
Game-theoretic Approach
to Adversarial Plan Recognition

Viliam Lisý and Radek Pı́bil and Jan Stiborek and Branislav Bošanský and Michal Pěchouček 1

Abstract. We argue that the problem of adversarial plan recog-
nition, where the observed agent actively tries to avoid detection,
should be modeled in the game theoretic framework. We define the
problem as an imperfect-information extensive-form game between
the observer and the observed agent. We propose a novel algorithm
that approximates the optimal solution in the game using Monte-
Carlo sampling. The experimental evaluation is performed on a syn-
thetic domain inspired by a network security problem. The proposed
method produces significantly better results than several simple base-
lines on a practically large domain.

1 Introduction

Intention and plan recognition is an important capability of an intelli-
gent agent. In cooperative settings, it enables coordination with other
agents in situations where explicit communication is not possible or
desirable. The examples of such situations are unobtrusive intelligent
assistance to people or coordination of robotic systems. In compet-
itive or adversarial settings, plan recognition allows, e.g., detecting
malicious behavior, or predicting the opponent’s future actions. Most
of the research on plan recognition assumes that the observed agent
is either indifferent about the recognition process, or actively coop-
erates and provides hints that make the recognition process easier.
In many (security) applications the situation is exactly opposite. An
agent is required to recognize plans or intentions of its adversaries
that are aware of the presence of the recognition process and actively
try to avoid it while pursuing their own goals. The adversary may
choose actions that are hard to detect, or use deception to mislead
the observer. The problem of recognizing plans in such settings is
termed adversarial plan recognition. It is present, for example, in
warfare scenarios, different security domains, such as airport secu-
rity, or computer networks. The latter is the main scenario we use for
experimental validation of the proposed techniques.

The previous studies on adversarial plan recognition identified the
problem to be different from other forms of plan recognition (i.e.,
keyhole and intended plan recognition). They list the differences
from the domain perspective and identify the possibility of miss-
ing observations to be the most crucial one [7, 10]. However, they
perform the recognition as if the observations were missing by acci-
dent. They do not model that the observed agent intentionally selects
actions to avoid detection and how it influences the recognition pro-
cess. In this paper, we focus on exactly this aspect of adversarial
plan recognition under the assumption of rationality of both agents.
Further, we complete the model by allowing the observer to perform

1 Agent Technology Center, Dept. of Computer Science and Engeneering,
FEE, Czech Technical University, Czech Republic, email: {lisy, pibil, sti-
borek, bosansky, pechoucek}@agents.felk.cvut.cz

actions that influence its chances to observe specific actions of the
observed agent.

We define the problem of the adversarial plan recognition as a two-
player zero-sum extensive-form game (EFG) between the observer
and the observed agent (further called the actor for clarity). None of
the players can directly observe the actions taken by the other player;
however, we assume that the observer receives noisy probabilistic
observations of the actions of the actor from the environment. The
solution of this game (in the form of Nash equilibrium) provides the
optimal strategy for both players. It allows the actor to find the best
tradeoff between its plan cost and observability and it prescribes the
observer how to choose its actions to maximize the chance of observ-
ing and identifying the plan.

In order to achieve better scalability of the approach, we show
that thanks to the special structure of the game, the size of the game
representation can be substantially reduced. Using the reduced rep-
resentation, we introduce an algorithm for solving the adversarial
plan recognition game. It approximates the optimal solution under
real-world time constraints, based on the Monte-Carlo Tree Search
(MCTS). Finally, we evaluate the approach experimentally, showing
it performs significantly better than a set of baseline algorithms.

2 Related Work

The most crucial difference between the adversarial plan recognition
and the other kinds of plan recognition is that the actor actively tries
to prevent the recognition process. The previous work on adversarial
plan recognition [7, 10] focused only on the effect of this intention
– the missing observations, but did not model the intention itself and
its effect to the adversary’s plan selection. Reasoning of the actor
was not part of their models. In this paper, we model the problem
more completely, including the intention of both players under the
assumption of their rationality.

The concept of rationality is not new in the field of plan recogni-
tion. It was first introduced by Mao and Gratch [9] in the problem of
utility-based plan recognition. They assume that the actor is rational
and tries to maximize its utility. If more plan hypotheses are consis-
tent with the current observations, they propose to use the one with
highest expected utility for the actor as the most likely one. This pa-
per, however, uses the assumption of rationality only partially. They
assume all plans are equally probable a priory, which is inconsistent
with the assumption of rationality. In fact, only the plans that lead to
the maximal expected utility can be selected by a truly rational agent.

The problem of utility-based plan recognition was studied also in
[3]. In this paper, the authors assume rationality of the observer. It
prefers to detect the less likely, but more dangerous behaviors. Af-
ter computing the probabilities of the hypothesis, they are multiplied

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-546

546

by their utility (harm to the observer) and the one with the highest
expected utility is the result of the recognition process.

In case of adversarial plan recognition between rational agents,
there is often only a small difference between considering the utility
of the observer and the utility of the actor. The plans that are more im-
portant to be detected for the observer are those that the actor wants
to keep hidden. Hence, we model the problem as a zero-sum game. A
similar approach was taken by Braynov in [4]. He presents a concep-
tual framework of planning and plan recognition as a deterministic
full-information simultaneous-moves game and argues that rational
players would play the Nash equilibrium in the game. The goal of the
actor is to traverse an attack graph from a source to one of few tar-
gets and the observer can remove one of the edges in the attack graph
per move. The approach relays on a plan recognition algorithm as a
plugin and the paper does not provide any experimental validation.

Example The following example demonstrates the main dif-
ference between the existing and the proposed plan recognition ap-
proaches. Assume the actor can execute plans A,B,C with expected
utilities 9, 9, 7 for the observed agent. The classical (even adversar-
ial) plan recognition does not take the utilities into account and as-
sumes uniform a priori probability of all plans. If the observations
indicate the probabilities of the plans are 0.2, 0.3, 0.5, the classical
plan recognition [7] answers plan C was most likely executed. The
utility-based plan recognition [9] multiplies the expected utilities and
the posterior probabilities of the plans to get 1.8, 2.7, 3.5. It answers
plan C was most likely executed by a “rational” agent, because it
gives the highest product. In this paper, we use the assumption of ra-
tionality strictly. We identify that the rational player can never play
C, as this choice is suboptimal. The remaining two plans have the
same prior probability. Hence we choose B due to observations.

Furthermore, our model defines different utility values for execut-
ing the plan based on its successful observation. It allows defining
actions of the observer influencing chances of detecting individual
actions in the actor’s plan and automatic reasoning about the optimal
plan and its recognition.

3 Adversarial Plan Recognition Game

The adversarial plan recognition game (APRG) is an imperfect-
information zero-sum EFG between the actor and the observer.

3.1 Game Definition

APRG is defined as a tuple (A,P, g,D,m), where

• A is a set of actions available to the actor. It can contain the action
None, corresponding to actor not performing any action.

• P is the set plans (sequences of actions) of the actor. We assume
the actions have preconditions and effects; therefore, not all se-
quences are legal plans. We often assume the plans are organized
as a tree by identical prefixes.

• g : P → R is the actor’s payoff for the actor in case the plan is
performed unobserved.

• D is a set of actions available to the observer. Generally, it corre-
sponds to using a specific sensor / behavior classifier, each with
different chances to detect the actor’s actions correctly.

• m : D → R
|A|×|A| is a collection of one confusion matrix for

each observer’s action d ∈ D. Such matrix expresses the proba-
bility that the observer observes action o ∈ A in case the actor
executes a ∈ A (i.e., for each d ∈ D we have p(o|a, d)).2

2 Note that the set of observations can be different form the set of actions.
However, it would require a more complex definition of the utility function.

The game is played in discrete time steps. In each time step,
the players choose actions simultaneously. After the actor has per-
formed (a1 . . . an) ∈ An, it chooses an action a ∈ A, such that
(a1 . . . an, a) is a prefix of some sequence in P . The observer simul-
taneously selects an action d ∈ D. Based on these two actions, the
nature selects stochastically the observed action according to m(d).

Utility The game ends when the actor completes any sequence
from P . The utility function of the game captures the aims of the
players. The utility value for the actor depends on the payoff g for
the executed plan and it is discounted by the number of times an
action from the executed plan has been correctly observed:

u(a1 . . . ah, o1 . . . oh) =
g(a1 . . . ah)

1 +
∑

i∈{1...h};oi=ai
1

(1)

We assume the game to be zero-sum, which is a natural assump-
tion in the adversarial plan recognition. The utility value is maxi-
mized by the actor and minimized by the observer. The method we
propose for solving this game in Section 4 does not depend on the
definition of the utility function so it can easily be adjusted for needs
of a specific domain. Even if the zero-sum assumption does not hold,
the model can still be used to compute solutions with a guaranteed
(possibly sub-optimal) quality against any adversary.

Information We assume that both players know all parts of the
definition of the game. The information about the progress of the
game is much more limited. Neither of the players can directly ob-
serve the actions of the other player. The observer knows its own
actions (selection of the classifiers) and the observations generated
by nature based on the actions. The actor can observe only its own
actions.

Figure 1: Portion of the extensive-form representation of the game.
The leafs in the picture are not actual leafs in the game, the game
continues for large (possibly infinite) number of steps.

APRG as an Extensive Form Game The restrictions on the avail-
able information create a specific structure of information sets3. Part
of the complete extensive-form tree of the game is presented in Fig-
ure 1. The tree of the game can be arbitrarily deep. The longest
branch is three times longer than the length of the longest plan in
P . Hence, the “leaves” in the figure are just root nodes of subtrees
omitted for clarity. Three plies of nodes are periodically repeating in
the tree. The actor’s decision nodes (black), the observer’s decision
nodes (white) and the observation nodes (grey). The actor’s decision
nodes must respect the plan tree P ; hence, the available actions in
one stage of the game are based on the actions performed by the ac-
tor in the previous stages. The observer’s decision nodes contain al-
ways the same set of actions corresponding to all available classifiers
(D). The observation nodes are chance nodes with probability distri-
bution based on the classifier quality matrices (m) and the preceding
actions of the actor and the observer. The structure of the information

3 Information set is a set of game states that cannot be distinguished from
each other by a player.

V. Lisý et al. / Game-Theoretic Approach to Adversarial Plan Recognition 547

sets is consistent with the assumptions stated above as well as with
the intuition of simultaneous moves of the players. We refer to the
three plies of different players starting with the actor’s decision as a
(simultaneous) move.

3.2 Two Solutions of the Game

The proposed APRG is both a game and a plan recognition problem.
As a result, it has two solutions. From the game perspective, the so-
lutions are the action selection strategies of the players that optimize
the tradeoffs of plan value and detectability. From the plan recog-
nition perspective, it is the plan of the actor that is most probable
given the observations. Both solutions are based on the assumption
of rationality of the players.

Game-theory perspective For the game-theoretic solution, we
use the well-known concept of Nash equilibrium (NE). It is a pair
of strategies, such that none of the players has an incentive to deviate
from its strategy if the other player’s strategy stays unchanged, i.e.,
the observer cannot improve the chance to detect the plans the actor is
likely to play and the actor cannot pick a plan that would have a better
utility after the discount for detection. Further, we allow the agents to
use mixed strategies, i.e., they can choose their actions based on fixed
probability distributions in each information set of the game. This is
necessary to achieve the optimal behavior in this game. For example,
if the actor has two similarly good actions that can be detected by
different actions of the observer, it should randomize among these
options to make detection more difficult.

The most fundamental refinement of Nash equilibrium for
imperfect-information extensive-form games is the Sequential Equi-
librium, an imperfect-information-equivalent of the better known
subgame-perfect Nash equilibrium used in perfect-information
extensive-form games [11]. For this paper, it is sufficient to know
that the strategies in this equilibrium can be represented as behav-
ioral strategies, i.e., the probabilities of selecting each action in each
information set.

Plan recognition perspective Even before the game starts, many
of the plans in set P are clearly not going to be selected by a ra-
tional actor. Only the plans that have non-zero probability in some
Nash equilibrium of the game can be selected. If the game has a sin-
gle Nash equilibrium that does not require randomization, it can be
recognized as the plan of the actor without any observations. On the
other hand, more complex games require randomization. In that case,
the task of the observer is to identify what are the random choices of
the actor in the equilibrium strategy it currently plays. The result of
the plan recognition process is the posterior probability distribution
on the set P . This can be used to identify the plan that has been most
probably executed by the actor or determine the probability of a spe-
cific plan chosen in advance.

4 Solution method

The game defined above is a standard extensive-form game with im-
perfect information and chance nodes and, in principle, it can be opti-
mally solved by a standard algorithm for solving the games, such as,
the linear program for sequence-form representation of the game[11].
The size of the linear program is polynomial in the size of the game
tree. However, the size of the game tree is exponential in the number
of actions of the players and the length of the game. For example,
if each player has 5 applicable choices in each decision node and
the game is played for 10 moves (corresponds to 30 plies) the size

of the full game tree is more than 1020. As a result, even traversing
the whole game tree is practically impossible with current hardware.
Therefore, we propose a method that approximates the optimal solu-
tion of the game.

4.1 Reduced Game Representation

The full tree of APRG has a very specific structure caused by the lim-
ited amount of information available to the players. The actor never
learns any information about the observer’s actions and the observer
learns only the outcomes of the chance nodes. As a result, the in-
formation sets of the players include a large number of nodes in the
tree. This fact allows us to represent the game in a more compact
way without any loss of information or the expressiveness of the
computed strategies. The basis of the representation is the concept
of a signal tree [5]. A signal tree represents the space of all possible
developments of a game from a single player’s perspective. In gen-
eral, plies of player’s actions and observations are alternating in the
tree. After any observation node, a child corresponding to each of the
possible observations that can follow the player’s decision is added.

Figure 2: Signal trees of the observer (left) and the actor (right).

The actor does not obtain any observation in the game. Hence, its
signal tree is the tree of its possible plans (see Figure 2). The observer
obtains an observation after each decision. His signal tree contains
both the observation and the decision plies. In general, each deci-
sion node has exactly |D| children and each observation node has ex-
actly |A| children. However, forward pruning based on the domain-
specific knowledge can be applied. The depth of the defender’s signal
tree, in the worst case, is uniform and it is two times deeper than the
length of the longest attack plan. If the confusion matrices m contain
sharp ones or zeros, the size of the tree can be reduced.

Any branch from one tree in combination with a branch of the
matching length from the other tree defines a unique history h in the
extensive-form game – the full game tree. All histories that corre-
spond to the same decision node in the signal tree of a player belong
to the same information set of the player. Also, all information sets
that exist in the full EFG are represented by a node in one of the sig-
nal trees. As a result, any behavioral strategy can be represented as a
probability distribution in each decision node of the signal tree.

The size of the two signal trees is much smaller than the size of
the full game tree. With the 5 choices and 10 moves, the size of the
attacker’s signal tree is less than 107 and the size of the defender’s
tree is less than 1014. It is still not possible to traverse the observer’s
signal tree in a reasonable time, but the reduction is substantial. In
order to make this representation of the game equivalent to the full
game tree, we have to solve two issues. First, the chance nodes in
the observer’s tree must become more complex. One chance node
in the observer’s signal tree corresponds to many chance nodes in
the full game tree. However, the probabilities of the observations in
the observer’s signal tree depend only on the current (last) action of
the actor. Hence, if the chance node stores a conditional probability
p(o|a), we do not lose any information about the distributions. The
second issue are the utilities, which could, in principle, be different
for each leaf of the full game tree. All this information cannot be

V. Lisý et al. / Game-Theoretic Approach to Adversarial Plan Recognition548

explicitly represented in the signal trees. On the other hand, the utility
in more complex EFGs is usually represented implicitly, in the form
of an algorithm that computes the utilities for each history of the
game (see formula (1)). For any pair of branches from the signal
trees, the corresponding history in the full game can be computed
and we can use the same algorithm to compute the utilities.

4.2 Concurrent Monte-Carlo Tree Search

We propose a method, for computing the strategy in the game, based
on concurrent construction of both the actor’s and the observer’s sig-
nal tree by Monte-Carlo Tree Search (MCTS). Our method is a gen-
eralization of MCTS developed for perfect information games [8]. A
similar approach has been proposed by [2] and applied to the game
of phantom tic-tac-toe. However, we extend the algorithm in two di-
rections to make it applicable to our problem. The first is handling
of the conditional chance nodes that appear in the defender’s signal
tree. The second extension is enabling the algorithm to further im-
prove the players’ strategies during the game play.

The algorithm maintains two MCTS-like trees corresponding to
the two signal trees defined in Section 4.1. We present the pseu-
docode of the algorithm in Figure 3. At the beginning of the algo-
rithm, both trees contain only one node – the root. The trees are then
gradually expanded. We denote the root nodes aRoot and dRoot
for the actor and the observer respectively. The main loop of the al-
gorithm performs identical iterations until it is out of time. It is an
anytime algorithm; the more computation time it has allocated the
better is the result it produces.

In each iteration, first the plan for the actor is selected (procedure
selectActorP lan). Starting from the root node of the actor’s tree,
the actions of the actor’s plan are selected based on a suitable MCTS
selection function, which balances the exploration and exploitation
(lines 1-5). When the selection reaches a leaf of the currently con-
structed part of the tree and it is not the end of some actor’s plan, all
possible direct successors of the node are added to the tree (line 7).
Then, the plan is competed randomly to a full plan of the actor (lines
8-12). At the end, the actor’s plan is returned (a1 . . . ah) ∈ P .

Next, a plan for the observer is selected in a similar way from
his signal tree (procedure selectObserverP lan). In the observer’s
decision nodes, a suitable selection function is applied (line 4). In
the observation nodes, conditional probability distributions p(o|a, d)
from m are used to select a child. The algorithm first selects the
plan for the actor; hence, we can identify the right distribution in
the matrix at this point (line 6). If the observation node is a leaf of
the constructed part of the tree, the descent in the tree stops (line 8).
Otherwise, the child corresponding to the generated observation is
selected (line 9). The selection of the observer’s plan continues until
either depth h (i.e., the length of the actor’s plan) is reached or a leaf
in the observer’s tree is selected. In the earlier case, the procedure
ends (line 11). In the latter case, the children of the selected leaf are
added to the tree (lines 13, line 19) and the variables are modified
so that the simulation can start in an observer’s decision node. The
rest of the observer’s actions are selected randomly and the resulting
observations are computed (lines 22-27). At the end, we have the ob-
server’s plan and the observations it produced (d1 . . . dh, o1 . . . oh).

With the plan of the actor and the observer’s observations, we can
compute the utility function of the players in the Main procedure
(line 4). The utility is then back-propagated in both trees as in MCTS
(procedure backPropagate). Starting in the selected leafs of the
trees, the statistics in the nodes are updated. Afterwards, next iter-
ation of the Main procedure starts.

Procedure: Main
1: loop

2: (aLeaf, aPlan) = selectActorPlan(aRoot)
3: (dLeaf, dPlan, Obs) = selectObserverPlan(dRoot, aPlan)
4: u = utility(aPlan, Obs)
5: backPropagate(aLeaf, u); backPropagate(dLeaf, u)
6: end loop

Procedure: selectActorPlan(aRoot)
1: curNode = aRoot
2: while curNode is not leaf do

3: action = select(curNode); aPlan = aPlan + action
4: curNode = child(curNode, action)
5: end while

6: if curNode is plan end then return (curNode, aPlan)
7: addNewChildren(curNode)
8: aLeaf = select(curNode); curNode = aLeaf
9: while curNode is not plan end do

10: action = random(curNode); aPlan = aPlan + action
11: curNode = createNodeAfter(curNode, action)
12: end while

13: return (aLeaf, aPlan)
Procedure: selectObserverPlan(dRoot, aPlan)

1: curNode = dRoot
2: while curNode not leaf & length(aPlan) > 0 do

3: aAction = popFirst(aPlan)
4: dAction = select(curNode); dPlan = dPlan + dAction
5: obsNode = child(curNode, dAction)
6: obs = confusionMatrixSample(dAction, aAction)
7: Observations = Observations + obs
8: if obsNode is leaf then break

9: else curNode = child(obsNode, obs)
10: end while

11: if length(aPlan) = 0 then return (curNode, dPlan, Observations)
12: if curNode is leaf & length(aPlan) > 0 then

13: addNewChildren(curNode)
14: dAction = select(curNode); dPlan = dPlan + dAction
15: obsNode = child(curNode, dAction)
16: obs = confMatSample(dAction, aAction)
17: Observations = Observations + obs
18: else

19: addNewChildren(obsNode)
20: curNode = child(obsNode, obs)
21: end if

22: while length(aPlan) > 0 do

23: aAction = popFirst(aPlan)
24: dAction = random(curNode); dPlan = dPlan + dAction
25: obs = confMatSample(dAction, aAction)
26: Observations = Observations + obs
27: end while

28: if curNode is leaf then return (curNode, dPlan, Observations)
29: else return (obsNode, dPlan, Observations)
Procedure: backPropagate(node, u)

1: updateStatistics(node,u)
2: if node is not root then backPropagate(parent(node),u)

Figure 3: The concurent monte carlo tree search algorithm for the first
stage of the game. Procedures select and updateStatistics imple-
ment some MCTS selection strategy, such as UCT of EXP3.

V. Lisý et al. / Game-Theoretic Approach to Adversarial Plan Recognition 549

4.3 Convergence of the Algorithm

We have implemented this algorithm under the hypothesis that with
a suitable selection function, it converges to the Nash equilibrium of
the game. We do not have a full formal proof supporting it yet.

It has been proven that in a one stage normal form game, the over-
all frequencies of using individual actions with EXP3.1[1] as the se-
lection function converges to the Nash equilibrium, even if the util-
ities in the game and the number of actions of the opponent are un-
known to the players [6]. This fact has been used to create an algo-
rithm for playing an imperfect information version of tic-tac-toe [2],
which is in spirit very similar to our algorithm. It uses separate trees
for the players, but does not deal with chance nodes and continuous
reasoning. The author claims that even in this setting, his algorithm
converges to a NE of the extensive form game. However, he does not
provide a formal proof or extensive experimental evidence to support
this claim. On the other hand, his as well as our experimental results
indicate that this method can be used to create successful players for
imperfect information extensive form games and we believe that it is
possible to proof the convergence for a large class of games.

If an agent uses EXP3.1 as the selection function in a repeated
problem, its loss for not playing the optimal action all the time (i.e.,
regret) can be bounded by O(1/

√
(T)) [1], where T is the number

of trials. It means the quality of the produced solution gradually im-
proves. Even before full convergence of the algorithm, the computed
strategy guarantees a bound on its sub-optimality.

4.4 Continuous Reasoning

The described algorithm finds a suitable course of action for both
players at the beginning of the game. In theory, it can be run for a
long time before the game starts and the computed trees can be used
for playing the game without further computation. However, the size
of the trees that would need to be stored and the time required to
compute good strategies in their lower levels would be huge. For
practical applications, we suggest computing an initial strategy and
adding more iterations after each step of the game.

The continuous reasoning is slightly different for each player. We
further describe the algorithm for the observer, which is the main
focus of this paper. After each move, the root of the observer’s tree is
substituted by its grandchild corresponding to the selected observer’s
action and the actual observation in the game. The situation is more
complex in the actor’s tree. The observer generally cannot be sure
about the current actor’s tree node in the later stages of the game.
Instead, the defender maintains a probability distribution among k
most probable nodes where the attacker can be. We call the nodes the
root set. The probability of the nodes in the set can be computed by
Bayesian inference form the probabilities computed by the algorithm
in the previous stage and the confusion matrices. For each node in the
root set of the current stage, the concurrent MCTS converges to the
probability of executing each of the actions by rational actor in the
current situation (p(a)). The probability that the actor is in the child
under the action a given the observation o can be computed as:

p(a|o) = p(o|a)p(a)
p(o)

=
p(o|a)p(a)∑

ai∈A p(o|ai)p(ai)
(2)

The probabilities of different observations given an attacker’s ac-
tion (p(o|ai)) can be extracted from the confusion matrix that cor-
responds to the classifier selected by the observer in the game.

After the probability of each child of the nodes in the current root
set is computed, the k most probable children are selected to the root

set in the following stage. Further, for each actor’s action, we can
compute the probability that the action was the last action executed
by the actor. It is the sum of probabilities of executing the action
in each node of the root set. The action with the highest execution
probability is the observation generated by the algorithm and used in
evaluation as the input to the utility function (1).

When concurrent MCTS runs with a root set containing multiple
nodes, one of them is randomly selected as the root of the actor’s tree
in each iteration proportionally to their probabilities.

5 Experimental Evaluation

We evaluate the presented approach on a simplified network secu-
rity domain. The actor is the attacker that tries to attack a com-
puter network. The attacker can perform one of 12 actions (set A),
such as vertical ping scan, or brute-force attack to a specific service.
These actions have preconditions and postconditions and their legal
sequences generate over 150 thousand different attack plans of dif-
ferent lengths (set P). Each action provides the attacker with some
knowledge about the network. The values g of the attack plans are
defined in terms of this knowledge and vary between 0 and 120. The
observer is the intrusion detection system operating on the network.
It has three different settings; each of them can detect some of the
attacker’s actions better and other worse. The actions of the observer
(set D) are selecting one of these settings. The three classes of ac-
tions that are detected better in different settings are producing high,
medium, and small volume of network traffic. The classes include
two, four, and six actions respectively. Each setting detect the ac-
tions from the class correctly with 90%, 60%, and 30% precision,
misclassifying in remaining cases evenly as any other action. This
defines the confusion matrices m.

We performed the experiments with a single-thread implementa-
tion of the algorithm presented in Section 4 on Intel(R) Core(TM) i7
CPU @ 3.20GHz. In order to select (close to) rational attack plans,
we run the proposed algorithm for 10 minutes in the initial stage of
the game. Then, we took five different high probability plans, that are
presented in Figure 4. They are ordered by number of samples that
used the plans in the attacker’s tree, with the first plan having 30%
of all samples and the fifth a little more than 1%. For example in
the third plan, the attacker attempts to compromise a server behind a
firewall. To gain access to the private network, he sends malware via
email to the users in the network and gains access to some of their
hosts. Afterwards, he scans the private network to find a server run-
ning a specific service and he tries to obtain more information about
the version of the service to apply a suitable exploit.

The observations generated for the observer are stochastic; hence
we run the recognition process 200 times for each plan. The algo-

first: dns requests, Horiz scan for spec service, web attacks, con-
nect to host, fingerprinting (g = 86)
second: dns requests, SEND SPAM, connect to host, Horiz scan-
for spec service, fingerprinting (g = 86)

third: SEND SPAM, connect to host, Horiz scan for spec service,
fingerprinting (g = 81)
fourth: dns requests, Horiz scan for spec service, web attacks,
connect to host (g = 78)
fifth: Horiz scan for spec service, web attacks, DDOS TO SPECI-
FIC SERVICE, fingerprinting, connect to host (g = 93)

Figure 4: Attack plans used in evaluation. The upper cased actions are
in the high traffic category, medium traffic actions have capital letter
at the beginning and the low traffic actions are lowercased.

V. Lisý et al. / Game-Theoretic Approach to Adversarial Plan Recognition550

Figure 5: The mean attacker’s reward (defenders penalty) with the
proposed approach (GT) and the base lines; RR - random classifier;
BR - the ex post optimal classifier; and other baselines.

rithm was set to use 2 minutes of computational time per game stage.
We compare the performance of the proposed algorithm in terms of
the utility to several baseline values. The first three baselines always
use only one of the actions available to the defender. We denote
them by the first character of the volume class (H,M,L). The other
two baselines are the ex post best response (BR) and worst response
(WR). With the prior knowledge of the actual attacker’s plan, we
compute BR (WR) by selecting the defender’s action with the high-
est (lowest) probability of observing the actual attacker action. The
last baseline is the random selection of defender’s action (RR). As all
these baselines are independent of defender’s observations, we can
quickly compute a good approximation of their quality by averaging
over 106 trials for each plan.

Figure 5 presents the utility of the proposed method (GT) and the
baselines computed by formula (1). The values are presented for each
attacker’s plan separately and aggregated over all five plans (Agg).
Overall, the GT approach is significantly better then all applicable
baselines and it is only slightly worse than the BR. The error bars
indicates the 95% confidence interval of the mean. For all baseline
values, the confidence intervals are hardly noticeable in the graphs,
because of their small width. Looking at the individual plans, the GT
approach performs very well on the first two plans and the results
are worst for the fifth plan. This can be expected as the first plans
better approximate the rational behavior of the attacker and the later
plans have higher chance to be irrational. Note that the result of GT
can be better than BR, because it combines the information from the
classifiers with the game theoretic reasoning and does not directly
outputs the observation of the classifiers as BR.

In the plan recognition task, the plan actually performed by the
attacker was ranked as the most likely by the GT approach in 38.6%
of runs and its median position in the final list of the most probable
plans was 5. This is a promising result considering there are over 150
thousand plans to choose from.

The number of iterations (samples) of the concurrent MCTS algo-
rithm performed in a single stage varied with the stage of the game.
The histogram of the number of instances in which certain number
of iterations was performed follows roughly binomial distribution. In
most instances, more than 107 iterations were performed, however,
in some cases even 108 can be made in time. One instance of the
algorithm never crossed 4.5GB memory limit during the experiment.
The memory was used for storing the MCTS trees, size of which can
be substantially limited by a more conservative expansion strategy.

6 Conclusion

In this paper, we argue that the problem of adversarial plan recog-
nition, where the observed agent actively tries to avoid observation
should be modeled as a game. The observed agent has to model rea-
soning of the observer and vice versa in order to derive the optimal
strategies. We model the problem as a specific subclass of imperfect-
information zero-sum extensive form games, which we term Adver-
sarial Plan Recognition Games. We show how problems from this
class can be compactly represented by a pair of signal trees of the
players. Based on this representation, we propose an algorithm that
approximates the optimal solution of the game. The algorithm is a
novel generalization of Monte-Carlo tree search. In order to verify
applicability of APRG, we use it to model a simplified game be-
tween the attacker and the intrusion detection system in the network
security domain. The presented experimental evaluation shows that
the proposed algorithm can be used to produce good behaviors for
the agents in reasonably large domains. The observer using the pro-
posed algorithm performed significantly better than any of the naive
baseline approaches we tried.

The proposed model can be extended in several interesting direc-
tions. In real world applications, it is not likely that the agents in-
volved will be perfectly rational. It would be interesting to relax the
rationality assumption and use a suitable bounded rationality model.
Furthermore, it would be interesting to extend the model to allow
temporally extended actions. If various actions of the actor take dif-
ferent time, the model cannot be directly applied because of more
complex synchronization between the observer and the actor. Solv-
ing this issue is also an important line of future research.

ACKNOWLEDGEMENTS

This research was supported by AFOSR (grant no. FA8655-10-1-
3016), ONRG (grant no. N62909-12-1-7019), and the Czech Science
Foundation (grant no. P202/12/2054).

REFERENCES

[1] P. Auer, N Cesa-Bianchi, Y Freund, and R.E. Schapire, ‘The non-
stochastic multiarmed bandit problem’, SIAM Journal on Computing,
32(1), 48–77, (2003).

[2] D. Auger, ‘Multiple Tree for Partially Observable Monte-Carlo Tree
Search’, in Applications of Evolutionary Computation, pp. 53–62.
Springer, (2011).

[3] D. Avrahami-Zilberbrand and G.A. Kaminka, ‘Incorporating observer
biases in keyhole plan recognition (efficiently!)’, in Proc. of the Na-
tional Conference on Artificial Intelligence, volume 22, p. 944, (2007).

[4] S. Braynov, ‘Adversarial planning and plan recognition: Two sides of
the same coin’, in Secure Knowledge Management Workshop, (2006).

[5] P. Ciancarini and G.P. Favini, ‘Monte Carlo tree search in Kriegspiel’,
Artificial Intelligence, 174(11), 670–684, (jul 2010).

[6] C. Daskalakis, A. Deckelbaum, and A. Kim, ‘Near-optimal no-regret
algorithms for zero-sum games’, in Proc. of the Twenty-Second Annual
ACMSIAM Symposium on Discrete Algorithms, pp. 235–254, (2011).

[7] C.W. Geib and R.P. Goldman, ‘Plan recognition in intrusion detection
systems’, in DARPA Information Survivability Conference & Exposi-
tion II, volume 1, pp. 46–55. IEEE, (2001).

[8] L. Kocsis and C. Szepesvári, ‘Bandit based Monte-Carlo Planning’, in
ECML-06, (2006).

[9] W. Mao and J. Gratch, ‘A utility-based approach to intention recogni-
tion’, in AAMAS 2004 Workshop on Agent Tracking: Modeling Other
Agents from Observations, (2004).

[10] X. Qin and W. Lee, ‘Attack Plan Recognition and Prediction Using
Causal Networks’, in 20th Annual Computer Security Applications
Conference, pp. 370–379. Ieee, (2004).

[11] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorithmic,
game-theoretic, and logical foundations, Cambridge University Press,
2009.

V. Lisý et al. / Game-Theoretic Approach to Adversarial Plan Recognition 551

