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Abstract. Dealing with spatial and temporal knowledge is an indis-
pensable part of almost all aspects of human activities. The qualitative
approach to spatial and temporal reasoning (QSTR) provides a promis-
ing framework for spatial and temporal knowledge representation and
reasoning. QSTR typically represents spatial/temporal knowledge in
terms of qualitative relations (e.g., to the east of, after), and reasons
with the knowledge by solving qualitative constraints. When formu-
lating a qualitative constraint satisfaction problem (CSP), it is usually
assumed that each variable could be “here, there and everywhere2.”
Practical applications e.g. urban planning, however, often require a
variable taking values from a certain finite subset of the universe,
i.e. require it to be ‘here or there’. This paper extends the classic
framework of qualitative constraint satisfaction by allowing variables
taking values from finite domains. The computational complexity of
this extended consistency problem is examined for five most impor-
tant qualitative calculi, viz. Point Algebra, Interval Algebra, Cardinal
Relation Algebra, RCC-5, and RCC-8. We show that the extended
consistency problem remains in NP, but when only basic constraints
are considered, the extended consistency problem for each calculus
except Point Algebra is already NP-hard.

1 INTRODUCTION

Spatial and temporal information is pervasive and increasingly in-
volved in our everyday life. Many tasks in real or virtual world require
sophisticated spatial and temporal reasoning abilities. Rapid progress
in science and technology in this century presents new challenges
for spatial and temporal reasoning. Taking spatial information as an
example, on one hand, people now can easily acquire location in-
formation with the help of GPS-enabled mobile equipment and web
GISs such as Google Maps. This has greatly increased the public’s
demands for location-based services. On the other hand, the develop-
ment of technologies (such as remote sensing, medical imaging, and
sensor networks) has brought us huge volumes of spatial data, which
makes the phenomenon of ‘rich data but poor knowledge’ particularly
serious in the area of spatial knowledge management.

The qualitative approach to spatial and temporal reasoning (QSTR)
has the potential to resolve the conflict between data and knowledge.
This is because the main aims of QSTR research are to design (i)
human comprehensible and cognitively plausible spatial logics (or
query languages); and (ii) efficient algorithms for consistency check-
ing (or query preprocessing). For intelligent systems, the ability to
understand and process qualitative, vague or even inconsistent (tex-
tual, graphical or speech) information collected from human beings or
1 Centre for Quantum Computation & Intelligent Systems, Faculty of En-

gineering and Information Technology, University of Technology Sydney,
Autralia, emails: weiming.liu-1@student.uts.edu.au, sanjiang.li@uts.edu.au

2 A song by The Beatles from the album Revolver.

the Web is very important. This is because ‘the input and the output
of spatial processes is often qualitative rather than quantitative’ [11].
Typically, QSTR represents spatial/temporal information in terms of
human comprehensible qualitative predicates (e.g. partially overlaps,
west of, after) and reduces spatial reasoning to constraint satisfaction
problems (CSPs). In the past three decades, QSTR has made signif-
icant progress, and prominent relation models such as the Interval
Algebra [1] and the Region Connection Calculus RCC-8 [12] have
been applied in areas such as natural language processing, geographi-
cal information systems, robotics, content-based image retrieval (see
e.g. [2]).

But there is a growing consensus that breakthroughs are necessary
in order to bring spatial/temporal reasoning theory closer to practical
applications. One reason might be that the current qualitative reason-
ing scheme uses a rather restricted constraint language: constraints in
a qualitative CSP are always taken from the same calculus and only
relate variables from the same domain. This is quite undesirable, as
constraints involving restricted variables and/or multiple aspects of in-
formation frequently appear in practical tasks such as urban planning
and spatial query processing.

Consider the following example. Suppose you are recommended
a restaurant in Sydney by a friend who had dinner there before. The
spatial information about the restaurant may be like “it is in downtown
and close to a MacDonald, and it is to the west of or the southwest
of Central Station.” In this example, topological, directional, and
distance information appears together. Furthermore, while the position
of the restaurant is kind of totally unknown, the position of Central
Station is fixed as a landmark, and the position of downtown is also
fixed somehow, but the position of “MacDonald” is only finitely fixed
because there are several MacDonalds in Sydney downtown.

In this paper, we say a variable is finitely restricted if it can only
take values from a finite subset of the universe in a qualitative calcu-
lus. While some recent works have considered how to reason with
qualitative constraints from different calculi [4, 5, 7, 16], the impor-
tance of solving constraints that involve restricted variables has been
totally neglected. The recent work “solving qualitative constraints
involving landmarks” [8] is the first step toward this direction, where
a landmark is interpreted as an outstanding element in the universe.
In other words, a landmark is a restricted variable that can only take
one value from the universe.

This paper aims to extend the qualitative CSP framework by al-
lowing variables to be finitely restricted. In such a qualitative CSP,
the constraints are taken from a given qualitative calculus but could
be non-basic relations, and the domain of each variable is either the
universe of the calculus or a (nonempty) finite subset of the universe.
An important question is, how does this extension affect the compu-
tational complexity of deciding the consistency of qualitative CSPs?
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This paper examines the effect for several most important qualita-
tive calculi, viz. Point Algebra (PA) [15], Interval Algebra (IA) [1],
Cardinal Relation Algebra (CRA) [6], RCC-5, and RCC-8 [12]. We
show that the extended consistency problem remains in NP for each
calculus, but even when only basic constraints are considered, the
problem for each calculus except PA is already NP-hard.

The remainder of this paper proceeds as follows. Section 2 intro-
duces basic notions in qualitative constraint solving as well as the five
qualitative calculi discussed in this paper. The extended qualitative
CSP framework is also presented here. Section 3 discusses the com-
putational complexity of reasoning with Point Algebra, showing that
the problem is NP-complete in general but is tractable if only basic
networks are considered. Sections 4 and 5 prove that the extended
consistency problems for basic networks in Cardinal Relation Algebra,
Interval Algebra, and RCC-5 are all NP-complete. The last section
concludes the paper.

2 PRELIMINARIES

In this section, we first recall several well-know qualitative calculi
and basic notions in qualitative constraint solving, and then introduce
the extended qualitative CSP framework.

2.1 Qualitative calculi

The qualitative approach to spatial and temporal knowledge represen-
tation and reasoning is mainly based on qualitative calculi. Suppose
U is the universe of spatial or temporal entities. Write Rel(U) for the
Boolean algebra of binary relations on U . This paper is concerned
with binary qualitative calculi which are just finite Boolean subalge-
bras of Rel(U). For a relation α in a qualitative calculus M, we call
α a basic relation in M if it is an atom in M.

We next recall the well-known Point Algebra (PA) [15, 14], Car-
dinal Relation Algebra (CRA) [3, 6], Interval Algebra (IA) [1], and
RCC-5 and RCC-8 [12].

Definition 1 (Point Algebra [15]). Let U be the set of real numbers.
The Point Algebra is the Boolean subalgebra generated by the jointly
exhaustive and pairwise disjoint (JEPD) set of relations {<,>,=},
where <,>,= are defined as usual.

PA contains eight relations, viz. the three basic relations <,>,=,
the empty relation, and the four non-basic nonempty relations ≤,≥
, �=, ?, where ? stands for the universal relation.

Definition 2 (Cardinal Relation Algebra [3, 6]). Let U be the real
plane. Define binary relations NW,N,NE,W,EQ,E, SW,S, SE
as in Table 1. The Cardinal Relation Algebra (CRA) is generated by
these nine JEPD relations.

Relation Definition
NW x < x′, y > y′
N x = x′, y > y′

NW x > x′, y > y′
W x < x′, y = y′
EQ x = x′, y = y′
E x > x′, y = y′

SW x < x′, y < y′
S x = x′, y < y′

SW x > x′, y < y′

Table 1. Definitions and illustrations of basic relations of Cardinal Relation
Algebra, where in the left figure we have P1 NW Q and P2 E Q

The Cardinal Relation Algebra can be viewed as the Cartesian
product of two Point Algebras.

Definition 3 (Interval Algebra [1]). Let U be the set of closed inter-
vals on the real line. Thirteen binary relations between two intervals
x = [x−, x+] and y = [y−, y+] are defined by the order of the four
endpoints of x and y, see Table 2. The Interval Algebra is generated
by these JEPD relations.

Relation Symbol Converse Meaning
before p pi x− < x+ < y− < y+

meets m mi x− < x+ = y− < y+

overlaps o oi x− < y− < x+ < y+

starts s si x− = y− < x+ < y+

during d di y− < x− < x+ < y+

finishes f fi y− < x− < x+ = y+

equals eq eq x− = y− < x+ = y+

Table 2. Basic IA relations and their converses, where x = [x−, x+], y =

[y−, y+] are two intervals.

Definition 4 (RCC-5 and RCC-8 Algebras3). Let U be the set of
nonempty regular closed sets, or regions, in the real plane. The RCC-
8 algebra is generated by the eight topological relations

DC,EC,PO,EQ,TPP,NTPP,TPP∼,NTPP∼,

where DC,EC,PO,TPP and NTPP are defined in Table 3, EQ
is the identity relation, and TPP∼ and NTPP∼ are the converses
of TPP and NTPP respectively. See Figure 1 for illustration. The
RCC-5 algebra is the sub-algebra of RCC-8 generated by the five
part-whole relations

DR,PO,EQ,PP,PP∼,

where DR = DC ∪ EC, PP = TPP ∪ NTPP, and PP∼ =
TPP∼ ∪NTPP∼.

Relation Meaning Relation Meaning
DC a ∩ b = ∅ TPP a ⊂ b, a �⊂ b◦
EC a ∩ b �= ∅, a◦ ∩ b◦ = ∅ NTPP a ⊂ b◦
PO a �⊆ b, b �⊆ a, a◦ ∩ b◦ �= ∅ EQ a = b

Table 3. Topological interpretation of basic RCC-8 relations in the plane,
where a, b are plane regions, and a◦, b◦ are the interiors of a, b, respectively.

Figure 1. Illustration for basic relations in RCC-5 / RCC-8

3 We note that the RCC algebras have interpretations in arbitrary topological
spaces. In this paper, we only consider the interpretation in the real plane.
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2.2 Qualitative constraint satisfaction problem

A qualitative calculus M provides a constraint language by using
formulas of the form viαvj , where vi, vj are variables and α is a
relation in M. Formulas of the form viαvj are called constraints (in
M). If α is a basic relation in M, viαvj is called a basic constraint.
The consistency problem over M can then be formulated as below.

Definition 5. [2] Let M be a qualitative calculus on universe U .
Suppose S is a subset of M. The consistency problem CSPSAT(S) is
defined as follows:

Instance: A two tuple (V,Γ). Here V is finite set of variables
{v1, v2, · · · , vn} of variables, and Γ is a finite set of binary con-
straints xαy, where α ∈ S and x, y ∈ V .
Question: Is there an instantiation ν : V → U such that all
constraints in Γ are satisfied?

If ν satisfies all constraints in Γ, then we say ν is a solution of Γ and
say Γ is consistent or satisfiable.

Notation. We often write an instantiation ν : V → U as an n-tuple
(ν(v1), ν(v2), · · · , ν(vn)).

The consistency problem as defined in Dfn. 5 has been investigated
for many different calculi (see e.g. [1, 14, 10, 13, 9]). In particular, for
Point Algebra, [14] shows that the consistency problem CSPSAT(PA)
can be solved in O(n2), where n is the number of variables. For most
other qualitative calculi, including IA, CRA, RCC-5, and RCC-8, the
consistency problem CSPSAT(M) is NP-hard.

A set of constraints Γ is called a basic constraint network if Γ
contains a basic constraint for each pair of variables. When only basic
constraint networks are considered, however, the consistency problem
over each of these four calculi becomes tractable.

2.3 Extended qualitative CSP

By Dfn. 5, in the classic consistency problem each variable can in
principle take any value in the universe. In many practical applications,
however, it is very common that we may have additional knowledge
about some variables (cf. the restaurant and MacDonald example in
introduction). It is therefore necessary to extend the qualitative CSP
framework to allow restricted domains of variables.

Definition 6. Let M be a qualitative calculus on universe U . Suppose
S is a subset of M. The consistency problem CSPSATf (S) is defined
as follows, where the subscript ‘f ’ stands for ‘finite’:

Instance: A three tuple (V,Γ, D). Here V is a finite set of variables
{v1, v2, · · · , vn}, D is an n-tuple (D1, D2, · · · , Dn) where each
Di is either U or a nonempty finite subset of U , and Γ is a finite
set of binary constraints xαy, where α ∈ S and x, y ∈ V .
Question: Is there an instantiation ν : V → U such that ν(vi) ∈
Di for each i and all constraints in Γ are satisfied?

We say variable vi appearing in such an instance is finitely restricted
if its domain Di is finite. If ν satisfies all constraints in Γ and
ν(vi) ∈ Di for each i, then we say ν is a solution of (V,Γ, D)
and say (V,Γ, D) is consistent or satisfiable.

As a special case, if Di is required to be either the universe U
or a singleton, we write the corresponding consistency problem
CSPSATs(S), where the subscript ‘s’ denotes ‘singleton’.

An instance of CSPSAT(S) is clearly an instance of CSPSATf (S):
we need only let each Di to be the universe. We omit the proof of the
following general result.

Proposition 1. Suppose B is the set of basic relations in a qualitative
calculus M. Then we have

i) CSPSAT(S) ⊂ CSPSATs(S) ⊂ CSPSATf (S);
ii) CSPSATf (M) is in NP if CSPSATf (B) is in NP;

iii) CSPSATf (S) is in NP if CSPSATs(S) is in NP.

Recall that the classic consistency problems for CRA, IA, RCC-5
and RCC-8 are all NP-complete. We have the following corollary.

Corollary 1. The consistency problem CSPSATs(M) and
CSPSATf (M) are all NP-hard for M being any one of IA, CRA,
RCC-5, and RCC-8.

The consistency problem CSPSATs(S) was first introduced in [8],
where a variable is called a landmark if its domain is a singleton, i.e.,
it is in fact completely determined. The main results of [8] can be
summarised as follows, where we write BM (or simply B) for the set
of basic relations in qualitative calculus M4.

Proposition 2. [8] The consistency problem CSPSATs(BM) is in P
for qualitative calculi M being one of PA, IA, CRA, and RCC-5, and
is NP-complete for M being RCC-8.

As a corollary, we have

Corollary 2. The consistency problems CSPSATf (M) and
CSPSATs(M) are all NP-complete for qualitative calculi M being
one of IA, CRA, RCC-5, and RCC-8.

It remains to determine:

- The complexities of CSPSATf (PA) and CSPSATf (BPA).
- The complexities of CSPSATf (B) for IA, CRA, RCC-5.

This paper is devoted to these problems. Our results are summarised
in Table 4, where completely new results are underlined.

To prove the complexity results, we will need the following notion
of finitely restricted sub-instance.

Definition 7. Suppose (V,Γ, D) is a CSPSATf (S) instance in qual-
itative calculus M, where V = {v1, · · · , vn}, D = (D1, · · · , Dn)
and Γ = {viαijvj}1≤i,j≤n. Let V ′ = {vi : Di �= U} be the set of
finitely restricted variables in V . Suppose V ′ = {vi1 , vi2 , · · · , vik}.
Let Γ′ = {virαirisvis}1≤r,s≤k and D′ = (Di1 , Di2 , · · · , Dik ).
Then (V ′,Γ′, D′) is an instance of CSPSATf (S), and we call it the
finitely restricted sub-instance of (V,Γ, D).

The following proposition follows directly from the fact that a
consistent basic PA (IA or CRA) network is globally consistent. Note
this result does not hold for RCC-5 or RCC-8.

Proposition 3. An instance (V,Γ, D) of CSPSATf (B) in PA (IA or
CRA) is consistent iff (V,Γ) as a CSPSAT(B) instance is consistent
and its finitely restricted sub-instance is also consistent.

The NP-hardness results provided in the following sections are
proved by polynomial reductions from 3-SAT. We fix some notations
here. Suppose φ =

∧m
j=1 cj is a 3-SAT instance over propositional

variables p1, p2, · · · , pn, where cj is a clause with three literals. Write
Var(cj) for the set of propositional variables appearing in cj , and write
Var+(cj) (Var−(cj) resp.) for the set of propositional variables that
occur as positive (negative resp.) literals in cj . Formally,

Var+(cj) = {pi : pi is a literal in cj},
Var−(cj) = {pi : ¬pi is a literal in cj},

Var(cj) = Var+(cj) ∪ Var−(cj).

4 Although PA and CRA were not considered in [8], we can prove for PA and
CRA in exactly the same way as for IA that CSPSATs(B) is in P.
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PA CRA IA RCC-5 RCC-8
S BPA PA BCRA CRA BIA IA BRCC-5 RCC-5 BRCC-8 RCC-8

CSPSAT(S) P P P NP-C P NP-C P NP-C P NP-C
CSPSATs(S) P P P NP-C P NP-C P NP-C NP-C NP-C
CSPSATf (S) P NP-C NP-C NP-C NP-C NP-C NP-C NP-C NP-C NP-C

Table 4. Computational complexities of the various consistency problems in PA, CRA, IA, RCC-5, and RCC-8, where BM is the set of basic relations of M,
and completely new results obtained in this paper are underlined

3 POINT ALGEBRA

In this section we prove that CSPSATf (BPA) is in P but CSPSATf (PA)
is NP-complete.

The following proposition shows that any consistent instance of
CSPSATf (BPA) has a minimal solution in a sense. Note that we need
keep only one variable from multiple equal variables (with the =
constraints), with the intersection of the domains of all the equal
variables as its new domain. This procedure takes O(n2 + L) time
and therefore we may safely assume Γ = {vi < vj}1≤i<j≤n.

Proposition 4. Suppose (V,Γ, D) is an instance of CSPSATf (BPA)
such that each Di is a finite subset of U . If (V,Γ, D) is consistent,
then there is a unique solution (a1, a2, · · · , an) such that ai ≤ a′

i

(1 ≤ i ≤ n) holds for any other solution (a′
1, a

′
2, · · · , a′

n). Further-
more, if Γ = {vi < vj}1≤i<j≤n, then

- a1 = minD1;
- ak = min{x ∈ Dk : x > ak−1} for k = 2, 3, · · · , n.

Proof. Assume Γ = {vi < vj}1≤i<j≤n. This does not lose general-
ity because we can combine variables related by = constraints and
then sort the variables by the <,> constraints. Every Di is a finite
set, so (V,Γ, D) has only finitely many, say k, solutions. Suppose
(ai

1, a
i
2, · · · , ai

n)(i = 1, 2, · · · , k) enumerate all the solutions. Let
aj = min{ai

j}1≤i≤k. It is routine to prove that (a1, a2, · · · , an) is
the minimal solution and satisfies the property.

We propose a polynomial algorithm that solves CSPSATf (BPA). For
an instance (V,Γ, D), we first transform it into its finitely restricted
sub-instance (V ′,Γ′, D′). We then decide the consistency of the sub-
instance by attempting to compute (a1, a2, · · · , an) by equations
in Proposition 4. If we fail in the k-th step due to the emptiness of
{x ∈ Dk : x > ak−1}, we may conclude that the sub-instance, and
thus the original instance, is inconsistent. If we succeed computing
(a1, a2, · · · , an), then it is a solution of the sub-instance and can be
extended to a solution of the original instance. The soundness of the
algorithm is clear by above argument.

Algorithm 1 SOLVING CSPSATf (BPA)

Require: CSPSATf (BPA) instance (V,Γ, D)
Ensure: The consistency of (V,Γ, D)

if Γ is not consistent then Return ‘Inconsistent’;
for v ∈ V do

if Dv is the universe then remove v
for v, v′ ∈ V do

if v = v′ then Dv ← Dv ∩Dv′ , remove v′;
Sort V to v1 < · · · < vn′ by Γ, modify D correspondingly;
a1 ← minD1;
for k = 2, 3, · · · , n′ do

if ak−1 ≥ maxDk then return ‘Inconsistent’;
ak ← min{x ∈ Dk : x > ak−1};

return ‘Consistent’.

Theorem 1. Algorithm 1 solves the CSPSATf (BPA).

We next analyse the complexity of the algorithm. Suppose there
are n variables in V , and the sum of the cardinalities of all finite Di

is L. Then the input size is O(n2 + L) (n2 constraints and L points).
The following proposition shows the optimality of the algorithm.

Proposition 5. The complexity of Algorithm 1 is O(n2 + L).

Proof. The consistency of Γ can be computed in O(n2) time by
Algorithm CSPAN proposed in [14]. Calculating the finitely restricted
sub-instance takes O(n+ L) time, and merging equal variables takes
O(n2 + L) time. Sorting left variables takes O(n log n) time. Let
li be the cardinality of Di. Then step ‘a1 ← D1’ takes O(l1) time,
and the i-th loop body takes O(li+1) time (i = 1, 2, · · · , n′ − 1).
Therefore, the complexity of the algorithm is O(n2 + n log n+ l1 +
l2 + · · ·+ ln′) = O(n2 + L).

Despite that both CSPSAT(PA) and CSPSATf (BPA) are in P, the
next theorem shows that CSPSATf (PA) is NP-hard.

Theorem 2. The consistency problem CSPSATf (PA) is an NP-
complete problem.

Proof. We provide a reduction from the NP-complete graph 3-
coloring problem, which decides whether we can assign one of three
colors to each node in a graph such that any edge in the graph connects
two nodes with different colors.

Suppose (V,E) is a graph where V = (v1, · · · , vn) and E ⊆
V × V are respectively the node set and the edge set. Define a
CSPSATf (PA) instance (U,Γ, D) as follows:

U = {u1, · · · , un},
D = {Du1 , · · · , Dun}, where Dun = {1, 2, 3},
Γ = {ui �= uj : (vi, vj) ∈ E}.

Where a variable ui is assigned a number k in {1, 2, 3} corresponds
to that node vi is colored with the k-color, while a constraint in Γ,
asserting two variables should be assigned different numbers, corre-
sponds to that two nodes connected by an edge should be colored with
different colors. It is clear that (V,E) can be 3-colored iff (U,Γ, D)
is satisfiable. Therefore the consistency problem CSPSATf (PA) is
NP-hard, and hence NP-complete.

Remark 1. The NP-hardness is due to the uncertainty of the �= con-
straints and the finiteness of the domains. In fact it can be proved
that CSPSATf (S) is in P for S = {<,=, >,≤,≥, ?} (i.e., only the
�= constraints are prohibited). A polynomial algorithm with the same
complexity can be devised, except that the partial-ordered variables
are embedded into a total order by topological sort.

4 CARDINAL RELATION ALGEBRA AND
INTERVAL ALGEBRA

This section shows that CSPSATf (BCRA) is NP-hard by providing a
polynomial reduction from 3-SAT. Note the reduction can also apply
to CSPSATf (BIA) with slight modification.
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Suppose φ =
∧m

j=1 cj is a 3-SAT instance over propositional vari-
ables p1, p2, · · · pn, where clause cj = lj,1 ∨ lj,2 ∨ lj,3. We construct
in polynomial time an instance (Vφ,Γφ, Dφ) of CSPSATf (BCRA) such
that (Vφ,Γφ, Dφ) has a solution ν if and only if φ is satisfied by a
propositional assignment π : {p1, p2, · · · pn} → {true, false}.

Figure 2. Overview of the configuration of all spatial variables in CRA,
where we assume pi ∈ Var(cj)

We introduce for each propositional variable pi and each propo-
sitional clause cj a ‘gadget’, which is a small component in the
constructed instance (Vφ,Γφ, Dφ) that simulates pi or cj . The gad-
get for pi is a spatial variable vi, and the gadget for cj has five
spatial variables uj,1, uj,2, uj,3, xj and yj . The domains of vi and
uj,s (s = 1, 2, 3) all consist of two points, simulating the truth value
assigned to pi and lj,s (the s-th literal in clause cj). Spatial variables
xj and yj are used to exclude a certain configuration of uj,1, uj,2 and
uj,3 which corresponds to the truth valued assignments that falsify
clause cj . We also introduce spatial variable di,j to propagate the
value of vi to that of uj,s, assuming lj,s is pi or ¬pi. Figure 2 pro-
vides an overview for the relative locations of the domains of spatial
variables vi (the i-th top dashed box), uj,s, xj , yj (the j-th top solid
box), and di,j (the dots box at top right).

The domain of vi is Dvi = {V +
i , V −

i }, and the domain of uj,s is
Duj,s = {U+

j,s, U
−
j,s} (1 ≤ j ≤ m, s = 1, 2, 3) (see Figure 3 (a) for

illustration). We intend to translate a propositional assignment π into
a spatial assignment ν, such that π(pi) = true if ν(vi) = V +

i and
π(pi) = false if ν(vi) = V −

i . Assuming the literal lj,s is either pi
or ¬pi, the point assigned to uj,s should be somehow decided by the
point assigned to vi. In details, we would like to require that

• If lj,s = pi, then ν(uj,s) = U+
j,s iff ν(vi) = V +

i ;
• If lj,s = ¬pi, then ν(uj,s) = U+

j,s iff ν(vi) = V −
i .

The spatial variable di,j is introduced to transfer the position of vi to
that of uj,s. The domain of di,j is specified as Ddi,j = {D+

i,j , D
−
i,j},

where the positions of D+
i,j and D−

i,j depend on lj,s being pi or ¬pi
(see Figure 3) (c)(d). With constraints

vi W di,j , di,j N uj,s,

it is clear that the requirements are fulfilled (cf. Figure 3 (c)(d)).
Clause cj = lj,1 ∨ lj,2 ∨ lj,3 is not satisfied by a propositional

assignment π if and only if none of lj,s is satisfied by π, which
corresponds to that uj,s all take positions U−

j,s. Such configurations
are excluded by spatial variables xj and yj in the gadget for cj .
Their domains are respectively Dxj = {X1

j , X
2
j , X

3
j } and Dyj =

{Y 1
j , Y

2
j }, depicted in Figure 4. The following constraints about xj

and yj are imposed:

cj,1 NW xj , xj NW cj,2, xj NW yj , yj NW cj,3.

(a) (b)

(c) (d)

Figure 3. Illustrations of the domains of (a) vi, (b) uj,s, (c) (d) di,j , where
lj,s = pi in (c) and lj,s = ¬pi in (d)

The first two constraints imply that ν(xj) = X1
j if ν(uj,1) = U−

j,1

and ν(uj,2) = U−
j,2. The latter two further imply that, if ν(xj) = X1

j

and ν(uj,3) = U−
j,3, then yj is not realisable, because neither Y 1

j

nor Y 2
j can satisfy the constraints. These four constraints together

enforce that yj is not realisable if ν(uj,s) = U−
j,s hold for s = 1, 2, 3.

Furthermore, it can be verified that xj and yj are realisable in any
other configuration of uj,1, uj,2, uj,3.

(a) (b)

Figure 4. Illustrations for the domain of (a) xj and (b) yj

Now we have finished the construction of the CSPSATf (BCRA)
instance (Vφ,Γφ, Dφ). In summary,

Vφ ={v1, · · · , vn} ∪ {uj,1, uj,2, uj,3, xj , yj}1≤j≤m

∪ {di,j : pi ∈ Var(cj)},
Dvi ={V +

i , V −
i }, Duj,s = {U+

j,s, U
−
j,s} (s = 1, 2, 3),

Dxj ={X1
j , X

2
j , X

3
j }, Dyj = {Y 1

j , Y
2
j }, Ddi,j = {D+

i,j , D
−
i,j}.

Note that only a part of the constraints between variables in Vφ have
been explicitly expressed. The rest of the constraints can be trivially
inferred from the configurations of the domains given in Figures 2 - 4,
and the details are omitted due to space restriction.

Following the idea clarified in the above construction, the following
proposition can be proved without difficulty by translating a satisfying
truth assignment π of φ to a solution ν of (Vφ,Γφ, Dφ), and vice
versa.

Proposition 6. Given a 3-SAT instance φ, suppose (Vφ,Γφ, Dφ) is
the CSPSATf (BCRA) instance as constructed above. Then φ is satisfi-
able if and only if (Vφ,Γφ, Dφ) is consistent.
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Note that for an 3-SAT instance φ with n propositional variables
and m clauses, the CSPSATf (BCRA) instance (Vφ,Γφ, Dφ) contains
in total n + 8m spatial variables, 2n + 17m specified points in
all domains, and (n + 8m)2 basic CRA constraints. Therefore, the
reduction is polynomial. Together with Proposition 2, we have

Corollary 3. The consistency problem CSPSATf (BCRA) is an NP-
complete problem.

Now we turn to Interval Algebra. An interval [a, b] naturally corre-
sponds to the point (a, b) on the half plane. Based on this observation,
we may translate the above reduction into another reduction from
3-SAT to the consistency problem CSPSATf (BIA) (the details are
omitted here). Therefore we get the following corollary.

Corollary 4. The consistency problem CSPSATf (BIA) is an NP-
complete problem.

5 RCC-5 AND RCC-8

It is proved in [8] that the consistency problem CSPSATs(BRCC-8) is
NP-hard but CSPSATs(BRCC-5) is tractable 5. By Proposition 1, we
know CSPSATf (BRCC-8) is NP-hard and CSPSATf (BRCC-5) is in NP.
This section further shows that CSPSATf (BRCC-5) is NP-hard.

Suppose φ =
∧m

j=1 cj is a 3-SAT instance that involves n propo-
sitional variables p1, p2, · · · pn. We first take 2n pairwise disjoint
rectangles r+1 , r

−
1 , · · · , r+n , r−n on the plane, and then construct a

CSPSATf (BRCC-5) instance (V,Γ, D) in which the domains are all
unions of the selected rectangles, where we suppose Var(cj) =
{pj1 , pj2 , pj3} and where a∗

jk
is r−jk if pjk ∈ Var+(cj), and is r+jk if

pjk ∈ Var−(cj), for k = 1, 2, 3.

V = {v1, v2, · · · , vn} ∪ {u1, · · ·um},
D = {V1, V2, · · · , Vn, U1, U2, · · · , Um},where

Vi = {r+i , r−i },
Uj = {aj1 ∪ aj2 ∪ aj3 : ajk ∈ Vjk} − {a∗

j1 ∪ a∗
j2 ∪ a∗

j3},
Γ = {viDRvj : i �= j}

∪ {uiDRuj : Var(ci) ∩ Var(cj) = ∅}
∪ {uiPOuj : Var(ci) ∩ Var(cj) �= ∅}
∪ {viPPuj : pi ∈ Var(cj)} ∪ {viDRuj : pi �∈ Var(cj)}.

The above construction relates the truth value assigned to propo-
sitional variable pi (true or false) to the region assigned to spatial
variable vi (r+i or r−i ). Spatial variable uj is required to contain spa-
tial variables in set Var(cj) = {pj1 , pj2 , pj3} by the PP constraints.
In fact, uj is forced to be exactly the union of variables in Var(cj)
according to the first term in Uj . Moreover, the second term in uj

forbids the one configuration among the eight which corresponds the
truth assignment that falsifies clause cj .

It is routine to verify that φ is satisfiable if and only if the
CSPSATf (BRCC-5) instance (V,Γ, D) is consistent. This reduction
is polynomial therefore CSPSATf (BRCC-5) is NP-hard.

Theorem 3. The problem CSPSATf (BRCC-5) is NP-complete, if the
regions mentioned in the instance are (general) polygons.

5 The regions in the finite-specified domains, or landmarks, in the instance are
required to be (general) polygons.

6 CONCLUSION AND FUTURE WORK

One major difference between qualitative CSPs and classical CSPs
is that the domain of a qualitative CSP is usually infinite, while
that of a classical CSP is always finite. In this paper we proposed
an extended qualitative CSP framework to support finite domains.
In the extended framework, a spatial/temporal variable could take
values from a finite domain or even a singleton. This reflects practical
demands in applications such as urban planning and spatial query
processing where we often have additional knowledge about certain
variable, which restricts the possible candidates of the variable to a
finite set. We believe this extension is necessary to bring QSTR closer
to real-world applications.

The computational complexity of the extended consistency problem
has been completely studied for five very popular qualitative calculi.
The results are summarised in Table 4, where for each calculus, we de-
termined whether each of the six variants of the consistency problem
is in P or NP-complete.

Future work will consider the combination of multiple spa-
tial/temporal calculi and approximated methods for solving the ex-
tended qualitative CSPs.
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