
Choosing Combinatorial Social Choice by Heuristic
Search

Minyi Li 1 and Quoc Bao Vo 2

Abstract. This paper studies the problem of computing aggregation
rules in combinatorial domains, where the set of possible alternatives
is a Cartesian product of (finite) domain values for each of a given
set of variables, and these variables are usually not preferentially in-
dependent. We propose a very general heuristic framework SC* for
computing different aggregation rules, including rules for cardinal
preference structures and Condorcet-consistent rules. SC* highly re-
duces the search effort and avoid many pairwise comparisons, and
thus it significantly reduces the running time. Moreover, SC* guar-
antees to choose the set of winners in aggregation rules for cardinal
preferences. With Condorcet-consistent rules, SC* chooses the out-
comes that are sufficiently close to the winners.

1 Introduction

In many multi-agent decision-making scenarios, the space of alterna-
tive has a combinatorial structure: the set of possible alternatives is a
Cartesian product of (finite) domain values for each of a given set of
variables (aka. issues), and usually these variables are not preferen-
tially independent. In classical social choice theory, candidates (aka.
alternatives, outcomes) and the agents’ preferences are supposed to
be listed explicitly as linear orders, and then a voting rule is applied
to select one or a set of winning alternatives. These traditional meth-
ods rely on a demanding assumption that the candidates should not
be too numerous. However, when the domain has a combinatorial
structure, the number of alternatives is exponential in the number of
variables, and therefore, the agents’ preferences are usually described
in some compact representation languages rather than linear orders.
This makes the social choice problem even more complex and chal-
lenging, because individual outcome comparisons (and thus pairwise
comparisons between outcomes) in those languages might be com-
putationally difficult. As most common aggregation methods need
a number of operations at least linear (sometimes even quadratic or
exponential) in the number of possible alternatives, generating the
whole relation from those compact languages and directly applying
rules to compute a social choice is impractical [9].

Several ways of computing rules in combinatorial domains have
been considered. The most straightforward way is to use issue-by-
issue (a.k.a. seat-by-seat) sequential election. However, as soon as
the variables are not preferentially independent, it is very likely that
deciding on the issues separately will lead to suboptimal choices [4].
Many existing work consider imposing a domain restriction such
as separability (which makes the issue-by-issue sequential election
work), see e.g., [10]; or a weaker restriction such as O-legality [16],
which allows for deciding on the issues one after another. Some later
works [11, 15] relax those restrictions and introduce a notion of lo-

1 Swinburne University of Technology, Australia, email: myli@swin.edu.au
2 Swinburne University of Technology, Australia, email: BVO@swin.edu.au

cal Condorcet winners (a local Condorcet winner beats every other
alternative that differs in a single variable from that local Condorcet
winner). The authors also propose (and implement) algorithms for
computing them. However, this notion of winner differs from a Con-
dorcet winner in the alternative space, as it only takes into account
neighbour alternatives.

In this paper, we introduce a very general heuristic framework SC*
for computing social choice in combinatorial domains. SC* enables
aggregating or voting on partial assignments (an assignment of a sub-
set of variables; and possibly comparing assignments on different
subset of variables) until all variables have been assigned a value.
As a result, it neither requires a counting of candidates as that in
most decision-making instances, nor imposes any restriction on the
agents’ preference structures. The proposed heuristic approach al-
lows searching in a much smaller sub-space of the alternatives, and
thus requires significantly less pairwise outcome comparisons. It is
general enough to be applicable to both aggregation rules for cardi-
nal preferences and several Condorcet-consistent rules. Most impor-
tantly, SC* guarantees optimal social choice in aggregation rules for
cardinal preference structures. With Condorcet-consistent rules, SC*
chooses the candidates that are sufficiently close to the winners of
the rule. Last but not least, the proposed algorithm is independent to
the preference representations, and thus it is applicable to most rep-
resentation languages in combinatorial domains. Notice that we omit
all the theorem proofs in this paper due to space limitation, while
a longer version containing all detail proofs can be found at http:
//www.ict.swin.edu.au/personal/myli/ecai2012.pdf

2 Preliminaries

Let V = {X1, . . . , Xm} be a set of variables, where each variable Xk

takes values in a finite domain DXk . An alternative is uniquely iden-
tified by its values of all variables. The set of alternatives is denoted
by X, such that X = DX1×, . . . ,×DXm . If X = {Xσ1 , . . . , Xσ� } ⊆ V,
with σ1 < · · · < σ� then DX denotes DXσ1

× · · · ×DXσ�
and �x denotes

an assignment of variable values of X, i.e., �x ∈ DX. If X = V, �x is
a complete assignment (corresponds to an outcome); otherwise �x is
called a partial assignment. If �x and �y are assignments to disjoint sets
X and Y, respectively (X ∩ Y = ∅), we denote the combination of �x
and �y by �x�y. If X ∪ Y = V, we call �x�y a completion of assignment �x.
We denote by Comp(�x) the set of completions of �x.

A vote p is a linear order onX, i.e., a transitive, antisymmetric, and
total relation on X. We denote L(X) as the set of all possible linear
orders on X. An n-agent profile P is a collection of n votes, that is,
P = (p1, . . . , pn), where pi ∈ L(X). Let P(X) be the set of all possible
profiles over X, a (voting or aggregation) rule r : P(X) → 2X maps
any profile p ∈ P(X) to a subset of alternatives (winners).

Since direct assessment of the preference relations in combinato-

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-528

528

rial domains is usually infeasible, several compact languages have
been proposed to avoid the exponential blow up. For instance, some
languages are cardinal, e.g., utility networks [1] and soft constraints
[5, 7]; some languages are purely qualitative, e.g., CP-nets [2] and
CI-nets [3]. In this paper, we assume that each agent has linear pref-
erence over the alternative space, which may be completely or par-
tially represented by a compact language. Therefore, a vote p might
be (partially) represented by a compact language L. That is, L (par-
tially) induces an order p over the alternative space.

3 The proposed heuristic framework

3.1 The search tree

We identify optimal social choice using a search tree T . A search
tree T can be considered as an assignment tree. For a combinatorial
social choice problem over m variables V = {X1, . . . , Xm}, let k be
the maximum size of the variable domain: ∀X ∈ V, |DX | ≤ k, then
T is a k-ary tree. The depth of T is m with the root being at depth
0. Suppose that a search tree T is generated following an order over
variables σ = Xσ1 > · · · > Xσm , then each level � considers the value
assigns to variable Xσ� . If a node Φ from the upper level is being
expanded with the value of a variable X at the current level, then Φ
has |DX | branches and each branch assigns a different value x to X
(x ∈ DX). The root node represents an empty assignment. A node
Φ at depth � represents a unique value assignment (specified by the
path from the root to that node) assg ∈ DXσ1

× · · · × DXσ�
to the set

of variables {Xσ1 , . . . , Xσ� }. Each node at depth m corresponds to an
alternative, as all the variables has been assigned a value.

3.2 The SC* search algorithm

Similar to other heuristic search algorithms [13], SC* creates a search
tree by iteratively selecting a node that appears to be most likely
to lead towards an optimal social choice (a winner of the rule). We
first give a general definition of the evaluation function of the search
strategy, and then we would specify different evaluation functions for
different aggregation rules in the next section.

Definition 1 (Evaluation function) In an iteration, given a set of
leaf nodes L in the search tree T , an evaluation function F maps
each node Φ in L into a number (F : L →
), which indicates how
promising (good) the node is, i.e., how likely the node will eventually
lead to a winner of the given rule. In this work, F (Φ) is modelled
as kinds of disvalue of Φ (e.g., cost, distance to goal, penalty, dis-
utility). Therefore, the smaller the F value of a node Φ, the more
promising Φ is.

SC* (see Algorithm 1) is adapted from the A* heuristic search al-
gorithm [6] with F being the heuristic function. We first randomly
generate an order over variables σ = Xσ1 > . . . Xσm , following which
the search tree would be created (line 1). Starting with the root node
with an empty assignment (logically expressed as True) (line 2), SC*
maintains a priority queue of nodes to be expanded, known as the
f ringe. The lower F value of a node Φ, the higher its priority is, i.e.,
the more upfront it is in the f ringe. We emphasize here that for two
nodes with the same F value, the one at level � < m must be ordered
before (given higher priority than) the one at level � = m.

In each iteration of SC*, the first node Φ, i.e. the node with the
lowest F value, is removed from the f ringe (line 4). If it does not
represent a complete assignment (assg denotes the assignment of
Φ), it will be expanded (line 6-9). Let X be the next variable to be
assigned according to the order σ, for each x ∈ DX , a child node
expanded from Φ with the assignment assg ∧ x will be created and

Algorithm 1: SC*(P)
Input: P, a preference profile of n agents over m issues
Output: outs, a set of outcomes

1 Randomly generate an order over variables
σ = Xσ1 > · · · > Xσm ;

2 f ringe← INSERT(MAKE-NODE(True), f ringe);
3 while f ringe � ∅ do

4 Φ← REMOVE-FIRST(f ringe); assg← ASSIGNMENT(Φ);
5 if assg is not a complete assignment then

6 X ← NEXT-VARIABLE(assg, σ);
7 foreach x ∈ DX do

8 INSERT(MAKE-NODE(assg ∧ x), f ringe);
9 end

10 Compute F for each leaf node;
11 SORT-FRINGE-ASC(f ringe);
12 else

13 AppendTo(outs, assg);
14 Φ′ ← REMOVE-FIRST(fringe);
15 while F (Φ′) = F (Φ) do

16 assg← ASSIGNMENT(Φ′);
17 AppendTo(outs, assg);
18 Φ′ ← REMOVE-FIRST(fringe);
19 end

20 end

21 end

22 return outs;
23 Notice that function SORT-FRINGE-ASC sorts the f ringe

according to an ascending order of the F values; for two nodes
with the same F value, the one with partial assignment (at level
� < m) must be ordered before the one with a complete
assignment (at level � = m).

added into the f ringe. After creating all possible child nodes, the F
value of each existing leaf node is computed accordingly, and the
f ringe is sorted in the ascending order of the F values (line 10-11).
SC* continues until the current chosen node Φ for expansion is a

leaf node at level m, i.e. the assignment ofΦ is a complete assignment
to the set of domain variables V (line 12). Notice that there might be
more than one node with the same F value in an iteration. As we
mentioned before, with the nodes that have the same F value, we
give higher priority to a node at an upper level (� < m) than the one at
the deepest level (� = m). Consequently, when the first node Φ in the
f ringe is at level m, the other nodes that have the same F value as Φ
must also be at level m. Then, SC* algorithm collects the nodes with
the smallest F value, and put their assignments (each corresponds to
a unique outcome) into a set outs (line 13-19). Finally, SC* returns
outs as the set of socially preferred alternatives (line 22).

3.3 The basis of heuristic

All the heuristic search strategies introduced in this paper are based
on the following definition of best possible alternative of a node:

Definition 2 (Best possible alternative) At each node Φ of the
search tree T , each agent i has a best possible alternative (BPA) on
Φ, denoted by BPAi (Φ), which is the optimistic outcome that agent i
can obtain with the variable values assigned from the root toΦ being
fixed, i.e., the best outcome that agent i can obtain from the subtree
of Φ. Formally,

BPAi (Φ) = OPTIMIZE(assg,Li)

M. Li and Q.B. Vo / Choosing Combinatorial Social Choice by Heuristic Search 529

where assg = ASSIGNMENT(Φ) represents the assignment specified
by the path from the root to Φ; function OPTIMIZE optimizes the
values of the remaining variables that are not in assg, according to
agent i’s preference Li.

Let Comp(assg) represents the completions of assg, then BPAi (Φ)
is the best alternative among Comp(assg) for agent i. Consequently,
the BPA of the root node for an agent i corresponds to the optimal
(best) outcome for agent i in the entire outcome space, i.e. all vari-
ables are assigned the preferred values according to pi. For a node Φ
at level m of T , ∀i, j ∈ {1, . . . , n} and i � j, BPAi(Φ) = BPA j(Φ) =
ASSIGNMENT(Φ), as the assignment of Φ is complete.

For instance, consider an ordering over three binary variables A,
B and C: abc � ābc � abc̄ � ābc̄ � ab̄c̄ � āb̄c̄ � ab̄c � āb̄c, and
a node Φ with the assignment assg = a (resp. assg = āb̄), the com-
pletions of assg is {abc, abc̄, ab̄c, ab̄c̄} (resp. {āb̄c, āb̄c̄}). According
to the preference order, the BPA of Φ is abc (resp. āb̄c̄), because
abc � abc̄ � ab̄c̄ � ab̄c (resp. āb̄c̄ � āb̄c).

4 Evaluation function of social choice rules

4.1 Aggregation rules for cardinal preferences

When preferences are cardinal, the preference profile P =

〈 f1, . . . , fn〉 consists of every agent’s scoring function. A scoring
function fi of an agent i maps every alternative �x (�x ∈ X) into a
real number
 (fi : X →
), based on the penalty (or distance)
that �x caused (or from the goal) according to agent i’s preference.
Typical examples of cardinal preference structures include penalty
scoring functions, dis-utility functions and some logical preference
languages like weighted goals and distance goals.

To model the preference of the group, for each alternative �x, the
score fi(�x) of each agent i are synthesized by an aggregation operator�:
n →
 into a so-called social welfare function s(�x) reflecting
the preference of the group of agents [12]. Formally, given a cardinal
preference profile P = 〈 f1, . . . , fn〉, the social welfare scoring func-
tion s mapping from X to
 is defined by:

∀�x ∈ X, s(�x) = �{ fi(�x) | i = 1, . . . , n}

Classically, � is an operator that satisfies non-decreasingness for
each of its argument and commutativity. As discussed in [8], the most
natural choices for � are sum and max. sum is a utilitarian aggrega-
tion operator, stating that the collective score of an outcome is the
sum of the scores of the agents in the group. On the other hand, max
states that the maximum score among all the agents should be con-
sidered. Thus, the max aggregation operator corresponds to the egal-
itarian social welfare. Finally, an outcome �x is �-optimal iff s(�x) is
minimized.

For each node Φ in the search tree T , each agent i has a best
possible alternative BPAi(Φ), and accordingly, an optimistic score
fi(BPAi(Φ)), which is the best (the smallest) possible score that agent
i may obtain from the subtree of Φ. Applying SC* to compute an op-
timal social choice with cardinal preferences, the heuristic evaluation
function FCardinal is defined as follows.

Definition 3 (Evaluation function of cardinal rules) The evalua-
tion function FCardinal, mapping from a node Φ to
, is defined by:

Fcardinal(Φ) = �{ fi(BPAi(Φ)) | i = 1, . . . , n}

In each iteration, SC* chooses a node that has the minimum
FCardinal value to expand, until the node chosen for expansion cor-
responds to a complete assignment. Notice that with cardinal pref-
erence structures, the F value of a node is fixed. Therefore, the F
value of a node will only need to be calculated once.

(a) agent 1

(b) agent 2

(c) agent 3

Figure 1. Agents’s preferences

����
��

� �

� �

�� ��������

����� �� � ��

�� ��������

Figure 2. Search tree for cardinal preferences

Theorem 1 Given that the social welfare function � satisfies non-
decreasingness and commutativity, the evaluation function FCardinal

is admissible.

Theorem 2 If FCardinal is admissible, SC* chooses the set of winners
according to the rule �.

Example. Consider three agents’ preferences over three binary do-
main variables V = {A, B,C} depicted in Figure 1. The scoring func-
tion fi of an agent i is defined by the position of the alternative in
the preference ordering, i.e., the optimal outcome being at 1 and the
worst outcome being at |X|. For instance, consider agent 1’s prefer-
ence ordering in Figure 1(a), f1(abc) = 1, f1(ābc) = 2, . . . , f1(āb̄c) =
8. The table below shows the BPAi and fi of each created node Φ of
each agent i, and then the FCardinal values. In this example, we con-
sider max rule (� =max). Therefore, the FCardinal value of a node Φ
(in a column) is the maximum fi among the three rows.

Agent Φ1 Φ2 Φ3 Φ4 Φ5 Φ6
BPAi fi BPAi fi BPAi fi BPAi fi BPAi fi BPAi fi

agent 1 abc 1 ābc 2 ābc 2 āb̄c̄ 6 ābc 2 ābc̄ 4
agent 2 abc̄ 5 ābc 1 ābc 1 āb̄c̄ 3 ābc 1 ābc̄ 2
agent 3 abc̄ 3 ābc̄ 1 ābc̄ 1 āb̄c̄ 2 ābc 7 ābc̄ 1
FCardinal 5 2 2 6 7 4

Figure 2 shows the search tree of this example. The 1st iteration
creates two child nodes Φ1 and Φ2 of the root. BPA1(Φ1) = abc,
f1(abc) = 1; BPA2(Φ1) = abc̄, f2(abc̄) = 5; BPA3(Φ1) = abc̄,
f3(abc̄) = 3. Therefore FCardinal(Φ1) = max{1, 5, 3} = 5. Similarly,
FCardinal(Φ2) = 2. As FCardinal(Φ2) < FCardinal(Φ1), Φ2 is given higher
priority in the f ringe and is expanded in the 2nd iteration. This pro-
cess continues until Φ6 (specifies a complete assignment) is chosen
for expansion. AsΦ6 is the only node with a minimum FCardinal value
among the existing leaf nodes (Φ1, Φ4, Φ5, Φ6), SC* returns ābc̄
(ASSIGNMENT(Φ6)) as the collective decision.

4.2 Condorcet-consistent rules
Give a preference profile P, a Condorcet winner (CW) is a candidate
�x such that when compared with any other candidate �y (�x � �y), more
than half of the agents prefer �x over �y. Let #{i ≤ n : �x �i �y} denote the
number of agents who prefer an alternative �x over another alternative

M. Li and Q.B. Vo / Choosing Combinatorial Social Choice by Heuristic Search530

�y, formally, an alternative �x is a Condorcet winner iff ∀�y ∈ X, #{i ≤
n : �x �i �y} > #{ j ≤ n : �y � j �x}.

When the Condorcet winner exists, it is unique. However, it is
possible for a paradox to form, in which collective preferences can
be cyclic (i.e. not transitive), even if the preferences of individual
agents are not. In combinatorial domains, however, the number of
alternatives is often much larger than the number of agents, and
therefore, there almost never exists a Condorcet winner in practical
cases. Hence, in the next subsections, we consider two Condorcet-
consistent rules, namely Copeland rule and Minimax rule. A rule is
Condorcet-consistent, if it chooses the Condorcet winner when one
exists. Before going to define the evaluation function of these two
rules, we first introduce some related concepts as follows.

In each iteration, we denote L as the set of existing leaf nodes
in the search tree. In order to apply SC* to compute Condorcet-
consistent rules, we first define an upper approximation of preference
relations over the set of leaf nodes L, based on the agent’s optimistic
evaluation (BPA) of each leaf node.

Definition 4 (Preference relations between leaf nodes) Given a
pair of leaf nodes Φ and Φ′, we say an agent i prefers Φ over
Φ′ (written as Φ �i Φ

′) iff agent i prefers the BPA of Φ over the
BPA of Φ′. Formally, ∀i ∈ {1, . . . , n} and ∀Φ, Φ′ ∈ L, Φ �i Φ

′ iff
BPAi(Φ) �i BPAi(Φ′).

Proposition 1 Let Φ be a node at level m (represents a com-
plete assignment) and Φ′ be a node at level � (� ≤ m), �x
be the alternative corresponds to Φ (�x = ASSIGNMENT(Φ)) and
assg′ = ASSIGNMENT(Φ′), if an agent i prefers Φ to Φ′, then
∀�y ∈ Comp(assg′), �x �i �y.

Definition 5 (Majority domination between leaf nodes) In an it-
eration, a leaf nodeΦmajority dominates another leaf nodeΦ′, writ-
ten as Φ �ma j Φ

′ if there is a majority number of agents who prefer
Φ over Φ′.

Corollary 1 Let Φ be a node at level m and Φ′ be a node at level
� (� ≤ m); �x = ASSIGNMENT(Φ) and assg′ = ASSIGNMENT(Φ′), if
Φ �ma j Φ

′, then ∀�y ∈ Comp(assg′), �x �ma j �y.

4.2.1 Copeland rule

Given a profile P, the Copeland score of an alternative is the num-
ber of alternatives it beats in pairwise comparisons. Formally, for an
alternative �x, let s(�x) denotes the Copeland score of �x, then

s(�x) = #{�y ∈ X : �x �ma j �y}

A Copeland winner �x is an alternative that maximizing s(�x).
In each iteration, we conduct a pairwise comparison over the set

of leaf nodes L (based on Definition 4 and Definition 5). For consis-
tency, we define the evaluation function as sort of disvalue of a node
and the smaller FCopeland is, the more promising the node is. There-
fore, in an iteration, the FCopeland value of a node Φ is defined by the
number of leaf nodes that majority dominates Φ.

Definition 6 (Copeland evaluation function) The evaluation func-
tion FCopeland, mapping from an existing leaf node Φ (Φ ∈ L) to
[0,+∞], is defined by:

FCopeland(Φ) = #{Φ′ ∈ L : Φ′ �ma j Φ}

����
��

� �
�� ��

�� ��
���
���
�
�

�� ��

� �
��

���� ��
����
����

��
���� �� ����

Figure 3. Search tree for Copeland rule

In the case with Copeland rule, the evaluation value FCopeland of
a node varies during the search (as some leaf nodes are expanded
and new nodes are created). Therefore, in each iteration, we not only
need to calculate the FCopeland value of the new created nodes, but
also need to update the FCopeland value of other remaining leaf nodes.

Theorem 3 The evaluation function FCopeland is not admissible.

Example (Cont.) We continue with the three agents’ preferences in
Figure 1. In the table below we give a pairwise comparison matrix
(Φ in column and Φ′ in row). The value in the cell of column Φ row
Φ′ is 1 iff Φ �ma j Φ

′, otherwise is -1. We denote F h
Copeland as the

FCopeland value of a leaf node in the h iteration. In each iteration h,
we calculate the F h

Copeland value by only looking at the rows of the
existing leaf nodes: the F h

Copeland(Φ) is the sum of those rows which
is equal to -1 in the column of Φ. There is a “cross” in a cell of the
table iff: i)Φ = Φ′ (cater-corner); or ii)Φ orΦ′ has been expanded (is
no longer a leaf node) in that iteration. Figure 3 illustrates the search

↓ Φ′ Φ→ Φ1 Φ2 Φ3 Φ4 Φ5 Φ6
Φ1 × 1 1 1 -1 1
Φ2 -1 × × × × ×

F 1
Copeland 1 0 - - - -
Φ3 -1 × × -1 × ×
Φ4 -1 × 1 × 1 1

F 2
Copeland 2 × 0 1 - -
Φ5 1 × × -1 × -1
Φ6 -1 × × -1 1 ×

F 3
Copeland 2 × × 2 1 1

tree with this example (In the search treeF h
Copeland is written shortly as

F h). In the 1st iterations, Φ1 and Φ2 are created as the children of the
root node. As Φ2 �ma j Φ1, F 1

Copeland(Φ1) = 1 and F 1
Copeland(Φ2) = 0.

The ordering in the fringe would be Φ2Φ1. In the 2nd iteration, the
first node Φ2 in the f ringe is popped out and expanded. Two child
nodes Φ3 and Φ4 are created. We run a pairwise comparison between
three existing leaf nodes Φ1, Φ3 and Φ4. As Φ3 �ma j Φ1, Φ4 �ma j Φ1,
Φ3 �ma j Φ4, F 2

Copeland(Φ1) = 2, F 2
Copeland(Φ3) = 0, F 2

Copeland(Φ4) = 1.
Therefore, the order of the nodes in the f ringe is Φ3Φ4Φ1 and Φ3

will be expanded in the next iteration. In the 3rd iterations, two child
node Φ5 and Φ6 of Φ3 are created. F 3

Copeland(Φ1) = 2, F 3
Copeland(Φ4) =

2, F 3
Copeland(Φ5) = 1 and F 3

Copeland(Φ6) = 1. The current f ringe is
Φ5Φ6Φ1Φ4. In the 4th iteration, Φ5 is chosen for expansion. As Φ5

is a complete assignment and Φ6 has the same FCopeland value as Φ5,
the corresponding alternatives of Φ5 and Φ6 (ābc and ābc̄) will be
put into outs. SC* returns outs as the final chosen set of alternatives.

4.2.2 Minimax

Given a profile P and a pair of alternatives �x and �y, let N(�x, �y) denote
the number of agents that rank �y ahead of �x in the profile P: N(�x, �y) =

M. Li and Q.B. Vo / Choosing Combinatorial Social Choice by Heuristic Search 531

��
���

����
��

� �
��

�
� �

� �

� �

��
����

����
����

��

��

��
�� ��

�� ��
���
���
�
�

	�

��

�� ��
���
���
�

����
�

�� ��
���
���
�
�

�� ��
���
���
�
�

����
� �
��

����

Figure 4. Search tree for Minimax rule

#{i ≤ n : �y �i �x}. The Minimax score s(�x) of an alternative �x is
defined by:

s(�x) = max�y∈X, �y��xN(�x, �y)

A Minimax winner �x is an alternative that minimizing s(�x).
Similar as the Copeland rule, in each iteration, we conduct a pair-

wise comparison over the set of leaf nodes L. For a pair of leaf nodes
Φ and Φ′, we define N(Φ,Φ′) as the number of agents that prefer Φ′

over Φ: N(Φ,Φ′) = #{i ≤ n : Φ′ �i Φ}. Then we can define the
following evaluation function of Minimax rule:

Definition 7 (Minimax evaluation function) The evaluation func-
tion FMinimax, mapping from an existing leaf node Φ (Φ ∈ L) to
[0,+∞], is defined by:

FMinimax(Φ) = maxΦ′∈L, Φ′�ΦN(Φ,Φ′)

Theorem 4 The evaluation function FMinimax is not admissible.

Example (Cont.) We apply SC* to compute the Minimax rule with
our running example (Figure 1). In the table below we give the num-
ber of defeats in pairwise comparison (Φ in column and Φ′ in row)
The value in the cell of column Φ row Φ′ is the number of defeats of
Φ vs. Φ′, i.e., the number of agents that prefer Φ′ over Φ (N(Φ,Φ′)).
The F h

Minimax value of a node Φ in iteration h is then the maximum
among the rows of the current existing nodes in the column Φ. Sim-
ilarly, there is a “cross” in a cell of the table iff: Φ = Φ′; or Φ or Φ′

has been expanded.

↓ Φ′ Φ→ Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9 Φ10
Φ1 × 1 1 1 2 1 × × × ×
Φ2 2 × × × × × × × × ×

F 1
Minimax 2 1 - - - - - - - -
Φ3 2 × × 3 × × × × × ×
Φ4 2 × 0 × 1 0 2 2 2 2

F 2
Minimax 2 × 1 3 - - - - - -
Φ5 1 × × 2 × 2 1 2 1 2
Φ6 2 × × 3 1 × 2 3 2 2

F 3
Minimax 2 × × 3 2 2 - - - -
Φ7 × × × 1 2 1 × 3 × ×
Φ8 × × × 1 1 0 0 × 1 0

F 4
Minimax × × × 3 2 2 2 3 - -
Φ9 × × × 1 2 1 × 2 × 1
Φ10 × × × 1 1 1 × 3 2 ×
F 5

Minimax × × × 3 2 2 × 3 2 2

Figure 4 illustrates the search tree with this example (In the search
tree F h

Minimax is written shortly as F h). The search process is sim-
ilar to the case with Copeland rule. However, in the 3rd iteration,
F 3

Minimax(Φ1) = F 3
Minimax(Φ5) = F 3

Minimax(Φ6) = 2 (the minimum). Φ1

is a partial assignment, it will be given higher priority than Φ5 and
Φ6 in the f ringe. Therefore, Φ1 will be expanded in the 4th iteration.
This process continues, until Φ9 is chosen for expansion (specifies a
complete assignment). As,Φ9,Φ10,Φ5 andΦ6 have the sameFMinimax

value, SC* then returns four alternatives abc, abc̄, ābc, and ābc̄ (spec-
ified by Φ9, Φ10, Φ5, Φ6, respectively).

5 Experiment

In the experiments, we compare the proposed SC* approach with two
other algorithms: (i) a standard direct election method DirE. DirE
runs a direct election among all possible alternatives. It guarantees
to find the winners of a rule. (ii) a sequential voting algorithm SeqV.
SeqV runs a sequential issue-by-issue voting following a random or-
der over the set of variables. When the agents vote for the values of
a remaining variable, they vote based on the best possible alternative
with the variables that already assigned a value being fixed.

In these experiments, we focus on binary variables and con-
sider the representation language ”SLO SCPnet” [5] to represent the
agents’ preferences. The SLOSCPnets are generated with topology
orders over variables that follow a normal distribution. The struc-
ture of each agent’s preference network is arbitrary acyclic, and the
agents are not required to have common preference structures. For
each number of variables, we run 5000 rounds of experiments.

Table 1. Experimental results with max rule for cardinal preferences

Var. Visited
Nodes

Time Succ. R. Distance
DirE SeqV SC* SeqV SeqV

5 29.5 0.15 0.07 0.11 30% 2.5
10 94.01 10.17 0.29 0.71 11% 113.5
15 200.7 446.4 0.61 2.06 4% 4096.0

With aggregation rules for cardinal preferences, we consider � =
max. Table 1 shows the experimental results with 5 to 15 variables. It
can be clearly seen that SC* limits the number of visited nodes and
the running time of SC* is reduced by several orders of magnitude
compared to the DirE algorithm when the number of variables is
large. On the other hand, the running time for SeqV algorithm is the
least among the three algorithms. However, the percentage of cases
it chooses a winner is very low. The last two columns show the suc-
cess rate (Succ. R.) and the distance between the winners and the
outcome chosen by SeqV algorithm. The distance is defined by the
difference between the social welfare scores of the winner and the
outcome chosen by SeqV algorithm. When the number of variables
is large, for instance 15 variables, in less than 4% cases of these ex-
periments, the SeqV can find out a winner. Also, the average distance
to the winners is quite large, 4096.0 in the case of 15 variables.

For the experiments with Condorcet-consistent rules, Table 2 and
Table 3 shows the results with Copeland and Minimax rule, respec-
tively. On the one hand, SC* is much faster than the DirE algorithm,
which becomes infeasible when the number of variables is larger than
8. On the other hand, SC* provides a much higher success rate (Succ.
R.) and smaller distance to the winners than the SeqV algorithm.
Here, the distance to a Copeland winner (resp. a Minimax winner)
is the difference of the Copeland scores (resp. Minimax scores) be-
tween the winners and the outcomes chosen by the algorithms.

6 Conclusion and future work

We have studied the problem of combinatorial social choice in this
paper. As the size of alternative space is huge in combinatorial do-
mains, we proposed a very general heuristic framework SC* for com-
puting different aggregation rules. SC* guarantees to choose the win-
ners of the rules for aggregating cardinal preferences. In the cases

M. Li and Q.B. Vo / Choosing Combinatorial Social Choice by Heuristic Search532

Table 2. Experimental results with Copeland rule

Var. Avg. PC
Reduction

Time Succ. R. Distance
DirE SeqV SC* SeqV SC* SeqV SC*

4 20.4% 1.03 0.01 0.07 46.8% 95.9% 1.93 0.05
6 67.0% 26.56 0.03 0.29 21.8% 80.2% 10.35 0.4
8 89.4% 585.7 0.04 0.97 8.7% 72.1% 48.1 1.61

PC Reduction: reduction in the number of pairwise comparisons.

Table 3. Experimental results with Minimax rule

Var. Avg. PC
Reduction

Time Succ. R. Distance
DirE SeqV SC* SeqV SC* SeqV SC*

4 14.9% 0.87 0.01 0.06 56.3% 97.5% 0.68 0.02
6 50.3% 22.92 0.02 0.28 33.8% 93.9% 1.18 0.06
8 83.6% 517.6 0.04 1.0 20.9% 85.3% 3.22 0.17

PC Reduction: reduction in the number of pairwise comparisons.

with Condorcet-consistent rules, SC* chooses the alternatives that are
sufficiently close to the winners.

When aggregating cardinal preferences, by considering each
agent’s score value as an objective, SC* processes in a way simi-
lar to the heuristic algorithm U* [14] for multi-objective optimal path
searching in acyclic OR-graphs. However, there are significant dif-
ferences between the two:

i) In the problem of optimal path searching in OR-graph, U* is a
best-first search algorithm in which the heuristic information of the
nodes are assumed given. U* algorithm aggregates the given objec-
tive values (called reward vectors) of the path from the start node to
the current node and the estimated reward vectors from the current
node to the end (i.e., the given heuristic information) into a utility
value u to guide the search. On the other hand, our proposed SC* al-
gorithm is designed to aggregate multi-agent preferences in combina-
torial domains. SC* algorithm defines the admissible heuristic based
on the best possible alternative (BPA) of each agent. Consequently,
we have proposed a method to obtain an admissible heuristic value
based on the agents’ preferences instead of assuming that a heuristic
function is given.

ii) The decisions for node expansion in the algorithms U* and SC*
are different. U* algorithm selects among the nodes based on a func-
tion IE, which calculates an upper bound utility among all possi-
ble options of a node (e.g., possible next arcs to take or possible
paths from the node to the end). On the other hand, instead of hav-
ing to consider all possible options, the evaluation function used by
SC* (see Definition 3) aggregates the agents’ scores for their opti-
mistic paths from the current node (i.e., the scores of their BPAs).
Note that for a given node, calculating the BPA (i.e., optimal path)
for an individual agent is computationally easy for acyclic prefer-
ence structures. Hence, SC* essentially does not consider all possible
paths from the current node to the end node. In stead, it computes the
evaluation value based on the individual agents’ scores.

iii) With preferences in combinatorial domains, variables are inter-
dependent, and an individual agent’s preference (and thus the collec-
tive preference) over the value of a variable may depend on the values
assigned to some other variables. As a result, different from the prob-
lem discussed in [14], the cost (or reward vector) for a node is not a
fixed vector. In a combinatorial social choice problem, the evaluation
value of a node depends on its ancestors on the search tree as well as
the variables to be assigned before a goal node is reached.

iv) Finally, the operator “◦” used in [14] for aggregating re-
ward vectors of multiple arcs or sub-paths is assumed to be order-
preserving. On the other hand, due to the interdependency between
variables in the context of preference, it is not the case when aggre-

gating preferences in combinatorial domains.
SC* is based on the agents’ optimistic evaluations of alternatives,

i.e., best possible alternatives of the nodes. As an issue of future re-
search, it would be interesting to further investigate the pessimistic
evaluations, i.e., worst possible alternatives of nodes. A further ex-
tension of this work may take into account global constraints (which
makes some alternatives not available). Last but not least, other ways
to model admissible evaluation functions for Condorcet-consistent
rules are also an important topic of our future research.

7 Acknowledgement

We would like to thank the anonymous reviewers for fruitful discus-
sions and comments. This work was partially supported by the ARC
Discovery Grants DP0987380 and DP110103671.

REFERENCES

[1] Fahiem Bacchus and Adam Grove, ‘Graphical models for preference
and utility’, in Proceedings of the Proceedings of the Eleventh Confer-
ence Annual Conference on Uncertainty in Artificial Intelligence (UAI-
95), pp. 3–10, San Francisco, CA, (1995). Morgan Kaufmann.

[2] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos,
and David Poole, ‘CP-nets: a tool for representing and reasoning with
conditional ceteris paribus preference statements’, J. Artif. Int. Res., 21,
135–191, (February 2004).

[3] Sylvain Bouveret, Ulle Endriss, and Jérôme Lang, ‘Conditional impor-
tance networks: A graphical language for representing ordinal, mono-
tonic preferences over sets of goods’, in IJCAI, pp. 67–72, (2009).

[4] Steven J. Brams, D. Marc Kilgour, and William S. Zwicker, ‘The para-
dox of multiple elections’, Social Choice and Welfare, 15, 211–236,
(1998).

[5] Carmel Domshlak, Steven David Prestwich, Francesca Rossi, Kris-
ten Brent Venable, and Toby Walsh, ‘Hard and soft constraints for rea-
soning about qualitative conditional preferences’, J. Heuristics, 12(4-
5), 263–285, (2006).

[6] Peter Hart, Nils Nilsson, and Bertram Raphael, ‘A formal basis for the
heuristic determination of minimum cost paths’, IEEE Transactions on
Systems Science and Cybernetics, 4(2), 100–107, (February 1968).

[7] Piero La Mura and Yoav Shoham, ‘Expected utility networks’, in Pro-
ceedings of the Fifteenth conference on Uncertainty in artificial intelli-
gence, UAI’99, pp. 366–373, San Francisco, CA, USA, (1999). Morgan
Kaufmann Publishers Inc.

[8] Celine Lafage and Jérôme Lang, ‘Logical representation of preferences
for group decision making’, in KR, pp. 457–468, (2000).

[9] Jérôme Lang, ‘Logical preference representation and combinatorial
vote’, Annals of Mathematics and Artificial Intelligence, 42, 37–71,
(September 2004).

[10] Jérôme Lang and Lirong Xia, ‘Sequential composition of voting rules in
multi-issue domains’, Mathematical Social Sciences, 57(3), 304–324,
(May 2009).

[11] Minyi Li, Quoc Bao Vo, and Ryszard Kowalczyk, ‘Majority-rule-
based preference aggregation on multi-attribute domains with CP-nets’,
in Proceedings of the 10th International Conference on Autonomous
Agents and Multiagent Systems, volume 1, pp. 659 – 666, Taipei, Tai-
wan, (2011). Richland, SC. International Foundation for Autonomous
Agents and Multiagent Systems.

[12] Hervi Moulin, Axioms of Cooperative Decision Making (Econometric
Society Monographs), Cambridge University Press, July 1991.

[13] Judea Pearl, Heuristics: intelligent search strategies for computer prob-
lem solving, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1984.

[14] Chelsea C. White, Bradley S. Stewart, and Robert L. Carraway, ‘Mul-
tiobjective, preference-based search in acyclic OR-graphs’, European
Journal of Operational Research, 56(3), 357–363, (1992).

[15] Lirong Xia, Vincent Conitzer, and Jérôme Lang, ‘Voting on multiat-
tribute domains with cyclic preferential dependencies’, in AAAI’08:
Proceedings of the 23rd national conference on Artificial intelligence,
pp. 202–207. AAAI Press, (2008).

[16] Lirong Xia, Jérôme Lang, and Mingsheng Ying, ‘Strongly decompos-
able voting rules on multiattribute domains’, in AAAI’07: Proceedings
of the 22nd national conference on Artificial intelligence, pp. 776–781.
AAAI Press, (2007).

M. Li and Q.B. Vo / Choosing Combinatorial Social Choice by Heuristic Search 533

