sub-optimal good allocations for real-world in-
spired allocation problems of realistic size.

1 INTRODUCTION

The problem of allocating a set of indivisible objects to a set of agents
arises in a wide range of applications including auctions, divorce set-
tlements, frequency allocation, airport traffic management, schedul-
ing, courses allocation, multiagent resource allocation and resource-
sharing in general. In such problems, one usually needs to find fair
solutions, where fairness refers to the need for compromises between
the agents often conflicting preferences for the objects.

In most fair division problems, it is assumed that objects condi-
tions are perfectly known when agents value them. However, it often
happens that the actual value or utility of an object for an agent is
only discovered after the allocation has been decided. As a toy ex-
ample, let the objects be bottles of wine to be shared amongst a set of
agents. The wine in each bottle can be corked, but this is not known
before opening (which happens only after the bottles have been al-
located). How can this uncertainty, which also arises in numerous
variants of the aforementioned real-world problems, be taken into
account ? In this paper we present a simple variant of the multiagent
resource allocation problem (see e.g. [7] for a survey on this topic)
in which the decision-maker has probabilistic information about the
objects conditions, conditions which affect agent utilities.

Uncertainty (or, more precisely, risk) issues in collective decision
making have been studied before, as in the microeconomical works
by Myerson [18] and more recently Gajdos and Tallon [10]. How-
ever, these works focus on continuous allocation spaces (divisible
“objects”) and leave aside computational issues. Risk management
in (combinatorial) auctions has also been studied (for example in
[12]), more precisely the influence of potential bid withdrawals in
terms of loss of total revenue for the auctioneer; but to the best of our
knowledge, fairness issues are not considered. Finally, uncertainty in
vote (which is another kind of collective decision problem) has been
investigated in some recent papers. Yet, in most of these, uncertainty
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stands for the incomplete knowledge of the decider about the agents’
preferences (see e.g. [2]). One notable exception is the work by Lu
and Boutilier [14] which deals with a voting problem where each
candidate may withdraw from the election.

In this article, three main assumptions are made. (i) The alloca-
tion is centralized, that is, it is decided and computed by a central
benevolent authority, according to the agents’ preferences. (ii) Each
object can only be in two possible conditions: good or bad. The ac-
tual condition of an object is only known with a given probability
when the allocation is decided, but is known for sure after the ob-
jects have been allocated. (iii) The agents have (subjective) additive
utility preferences over the objects.

Even though this framework seems restrictive, we claim that it is
worth studying it because first, additivity is very natural as soon as
preferences over sets of objects have to be represented in a com-
pact way (e.g, the well-known Santa-Claus fair division problem [3]
is based on additive preferences); second, in many real-world prob-
lems, uncertainty can be defined “object-wise” and thus can be natu-
rally modeled as we do; lastly, as we will see, our framework raises
non trivial computational issues, despite its apparent simplicity.

This article is structured as follows. In Section 2, we describe our
framework for fair division of indivisible objects under risk. In Sec-
tion 3 we propose some extensions of classical fairness criteria based
on collective utility functions and on fair share guarantee and explore
their theoretical properties. Finally, we propose in Section 4 some
practical methods to compute optimal and approximated fair alloca-
tions and we give some experimental results.

2 MODEL

In the following, we use lower case bold font to represent vectors and
upper case bold font to represent matrices.

A finite set of indivisible objects O = {1, . . . ,m} must be allo-
cated by a central authority to a finite set of agents A = {1, . . . , n}.
An allocation is a vector of shares π = 〈π1, . . . , πn〉where πi ⊆ O,
and j ∈ πi if and only if object j has been given to agent i. The set
of feasible allocations is F = {π, i �= i′ ⇒ πi ∩ πi′ = ∅} (an
object cannot be given to more than one agent). We further denote by
π0 = O \⋃i∈A πi the set of non allocated objects, if any.

Each object can be either in good or bad condition. The objects’
conditions are known only after the allocation has been made, but
the decision-maker is nevertheless given probabilistic information: a
vector p ∈ [0; 1]m maps each object j to its probability pj to be in
good condition; these probabilities are assumed to be independent.
Let S = 2m be the set of the possible states of nature, and good(s)
the set of objects in good condition when state of nature s happens.
We thus have ∀s ∈ S, Pr(s) =

∏
j∈good(s) pj

∏
j /∈good(s)(1−pj).

The agents’ preferences for the objects are numerically expressed
by weights: wi,j ∈ R

+ represents the utility of object j in good
condition for agent i. A weight of zero means that the agent is
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not interested in the object. For the agent i, the individual utility
of the allocation π if the state of nature s happens is defined as
ui(π, s)

def
=

∑
j∈good(s)∩πi

wi,j . In other words, we assume that
agents have additive preferences over the objects: an agent individual
utility for an allocation and a state of nature is given by the sum of
the weights of the objects in good condition received by said agent
and each object in bad condition brings no extra utility.

To sum up, an instance of our problem is given by a tuple
P = (A,O,p,W), where A = {1, . . . , n} is a set of agents,
O = {1, . . . ,m} is a set of objects, p ∈ [0; 1]m expresses the prob-
ability for each object to be in good condition, and W is the n-lines
m-columns matrix of weights given to the objects by the agents.

Example 1 Table 1 shows an instance of our problem, with the prob-
abilities of each possible state of nature (line (2)) and utility profiles
associated with a given allocation (lines (3) and (4)).

3 FAIRNESS CRITERIA UNDER RISK

3.1 Ex-post vs ex-ante collective utilities

A classical way to define the quality of an allocation is to aggregate
the agents’ individual utilities with a commutative and increasing
collective utility function (CUF) G : (R+)

n → R
+, which mea-

sures social welfare. A general survey on CUF can be found in [17].
In this paper, we will focus on the following ones:
• utilitarian and egalitarian CUF: Gu def

=
∑

and Ge def
= min;

• Nash CUF: Gn def
=

∏
;

• Ordered Weighted Averages (OWAs) [21]: Gω(u)
def
=

∑n
i=1 ωiu

↑
i ,

where
∑n

i=1 ωi = 1, ωi ≥ 0 ∀i, and u↑ is a permutation of u
s.t. u↑

1 ≤ · · · ≤ u↑
n;

• Sums of Powers4 (SPs) [17]: Gp(u)
def
= sign(p)

∑n
i=1 u

p
i for p �=

0, and G0(u)
def
=

∑n
i=1 log(ui).

OWAs and SPs provide two families of compromises between the
utilitarian and egalitarian CUF: the first one can be represented5 by
G(1/n,1/n,...,1/n) or G1 and the second one by G(1,0,...,0) or Gp,
with p → −∞ (more precisely, this last aggregation function repre-
sents the leximin preorder, which refines the egalitarian CUF). More-
over, the Nash CUF can be represented by G0. We must also note that
most of these operators only make sense if the individual utilities are
normalized (in our case, imposing

∑
j∈O wi,j =

∑
j∈O wi′,j ∀i, i′

is a reasonable way to do it – see e.g [17] for other normalization
methods). In the following we will write Gi∈Aui for G(u).

Since the actual state of nature is unknown before the allocation is
chosen, utilities must be aggregated in all different possible states of
nature. For this purpose we use the expected utility – other choices
are possible, such as the min (pessimistic) or max (optimistic) oper-
ators, but we stand here on the most natural way of doing this aggre-
gation. Depending on whether aggregation is first made over agents
and then over states of nature or the other way around, we obtain two
different functions [11, 18]: acu : F → R

+, defined in (1), is called
ex-ante collective utility and pcu : F → R

+, defined in (2) is called
ex-post collective utility.

∀π ∈ F , acu(π)
def
= Gi∈A

(∑
s∈S

Pr(s) · ui(π, s)
)

(1)

∀π ∈ F , pcu(π)
def
=

∑
s∈S

Pr(s) · (Gi∈Aui(π, s)) (2)

4 Note that this family corresponds (up to a pth-root) to the family of root-
power quasi-arithmetic means studied e.g. in multicriteria decision aid [15].

5 f represents g means formally that ∀(x, y), f(x) ≤ f(y) ⇔ g(x) ≤ g(y).

Defining some expected weights w̃i,j
def
= pjwi,j , Proposition 1 shows

that the ex-ante collective utility can be written as the collective util-
ity of a risk-free equivalent instance (proof is easy thus omitted).

Proposition 1 Let ũi(π)
def
=

∑
j∈πi

w̃i,j be the expected utility of
agent i for the allocation π. Then ∀π ∈ F , acu(π) = Gi∈A ũi(π).

3.2 Properties of ex-post and ex-ante utilities

We might wonder if we can find any relation between ex-ante and ex-
post collective utilities. Actually, the following (in)equalities follow
immediately from the definition of convexity, linearity, concavity:

Proposition 2 Let G be a CUF. Then ∀π, pcu(π) ≤ acu(π) (resp.
≥, =) if and only if G is concave (resp. convex, linear).

This proposition shows that determining whether the ex-post util-
ity is greater than the ex-ante utility comes down to analyzing the
concavity of the collective utility function, which is not completely
straightforward for standard operators. We will give here several re-
sults about the classical CUF that favor equity in the solution, more
formally, on those that promote Pigou-Dalton transfers [8, 19], that
is, utility transfers from wealthier agents to poorer ones.

Definition 1 (Pigou-Dalton transfer) Let u and u′ be two utility
vectors. u′ is obtained by a Pigou-Dalton transfer from u if and only
if one can find a couple of distinct agents (i1, i2), i1 �= i2 such that
(i) the sum of their utilities remains unchanged: ui1+ui2 = u′

i1+u′
i2

(ii) inequalities decrease: |u′
i1−u′

i2 | < |ui1−ui2 | (iii) other agents
utilities remain unchanged: ∀i ∈ A \ {i1, i2}, ui = u′

i.

A CUF is said to reduce inequalities if for all u, u′, G(u′) ≥
G(u) as soon as u′ is obtained by Pigou-Dalton transfer from u.
Note that this property is also called Schur-concavity in the theory of
majorization (see e.g [16]).

We will now show that reducing inequalities entails concavity for
a general set of CUF, namely the separable ones (see e.g [17]).

Definition 2 (Separability) A CUF G is said to be separable if and
only if it exists an increasing function g : R+ → R

+ s.t., for each
utility vector u ∈ (

R
+
)n, G(u) =

∑n
i=1 g(ui).

Proposition 3 Let G be a separable CUF reducing inequalities.
Then, G is concave, that is, the following inequality stands:

∀π ∈ F , pcu(π) ≤ acu(π) (3)

The proof of this proposition follows rather directly from Jensen’s
inequality. Now, even if a wide range of CUF are separable (for ex-
ample the sums of powers), it is not the case for the OWA. However,
it appears that any OWA reducing inequalities is concave :

Proposition 4 Let Gω be an OWA reducing inequalities. Then Gω

is concave, that is, Inequality (3) also stands.

We prove this using two lemmas (the proof of Lemma 1 is easy,
thus omitted due to lack of space).

Lemma 1 Gω reduces inequalities if and only if ω1 ≥ · · · ≥ ωn.

Lemma 2 Let u = (u1, . . . , un) a vector, σ a permutation of
{1, . . . n} s.t. ∀i < j,uσ(i) ≤ uσ(j), and ω a vector of sorted
weights: ω1 ≥ ω2 ≥ · · · ≥ ωn. Then

∑n
i=1(ωσ(i) − ωi)uσ(i) ≥ 0.
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Table 1. Utility profile and ex-ante and ex-post utility computation for a problem with 2 agents, 4 objects, probabilities p = 〈0.8, 0.8, 0.5, 0.2〉, weights
w1 = 〈10, 2, 4, 7〉 and w2 = 〈3, 8, 4, 10〉, allocation π = 〈{1, 4}, {2, 3}〉, G = min. Here, pcu(π) = 4.66 and acu(π) = 8.4 (see Section 3.1).

(1) good(s) ∅ {1} {2} {3} {4} {1, 2} {1, 3} . . . {2, 3, 4} {1, 2, 3, 4} expected
(2) Pr(s) 0.016 0.064 0.064 0.016 0.004 0.256 0.064 . . . 0.016 0.064 utility
(3) u1(π, s) 0 10 0 0 7 10 10 . . . 7 17 9.4
(4) u2(π, s) 0 0 8 4 0 8 4 . . . 12 12 8.4

(5)
collective

utility 0 0 0 0 0 8 4 . . . 7 12
������4.66

8.4

Proof We can prove the result by induction on n. The base case
(n = 1) is immediate: σ is the identity and the sum equals 0.

Suppose that the lemma is true for every vector u and ω of dimen-
sion n − 1. Let u and ω be two vectors of dimension n satisfying
the conditions of Lemma 2, and let σ be a permutation sorting the
components of u. Let t = σ−1(n) (thus n = σ(t)). The following
inequalities stand: ωt ≥ ωn(4) and uσ(t) = un ≤ uσ(n)(5).

Focusing on the sum components that contain t and n, we obtain:

(ωσ(t) − ωt)uσ(t) + (ωσ(n) − ωn)uσ(n)

= (ωσ(n) − ωt)uσ(n) +
[
(ωt − ωn)(uσ(n) − un)

]︸ ︷︷ ︸
≥0 (from inequalities (4) and (5))

(6)

Now let σ′ be the permutation of {1, . . . , n− 1} defined by:

σ′ : i �→
{

σ(n) if i = t
σ(i) otherwise

We can prove, by using Equation (6), definition of σ, and induction
hypothesis:

n∑
i=1

(ωσ(i) − ωi)uσ(i) ≥
n−1∑
i=1

(ωσ′(i) − ωi)uσ′(i) ≥ 0,

which proves the hypothesis at rank n, and completes the proof. �

Proof (Proposition 4) Let Gω be an OWA that reduces inequal-
ities. By Lemma 1, ω1 ≥ ω2 ≥ · · · ≥ ωn. Let π be an allocation,
and as in Proposition 1, ũi(π) =

∑
s∈S Pr(s)ui(π, s) agent i’s ex-

pected utility. Suppose w.l.o.g that ũ1(π) ≤ ũ2(π) ≤ · · · ≤ ũn(π)
(we can permute the agents if it is not the case). For all s ∈ S let
σs be a permutation such that ∀i < i′, uσs(i)(π, s) ≤ uσs(i′)(π, s).
We have acu(π) =

∑n
i=1

∑
s∈S Pr(s)ωiui(π, s), and pcu(π) =∑n

i=1

∑
s∈S Pr(s)ωiuσs(i)(π, s). Thus:

acu(π)− pcu(π) =
∑
s∈S

Pr(s)×
n∑

i=1

((ωσs(i) − ωi) · uσs(i)(π, s)

Applying Lemma 2 on vectors u(π, s) and ω, and on permutation
σs, one obtains immediately acu(π)− pcu(π) ≥ 0. �

We can notice that Propositions 3 and 4 immediately entail that the
inequality pcu ≤ acu holds for the egalitarian and utilitarian CUF
(actually pcu = acu in the utilitarian case).

The Nash CUF case kind of lies in-between: if we stick to the orig-
inal definition (G =

∏
), the inequality pcu ≤ acu does not hold.

Consider for example the two vectors x = (1, 1) and y = (3, 3). We
have 0.5×(1×1+3×3) = 5 ≥ (0.5×(1+3))×(0.5×(1+3)) = 4,
which proves this CUF is not concave (it can be shown that it is not
convex either). Yet, if we consider the representation of the Nash
CUF as a SP operator G0, we have proved earlier its concavity, and
thus the inequality pcu ≤ acu holds. This example shows that the
latter property is not inherent to a social welfare ordering, but rather
to its chosen numerical representation.

3.3 Fair share guarantee under risk

The optimization of CUF focuses on the search for the best alloca-
tions (for a particular meaning of what “best” is), which can be very
demanding. Another approach is to look for allocations that satisfy a
given decision criterion. One prominent approach, defended by [20],
is based on the fair share principle which is defined as follows in a
risk-free setting:

Definition 3 An allocation π satisfies the fair share test if and only
if for all i, ui(π) ≥ 1/n

∑m
j=1 wi,j .

The fair share test is also known as proportionality principle, since
it is based on the fact that each agent considers that she is entitled to
at least 1/n of what she considers to be the total value of the resource
to share. One appealing property of this test is its independence on
the individual utility scales, so there is no need to bother about nor-
malization of individual utilities.

The fair share test can be extended in several ways to risk. The
ex-ante fair share test is a straightforward extension:

Definition 4 An allocation π satisfies the ex-ante fair share test if
and only if for all i, ũi(π) ≥ 1/n

∑m
j=1 w̃i,j .

In other words, ensuring ex-ante fair share means that each agent
is considered happy as soon as she gets at least her entitlement of
expected utility. Now, applying the same argument to define ex-post
fair share leads to the following criterion: an allocation passes the
ex-post fair share test if and only if it passes the fair share test in
every state of the world. As soon as for a given state (may it have the
tiniest non zero probability) an agent only gets objects in bad state,
while the other ones are in good state, the allocation will not pass
the test. Hence, for most instances, no allocation will pass the test,
which argues in favor of a less demanding criterion. A possibility is
to maximize the probability to satisfy fair share, instead of trying to
ensure it in each state of the world.

Definition 5 The ex-post probability of fair share of a given alloca-
tion π is defined as follows:

ϕp(π)
def
=

∑
s∈S

Pr(s)min
i∈A

(ϕi(π, s)),

with ϕi(π, s) = 1 if ui(π, s) ≥ 1/n
∑

j∈good(s) wi,j , 0 otherwise.

The value ϕi(π, s) indicates whether agent i has her fair share
in state s. The use of operator min comes from the definition of fair
share test which is satisfied only if all the agents have their fair share.

We can notice that since ϕi(π, s) is a numerical value, depend-
ing on a pair (agent, state), we can use it exactly the same way we
used individual utilities. Therefore, since we have defined an ex-post
probability of fair share, we can also define the ex-ante version of
this criterion6:
6 Also note that we could replace the min operator with another one (for

example
∑

), which would lead to other criteria, like ex-ante or ex-post
quantities of fair share for example.
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Definition 6 The ex-ante probability of fair share of a given alloca-
tion π is defined as follows:

ϕa(π)
def
= min

i∈A

∑
s∈S

Pr(s)ϕi(π, s).

We might wonder if there are some links between the definition
of ex-ante probability of fair share (Definition 6) and the ex-ante fair
share test (Definition 4). It turns out that even if (ϕa = 1) entails
passing the ex-ante fair share test, passing the ex-ante fair share test
does not guarantee a higher value of ϕa:

Proposition 5 For all allocation π, (ϕa(π) = 1)⇒ π satisfies the
ex-ante fair share test. However, for any pair (π,π′), (π′ satisfies
the ex-ante fair share test and π does not) �⇒ ϕa(π′) > ϕa(π).

Proof Let π be such that ϕa(π) = 1. By Definition 6, ∀(i, s),
ϕi(π, s) = 1, which entails ui(π, s) ≥ 1/n

∑
j∈good(s) wi,j .

Then, ũi(π) =
∑

s∈S Pr(s)ui(π, s) ≥ ∑
s∈S Pr(s) ×

1/n
∑

j∈good(s) wi,j = 1/n
∑m

j=1 w̃i,j , which proves the first im-
plication.

Now consider the following example:

W =

j1 j2
i1 899 101
i2 991 9

p = 〈0.1, 0.9〉
π = 〈{j2}, {j1}〉
π′ = 〈{j1}, {j2}〉

We have ϕa(π′) = ϕa(π) = 0.19. π passes the ex-ante fair-share
test, but π′ does not. �

The following result comes directly from the concavity of min:

Proposition 6 For each π ∈ F , we have ϕp(π) ≤ ϕa(π).

Note also that both ϕa and ϕp are bounded above by 1, ϕa = 1⇔
ϕp = 1. It corresponds to the case where the fair share test is verified
in each state of the world.

Finally, it can be noticed that in the risk-free case there is an in-
teresting correlation between egalitarianism and fair share: if the set
of allocations passing the fair share test is non empty, every optimal
allocation will pass it. We will show that it is still the case for ex-ante
fair share test and egalitarianism, but not for ϕp and egalitarianism:
maximizing ex-post egalitarian CUF may lead to sub-optimal alloca-
tions concerning ex-post probability of fair share.

Proposition 7 Let (A,O,p,W) be an instance of the allocation
problem, where the weight matrix is normalized in expectation (i.e
∀i, i′, ∑j∈O w̃i,j =

∑
j∈O w̃i′,j). If the set of allocations passing

the ex-ante fair share test is non empty, then all the ex-ante egali-
tarian optimal allocations will pass it. However, the intersection be-
tween the set of ex-post egalitarian optimal allocations and the set of
allocations maximizing ϕp may be empty.

Proof The proof concerning the ex-ante case is a direct extension
of the result in the risk-free setting. Concerning the ex-post case, we
can consider the following instance and allocations :

W =

j1 j2 j3
i1 6 2 2
i2 4 1 5

p = 〈0.9, 0.5, 0.4〉
π = 〈{j1, j2}, {j3}〉
π′ = 〈{j1}, {j2, j3}〉

It can be proved that π′ is the only one ex-post egalitarian optimal
allocation. We have pcu(π) = 1.84, ϕp(π) = 0.41, pcu(π′) =
2.25 and ϕp(π′) = 0.39, which gives the counterexample needed.�

4 COMPUTING FAIR ALLOCATIONS

In this section, we will introduce several approaches to compute fair
allocations. Here, “fairness” will be interpreted in the sense of egal-
itarianism. Moreover, we will focus on ex-post egalitarianism, be-
cause (i) the choice of ex-post egalitarianism has been advocated by
several authors, among which Adler and Sanchirico [1], Broome [5],
and Fleurbaey [9] and (ii) there is a very natural interpretation of the
ex-post approach, as the decision a Bayesian decision-maker would
naturally take if she were paid after uncertainty has been resolved,
according to the (certain) collective utility of her decision.

4.1 Experimental setting

To test our algorithms, we will focus on a particular class of real-
world problems, time-sharing problems, in which the use of a com-
mon resource, owned by several agents, has to be divided in time.
Managing a constellation of Earth observing satellites owned by sev-
eral countries [13], or planning the use of a telescope shared between
world astronomers, are two examples of this class of problems.

In such problems, the agents’ interests in using the resource might
vary in time: for example, a country representative might be more
interested to use an Earth observing satellite when it is located right
above her country than when it is above the ocean. Moreover, the
actual utility received by an agent for using the facility at a given time
slot might depend on exogenous conditions which are not known
beforehand : it could be for example the weather conditions which
can seriously affect the quality of the satellite’s observations.

Assuming that time is divided into a finite number of indivisible
and non sharable time slots, the framework introduced in Section 2
is general enough to encompass this class of problems. Real-world
instances of this kind share two typical features: (i) the agents’ pref-
erences are somewhat but not completely similar, that is, some ob-
jects will be fervently desired by all the agents, whereas some can be
of interest for only one agent. (ii) contiguous time slots are strongly
linked, which entails that they will likely share similar interest or
probability of good condition7.

Algorithms introduced in this article are implemented using Java
and run on random instances reproducing the features of aforemen-
tioned real-world problems (with normalized weights). Note that
real-world instances typically involve a small number of agents (be-
tween 2 and 5) and a large number of objects (about 100).

4.2 Exact algorithms

Computing ex-post utility Before trying to compute an optimal
allocation, we must be able to compute the collective utility for any
given allocation. A naive algorithm for computing the ex-post col-
lective utility, directly applying (2), would require the computation
of the collective utility in each possible state (i.e each column in Ta-
ble 1), that is, the enumeration of an exponential number of values.
For this reason we strongly suspect that computing the ex-post egal-
itarian collective utility of a given allocation is #P-complete (which
would mean that computing an optimal allocation is even harder).
However, the precise complexity of this problem remains open.

The algorithm we use improves a naive branching algorithm for
computing the ex-post collective utility of an allocation by using the

7 Note that for the sake of simplicity, we stick to the probabilistic indepen-
dence hypothesis, but we could also think of relaxing it and assume that
probability variables of contiguous time slots are in fact dependent.
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fact that as soon as all the objects allocated to an agent are in bad con-
dition, the utility of this agent is zero, and so is the collective utility,
whatever conditions the remaining objects are in. In order to quickly
“eliminate” such states of nature, whose enumeration is unnecessary,
the algorithm browses the states of nature by fixing first the state of
objects allocated to agents whose share contains few objects.
Computing optimal ex-post allocations The optimization prob-
lem is tackled with a branch-and-bound algorithm. A basic upper
bound acu(π) can be defined for each (partial) allocation π as the
ex-ante utility of a (unfeasible) allocation which would allocate to
all the agents the set π0 of objects that are currently not allocated:
acu(π)

def
= mini∈A(

∑
j∈πi

w̃i,j +
∑

j∈π0
w̃i,j).

acu only gives a rough approximation of pcu. We can provide a
better upper bound by using a function which lies between pcu and
acu. The idea is to compute utility in an ex-ante manner for a subset
Oea of objects, and in an ex-post manner for the other ones (those in
Oep = O \ Oea). In other words, we use mixed individual utilities:

mui(π, s,Oea)
def
=

∑
j∈Oep∩good(s)

j∈πi

wi,j +
∑

j∈Oea
j∈πi

w̃i,j (7)

The mixed collective utility is then defined as the ex-post collective
utility from mixed individual utilities, i.e by replacing ui(π, s) by
mui(π, s,Oea) in Equation 2. We have the following proposition:

Proposition 8 For each concave CUF G, ∀π ∈ F , ∀Oea ⊆ O,
pcu(π) ≤ mcu(π,Oea) ≤ acu(π). Moreover, if G = min then
0 ≤ mcu(π,Oea) − pcu(π) ≤ ∑

j∈Oea
pjpjwa(j)j , where pj

def
=

1− pj , and a(j) is the agent receiving j.

The proof is omitted due to lack of space. This proposition implies
that (i) we can use mcu(π,Oea) as an upper bound of pcu(π), and
(ii) if G = min this bound is tighter if Oea is built for an allocation
π with objects minimizing pjpjwa(j)j .

We can also notice that the mixed utility only depends on the con-
dition of objects in Oep. Hence, the number of states in the main
summation of mcu is halved for each object added insideOea, prop-
erty of which algorithms will take profit.

As said earlier, our optimization algorithm is based on a branch-
and-bound approach, where nodes in the search space are the succes-
sive objects to allocate, and branches are the agents receiving them.
Our algorithm is tailored for our fair division problem as follows.

(i) We use the upper bound function acu to prune branches of the
search tree during its exploration.

(ii) We use dynamic heuristics: when selecting a new object to be al-
located, the one preferred by the currently poorest (in expected
utility) agent is chosen among those still left ; each object will be
firstly allocated to this poorest agent.

(iii) Since the computation of mcu is too time-consuming to be used as
an efficient pruning mechanism, we use this bound with profit as
a last possible cut when a complete allocation has been found, to
avoid an unnecessary (and costly) ex-post collective utility compu-
tation. The size of Oea has been empirically fixed to m/3, which
seems to be a good compromise between precision and computa-
tion time for the instances we tackle, and the objects to put inOea

are chosen according to Proposition 8.
Results Table 2 shows the results for two versions of the branch-
and-bound algorithm: (a) only uses acu as an upper bound (i), where
(b) also involves dynamic heuristics (ii) and mcu (iii). The results
show the efficiency of the latter, in which, among other, mixed col-
lective utility dramatically reduces the number of ex-post collective
utility computations.

Table 2. Exact resolution. Number of instances solved in 30 seconds (over
100 random instances) for different number of agents and objects.

n m (a) (b)
2 ≤ 15 100 100
2 20 0 100
2 25 0 60
2 30 0 1

n m (a) (b)
3 ≤ 11 100 100
3 16 0 97
3 21 0 48
3 26 0 7

4.3 Sub-optimal algorithms

As we can see e.g in Table 2, even with the improvements introduced,
we remain unable to solve a majority of instances with 3 agents and
26 objects within 30 seconds with our exact algorithm (it typically
requires between 5 and 10 minutes for this instance size). Moreover,
even if we did not prove it formally, it is very likely that the mere
computation of the ex-post egalitarian utility of a given allocation
will be out-of-reach for more than a few dozens of objects, because of
the exponential number of states of nature. The only reasonable way
of solving instances of realistic size thus seems to use sub-optimal
algorithms, for both the computation of a good allocation and the
evaluation of the ex-post utility.

We can notice however that if we stick to the egalitarian ex-post
criterion, we will be unable to evaluate the quality of the solutions,
since exact computation of an optimal solution is out of reach. To
overcome this issue and give a rough idea of how good our solutions
are, we chose to switch our criterion to the probability of fair share
ϕp (Definition 5), because this criterion has an obvious upper bound
(ϕp ≤ 1), and thus conveys in itself an information about the quality
of the solution.

Estimating ex-post criterion The approximate computations are
made according to the Monte-Carlo method : since browsing all the
states of nature to get an exact result is impossible, we select a given
number q of random states (according to their actual probability of
occurrence) and check in each of them if the fair share is guaranteed.

Let X be a random variable, which takes its values in S accord-
ing to the probability Pr(X = s) = Pr(s). For a given π ∈ F ,
let ϕ̂(X) = mini∈A ϕi(π, X), which is an unbiased estimator of
ϕp(π). The Monte-Carlo method produces q independent draws, i.e.
a sample of values ϕ̂1, ϕ̂2, .., ϕ̂q . A better estimator (with a smaller
variance) of ϕp(π) is then defined by ϕ̂′ = 1/q

∑q
k=1 ϕ̂k. Now,

given a probability α, we can use the central limit theorem to give a
confidence interval around which we have a probability 1−α to find
the actual value of ϕp:

Pr[|ϕ̂′ − ϕp| ≥ C(α)] ≤ α, with C(α) = F (α)

√
Var(ϕ̂)

q
(8)

where F is the cumulative density function of a normal distribu-
tion of expectation E(ϕ̂) and of standard deviation σ(ϕ̂), and where
Var(ϕ̂) is the variance of ϕ̂. Computing Var(ϕ̂) requires browsing
all the states of nature: thus, we use the samples we have to estimate
it, which is common practice in statistics theory. Then, Equation (8)
directly gives a confidence interval for our Monte-Carlo estimation.

Computing fair allocations Our algorithm follows the ”Heuristic-
Biased Stochastic Sampling” paradigm [4]. Complete allocations are
built object by object, using the same heuristics as for the exact al-
gorithms (see Section 4.2), but with a random bias, so that the search
space is partially explored in the vicinity of the pure heuristics. When
a complete allocation π has been built, an estimation of ϕp(π) is
made, with q1 draws, in order to decide whether the allocation will
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Figure 1. Evolution in time of the value of ϕ̂′ during execution of the
stochastic greedy algorithm, averaged over 100 instances, for n = 3,
m = 100, with q1 = 200, q2 = 5× 105, nbS = 10 and nbC = 50.

be stored or not. A fixed number nbS of such promising allocations
is stored within the course of the algorithm; if an allocation is better –
as far as this first approximate computation can tell – than the worst
currently stored, it is saved. As soon as a total of nbC allocations
have been generated this way, a more precise estimation is made for
each of the nbS stored allocations using q2 draws (q2 � q1), and
only the best one is kept. The building of allocations then continues,
until a given time has elapsed.

Parameters values have been chosen after some preliminary exper-
iments, and give good results for the typical case n = 3, m = 100.
Results The approximate algorithm is tested on 100 instances, for
a duration of 120 seconds each. Figure 1 illustrates the evolution of
the best solution found, throughout the execution of the algorithm.
Table 3 shows the data about the precision of this method.

m 10 20 50 100
exact variance of ϕ̂ .1532 .1892 - -

estimated variance of ϕ̂, q = 200 .1702 .1904 .1141 .0200
estimated variance of ϕ̂, q = 105 .1692 .1916 .0353 .0115

C(1%), q = 200 .0445 .0493 .1146 .0193
C(1%), q = 5× 105 .0014 .0016 .0011 .0004

Table 3. Estimation quality for n = 3, averaged over 100 instances.

As we can see in Table 3, on small instances the estimated variance
is very close from the exact one. Regarding instances of realistic size,
not only Figure 1 shows that our stochastic greedy approach quickly
finds allocations whose estimated probability of fair share is very
close to 1, but also Table 3 clearly indicates that this estimation is
very likely to be close to the exact value. What experiments also show
(but which does not appear in Figure 1 or Table 3) is that combining
storage with two different numbers of draws (q1 and q2) allows for a
quicker convergence than a simple greedy algorithm with q2 draws,
with a more precise confidence interval than an algorithm with q1
draws.

In summary, these results clearly show that combining Monte-
Carlo draws with our stochastic greedy algorithms can be used to
solve efficiently real-world instances by providing (i) very good al-
locations in a short amount of time and (ii) precise estimates of ϕp.

5 CONCLUSION

In this paper we have introduced a formal model of the problem
of fairly allocating a set of indivisible objects (goods, time-slots ...)
when the conditions (and hence the utility for agents) of these objects
are subject to uncertainty, as well as algorithms to solve it.

As pointed for a long time by economists, in such a problem in-
volving uncertainty, two points of view can be taken in order to
socially measure the possible allocations: either consider the social
welfare derived from expected individual utilities (ex-ante approach),
or consider the expected social welfare (ex-post approach). When
fairness is a concern, many arguments are in favour of the last one.

We have investigated several properties of ex-ante and ex-post cri-
teria, and introduced exact and sub-optimal algorithms to find alloca-
tions that maximize the ex-post egalitarian collective utility, or maxi-
mize the ex-post probability of fair share. As we have seen, the com-
plexity makes the exact computation unfeasible in practice. However,
we have managed to solve real-size instances with a remarkable level
of precision by combining a stochastic greedy algorithm with Monte-
Carlo estimations.

Worthwhile possible extensions of this work include the study of
other fairness criteria, such as the maximin fair share, introduced in
[6], which suits well to indivisible goods but requires solving numer-
ous fair share subproblems. We also plan on designing other approx-
imate evaluation methods to use in the stochastic greedy algorithm.
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