
Knowledge-Based Programs as Plans
– The Complexity of Plan Verification –

Jérôme Lang1 and Bruno Zanuttini2

Abstract. Knowledge-based programs (KBPs) are high-level pro-
tocols describing the course of action an agent should perform as
a function of its knowledge. The use of KBPs for expressing action
policies in AI planning has been surprisingly underlooked. Given that
to each KBP corresponds an equivalent plan and vice versa, KBPs
are typically more succinct than standard plans, but imply more on-
line computation time. Here we compare KBPs and standard plans
according to succinctness and to the complexity of plan verification.

1 INTRODUCTION

Knowledge-based programs (KBPs) [4] are high-level protocols
which describe the actions an agent should perform as a function
of its knowledge, such as, typically, if Kϕ then π else π′, where K
is an epistemic modality and π, π′ are subprograms.

Thus, in a KBP, branching conditions are epistemically inter-
pretable, and deduction tasks are involved at execution time (on-line).
KBPs can be seen as a powerful language for expressing policies or
plans, in the sense that epistemic branching conditions allow for ex-
ponentially more compact representations. In contrast, standard poli-
cies (as in POMDPs) or plans (as in contingent planning) either are
sequential or branch on objective formulas (on environment and in-
ternal variables), and hence can be executed efficiently, but they can
be exponentially larger (see for instance [1]).

KBPs have surprisingly been underlooked in the perspective of
planning. Initially developed for distributed computing, they have
been considered in AI for agent design [13] and game theory [7]. For
planning, the only works we know of are by Reiter [12], who gives
an implementation of KBPs in Golog; Classen and Lakemeyer [3],
who implement KBPs in a decidable fragment of the situation calcu-
lus; Herzig et al. [6], who discuss KBPs for propositional planning
problems, and Laverny and Lang [9, 10], who generalize KBPs to be-
lief -based programs allowing for uncertain action effects and noisy
observations.

None of these papers really addresses computational issues. Our
aim is to contribute to filling this gap. After some background on
epistemic logic (Section 2), we define KBPs (Section 3). Then we ad-
dress expressivity and succinctness issues (Section 4): we show that,
as expected, KBPs can be exponentially more compact than standard
policies/plans. Then we give our main contributions, about the com-
plexity of verifying that a KBP is a valid plan for a planning prob-
lem: we show Πp

2-completeness for while-free KBPs (Section 5) and
EXPSPACE-completeness in the general case (Section 6).

1 CNRS and LAMSADE, Université Paris-Dauphine, CNRS UMR 7243,
email: lang@lamsade.dauphine.fr

2 GREYC, Université de Caen Basse-Normandie, CNRS UMR 6072, ENSI-
CAEN, email: bruno.zanuttini@unicaen.fr

2 KNOWLEDGE

A KBP is executed by an agent in an environment. We model what
the agent knows about the current state (of the environment and in-
ternal variables) in the propositional epistemic logic S5. Let X =
{x1, . . . , xn} be a set of propositional symbols. A state is a valua-
tion of X . For instance, x1x2 is the state where x1 is false and x2 is
true. A knowledge state M for S5 is a nonempty set of states, repre-
senting those which the agent considers as possible: at any point in
time, the agent has a knowledge state M ⊆ 2X and the current state
is some s ∈ M . For instance, M = {x1x̄2, x̄1x2} means that the
agent knows x1 and x2 to have different values in the current state.

Formulas of S5 are built up from X , the usual connectives, and
the knowledge modality K. An S5 formula is objective if it does not
contain any occurrence of K. Objective formulas are denoted by ϕ,
ψ, etc. whereas general S5 formulas are denoted by Φ, Ψ etc. For
an objective formula ϕ, we denote by Mod(ϕ) the set of all states
which satisfy ϕ (i.e., Mod(ϕ) = {s ∈ 2X , s |= ϕ}). The size |Φ| of
an S5 formula Φ is the total number of occurrences of propositional
symbols, connectives and modality K in Φ.

It is well-known (see, e.g., [4]) that any S5 formula is equivalent to
a formula without nested K modalities; therefore we disallow them.
An S5 formula Φ is purely subjective if objective formulas occur
only in the scope of K. In the whole paper we only need purely sub-
jective formulas, because we are only interested in what the agent
knows, not on the actual state of the environment. A purely sub-
jective S5 formula is in knowledge negative normal form (KNNF)
if the negation symbol ¬ occurs only in objective formulas (in the
scope of K) or directly before a K modality. Any purely subjec-
tive S5 formula Φ can be rewritten into an equivalently KNNF of
polynomial size, by pushing all occurrences of ¬ that are out of the
scope of K as far as possible with de Morgan’s laws. For instance,
K¬(p ∧ q) ∨ ¬(Kr ∨ K¬r) is not in KNNF, but is equivalent to
K¬(p ∧ q) ∨ (¬Kr ∧ ¬K¬r). Summarizing, a subjective S5 for-
mula Φ in KNNF (for short, Φ ∈ SKNNF) is either a positive (resp.
negative) epistemic atom Kϕ (resp. ¬Kϕ), where ϕ is objective, or
a combination of such atoms using ∧,∨.

The satisfaction of a purely subjective formulas depends only on a
knowledge state M , not on the actual current state (see, e.g., [4]):

• M |= Kϕ if for all s′ ∈ M , s′ |= ϕ,
• M |= ¬Kϕ if M �|= Kϕ,
• M |= Φ ∧Ψ (resp. Φ ∨Ψ) if M |= Φ and (resp. or) M |= Ψ.

An S5 formula is valid (resp. satisfiable) if it is satisfied by all
(resp. at least one) knowledge states M ⊆ 2X . Given two S5 formu-
las Φ and Ψ, Φ entails Ψ, written Φ |= Ψ, if every knowledge state
M ⊆ 2X which satisfies Φ also satisfies Ψ, and Φ is equivalent to
Ψ if Φ and Ψ entail each other. Note that Kϕ ∧Kψ is equivalent to

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-504

504

K(ϕ ∧ ψ), but that Kϕ ∨ Kψ is not equivalent to K(ϕ ∨ ψ): for
instance, K(ϕ∨¬ϕ) is valid whereas Kϕ∨K¬ϕ is true only when
the agent knows the value of ϕ. Also note that Kϕ entails ¬K¬ϕ,
and that M |= ¬Kϕ is weaker than M |= K¬ϕ.

We use a syntactical representation of the current knowledge state
M ⊆ 2X (at some timestep) of the agent executing a KBP. For this
we observe that M can be identified with any objective formula ϕ
which satisfies M = Mod(ϕ), and we represent M by the epistemic
atom Oϕ. Intuitively, Oϕ means “I know ϕ and nothing else”. With-
out loss of generality,we disallow occurences of O or K in the scope
of O or K. Formally, O is an epistemic modality whose semantics is
given in the logic of all I know [11] by

• M |= Oϕ if M = Mod(ϕ).

Hence any atom Φ of the form Oϕ has exactly one model, written
M(Φ) = Mod(ϕ) ⊆ 2X . We use the term “knowledge state” to
refer either to some M ⊆ 2X or to some atom Oϕ. For instance,
M = {x1x2, x̄1x2, x̄1x̄2} will also be written Φ = O(¬x1 ∨ x2).

Satisfiability in the logic of all I know is ΣP
2 -complete [14]. How-

ever, we only need restricted entailment tests, which we show to be
easier. We recall that ΔP

2 = PNP is the class of all decision prob-
lems that can be solved in deterministic polynomial time using NP-
oracles, Πp

2 = coNPNP the class of all decision problems whose
complement can be solved in nondeterministic polynomial time us-
ing NP-oracles, and EXPSPACE the class of all decision problems
that can be solved using exponential space.

Proposition 1 Deciding Oϕ |= Φ, where ϕ is objective and Φ is
purely subjective, is in ΔP

2 .

Proof Let ϕ and Φ be as in the claim. Hence Φ is a Boolean com-
bination of atoms Kψ. We give a polynomial time algorithm for de-
ciding Oϕ |= Φ with a linear number of calls to an oracle for propo-
sitional satisfiability, reasoning by induction on the structure of Φ.

First let Φ = Kψ. Then Oϕ |= Φ reads ∀M ⊆ 2X , (M |=
Oϕ ⇒ ∀s ∈ M, s |= ψ). Since Oϕ has exactly one model M =
Mod(ϕ), this is equivalent to ϕ |= ψ, i.e., ϕ ∧ ¬ψ is not satisfiable.

Now let Φ = Φ1 ∨Φ2 (∧,¬ are similar). Then Oϕ entails Φ iff it
entails Φ1 or it entails Φ2. Indeed, Oϕ has only one model M(Oϕ),
hence Oϕ entails Φ iff M(Oϕ) satisfies Φ1 or Φ2, that is, iff Oϕ |=
Φ1 or Oϕ |= Φ2 holds. Hence, deciding Oϕ |= Φ involves a linear
number of calls to the oracle by the induction hypothesis. �

3 KBPS AS PLANS

Our definitions specialize those in [4] to our propositional framework
and to a single-agent version. Given a set A of primitive actions, a
knowledge-based program (KBP) is defined inductively as follows:

• the empty plan is a KBP,
• any action α ∈ A is a KBP,
• if π and π′ are KBPs, then π;π′ is a KBP;
• for KBPs π, π′ and Φ ∈ SKNNF, if Φ then π else π′ is a KBP;
• for a KBP π and Φ ∈ SKNNF, while Φ do π is a KBP.

The class of while-free KBPs is obtained by omitting the while

construct. The size |π| of a KBP π is defined to be the number of
occurrences of actions, plus the size of branching conditions, in π.

3.1 Representation of Actions

Following [6], we assume without loss of generality that the set of
actions is partitioned into purely ontic and purely epistemic actions.

An ontic action α modifies the current state of the environment
but gives no feedback. Ontic actions may be nondeterministic. For
the sake of simplicity we assume them to be fully executable3.

Each ontic action is represented by a propositional theory express-
ing constraints on the transitions between the states of the environ-
ment before and after α is taken. Let X ′ = {x′ | x ∈ X}, denoting
the values of variables after the action was taken. The theory of α
is a propositional formula Σα over X ∪ X ′ such that for all states
s ∈ 2X , the set {s′ ∈ 2X

′ | ss′ |= Σα} is nonempty, and is exactly
the set of possible states after α is performed in s. For instance, with
X = {x1, x2}, the action α which nondeterministically reinitializes
the value of x1 has the theory Σα = (x′

2 ↔ x2).
In the paper we will use the following actions:

• reinit(Y) (for some Y ⊆ X) with theory
∧

x/∈Y
x′ ↔ x,

• xi := ϕ (for ϕ objective) with theory x′
i ↔ ϕ ∧∧

j �=i
x′
j ↔ xj ,

• switch(xi) with theory x′
i ↔ ¬xi ∧

∧
j �=i

x′
j ↔ xj ,

• the void action λ with theory
∧

x∈X
x′ ↔ x.

Now, an epistemic action has no effect on the current state, but
gives some feedback about it, that is, it modifies only the knowledge
state of the agent (typically, a sensing action). We represent such
an action by the list of possible feedbacks. Formally, the feedback
theory of α is a list of positive epistemic atoms, of the form Ωα =
(Kϕ1, . . . ,Kϕn). For instance, the epistemic action which senses
the value of an objective formula ϕ is

• test(ϕ) with feedback theory Ωtest(ϕ) = (Kϕ,K¬ϕ).
Finally, for an objective formula ϕ over X , we write ϕt for the

formula obtained from ϕ by replacing each occurrence of x ∈ X
with xt. We also write Σt↑t+1

α for the formula obtained from Σα by
replacing each unprimed variable x ∈ X with xt, and each primed
variable x′ with xt+1. For instance, for ϕ1 = (x1 ∨ x2), ϕ5

1 is (x5
1 ∨

x5
2), and for Σα = (x′

2 ↔ x2), Σ3↑4
α is (x4

2 ↔ x3
2)).

3.2 Semantics

The agent executing a KBP starts in some knowledge state M0, and
at any timestep t, it has a current knowledge state M t. When execu-
tion comes to a branching condition Φ, Φ is evaluated in the current
knowledge state (the agent decides M t |= Φ).

The knowledge state M t is defined inductively as the progression
of M t−1 by the action executed between t−1 and t. Formally, given
a knowledge state M ⊆ 2X and an ontic action α, the progression of
M by α is defined to be the knowledge state Prog(M,α) = M ′ ⊆
2X

′
defined by M ′ = {s′ ∈ 2X

′ | ss′ |= Σα}. Intuitively, after
taking α in a state which it knows to be one in M , the agent knows
that the resulting state is one of those s′ which are reachable from
any s ∈ M through α. Note that the agent knows that some outcome
of the action has occurred (it knows Σα), but not which one.

Now given an epistemic action α, a knowledge state M , and a
feedback Kϕi ∈ Ωα with M �|= K¬ϕi, the progression of M by
Kϕi is defined to be Prog(M,Kϕi) = Mi = {s ∈ M | s |= ϕi}.
The progression is undefined when M |= K¬ϕi. Intuitively, a state
is considered to be possible after obtaining feedback ϕi if and only
if it was considered to be possible before taking the epistemic action,
and it is consistent with the feedback obtained. Here, observe that
though an epistemic action can yield different feedbacks, at execu-
tion time the agent knows which one it gets.

3 This induces a loss of generality, but in practice, if α is not executable in s,
this can be expressed by letting α lead to a sink (nongoal) state.

J. Lang and B. Zanuttini / Knowledge-Based Programs as Plans – The Complexity of Plan Verification 505

Example 1 (from [6]). Consider the following KBP π:

test(x1 ↔ x2);
If K(x1 ↔ x2) then test(x1∧x2) else (switch(x1); test(x1∧x2))

With M0 = O� (nothing known), Prog(M0,K(¬(x1 ↔ x2))) is
M1 = O(x1 ↔ ¬x2), Prog(M1, switch(x1)) is M2 = O(x1 ↔
x2), and Prog(M2,K¬(x1 ∧ x2)) is M3 = O(¬x1 ∧ ¬x2).

We are now ready to give an operational semantics for KBPs.
Given a knowledge state M ′ involving only primed variables of the
form x′ (x ∈ X), we write plain(M ′) for the knowledge state ob-
tained by replacing x′ with x for all x ∈ X .

An execution trace (or trace) τ of a KBP π in M0 is a sequence
of knowledge states, either infinite, i.e. τ = (M i)i≥0, or finite, i.e.
τ = (M0,M1, . . . ,MT), and satisfying:

• if π is the empty plan, then τ = (M0);
• if π is an ontic action α, then τ = (M0, plain(Prog(M0, α)));
• if π is an epistemic action α, then τ = (M0,Prog(M0,Kϕi))

for some Kϕi ∈ Ωα with M0 �|= K¬ϕi;
• for π = π1;π2, either τ = τ1 with τ1 an infinite trace of π1, or

τ = τ1τ2 with τ1 a finite trace of π1 and τ2 a trace of π2;
• if π is if Φ then π1 else π2, then either M0 |= Φ and τ is a trace

of π1, or M0 �|= Φ and τ is a trace of π2;
• if π is while Φ do π1, then either M0 |= Φ and τ is a trace of

π1;π, or M0 �|= Φ and τ = (M0).

We say that π terminates in M0 if every trace of π in M0 is finite.

Example 2 Let π,M0, . . . ,M3 as in Ex. 1, and M4 = O(x1∧x2).
The traces of π in M0 (with the corresponding feedbacks) are:

(M0,M1,M2,M3) K¬(x1 ↔ x2),K¬(x1 ∧ x2)

(M0,M1,M2,M4) K¬(x1 ↔ x2),K(x1 ∧ x2)

(M0,M2,M3) K(x1 ↔ x2),K¬(x1 ∧ x2)

(M0,M2,M4) K(x1 ↔ x2),K(x1 ∧ x2)

4 KBPS VS. STANDARD POLICIES

We now briefly compare KBPs with standard policies (or plans) with
respect to succinctness and expressiveness4. As opposed to a KBP,
define a standard policy to be a program with objective branching
conditions. This encompasses plans for classical planning, which are
simply sequences of actions a1; a2; . . . ; an, but also POMDP poli-
cies, which branch on observations, and other types of policies, such
as controllers with finite memory [2].

Clearly, every KBP π can be translated into an equivalent standard
policy (a “protocol” in [4]), by simulating all possible executions of
π and, for all possible executions of the program, evaluating all (epis-
temic) branching conditions. Vice versa, it is clear that any standard
policy can be translated to an equivalent KBP.

Such translations are of course not guaranteed to be polynomial. In
particular, a standard policy π described in space O(n) can manipu-
late at most n variables (through actions or branching conditions). It
follows that it can be in at most |π|2n different configurations (value
of each variable plus control point in the policy), hence if it termi-
nates, its traces can have length at most |π|2n (being twice in the
same configuration would imply a potential infinite loop). In con-
trast, we will give in Section 6 a KBP described in space polynomial
in n but with a finite trace of length 22

n

.

4 For space reasons, our discussion is informal. Proofs and details are omitted.

However, what is gained on succinctness is lost on the complex-
ity of execution. When executing a KBP, the problem of evaluating
a branching condition is in ΔP

2 , but is both NP- and coNP-hard. In-
deed, it is coNP-hard because O� |= Kϕ corresponds to ϕ being
valid, and NP-hard because O� |= ¬K¬ϕ corresponds to ϕ being
satisfiable. On the other hand, when executing a standard policy, eval-
uating an (objective) condition can be done in linear time by reading
the values of the (internal and environment) variables involved.

Interestingly, even the restriction to while-free KBPs does not im-
ply a loss of expressivity. Indeed, if a loop terminates, then it is guar-
anted to be executed less than 22

n

times (see Section 6), and hence
it can be unrolled, yielding an equivalent while-free KBP. However,
this obviously comes also with a loss of succinctness.

When KBPs are seen as plans which achieve goals, as we consider
in this article, the translations outlined above preserve the property
that the KBP/policy indeed achieves the goal. Therefore, from the
point of view of plan existence, considering KBPs or standard plans
makes no difference: there is a plan for a given problem if and only
if there is a KBP for it (provided the size of plans is not restricted).
Moreover, since the input is the same in both cases, the complex-
ity of plan existence is independent of whether we look for policies
of KBPs. Things are different for the problem of verifying that a
KBP/policy is a plan for some goal, because the KBP or policy is
part of the input. For example, we will see in Section 6 that verifying
while-free KBPs is Πp

2-complete. In contrast, it can easily be shown
that verifying a while-free policy is in coNP (with essentially the
same proof as Proposition 2).

5 VERIFYING WHILE-FREE KBPS

We now investigate the computational problem of verifying that
a KBP π is valid for a planning problem. Precisely, we define a
knowledge-base planning problem P to be a tuple (Φ0, AO, AE , G),
where Φ0 = Oϕ0 is the initial knowledge state, G is a SKNNF S5

formula called the goal, and AO (resp. AE) is a set of ontic (resp.
epistemic) actions together with their theories. Then a KBP π (using
actions in AO ∪ AE) is said to be a (valid) plan for P if its execu-
tion in Φ0 terminates, and for all traces (M0, . . . ,MT) of π with
M0 = M(Φ0), MT |= G holds. Intuitively, this means that execut-
ing π always leads to a knowledge state where the agent is sure that
G holds. For instance, in Example 1, π is a plan for Φ0 = O� and
the goal G = (Kx1 ∨K¬x1) ∧ (Kx2 ∨K¬x2).

Definition 1 (verification) The plan verification problem takes as
input a knowledge-based planning problem P = (Φ0, AO, AE , G)
and a KBP π, and asks whether π is a plan for P .

In this section we show that verification is Πp
2-complete for while-

free KBPs, even under several further restrictions. Observe first that
a while-free KBP always terminates.

We start with membership in Πp
2. In the broad lines, the argument

is that π is not a plan for P if there exists a trace τ of π (or, equiv-
alently, a sequence of feedbacks for the epistemic actions executed)
in which the last knowledge state does not satisfy G. Hence π can
be verified not to be a plan for P by guessing such a sequence of
feedbacks and simulating the corresponding execution.

Nevertheless, we must perform such simulation in polynomial
space. Unfortunately, in general the progression of a knowledge state
M represented as Oϕ cannot be performed in polynomial space.

Example 3 The progression of Oϕ, for ϕ =
∧n

i=1
(xi ∨ yi →

zi) ∧ ((
∧n

i=1
zi) → z), by reinit({z1, . . . , zn}), is equivalent to

J. Lang and B. Zanuttini / Knowledge-Based Programs as Plans – The Complexity of Plan Verification506

O(∃z1, . . . , zn, ϕ) ≡
∧

�1∈{x1,y1},...,�n∈{xn,yn}(�1 ∧ · · · ∧ �n →
z), which has no polynomial representation, while |ϕ| is linear.

Hence we introduce another form of progression, called memo-
ryful progression, which explicitly keeps track of successive knowl-
edge states instead of projecting to the current instant. Namely, we
define a memoryful knowledge state for a timestep t to be a formula
of the form Oϕ↑t, where ϕ↑t is an objective formula over the set of
variables

⋃t

i=0
{xi | x ∈ X}. Intuitively, Oϕ↑t represents the past

and present knowledge of the agent at timestep t. Formally:

• for ontic α, MemProg(Oϕ↑t, α) = O(ϕ↑t ∧ Σt↑t+1
α),

• for a feedback Kϕi, MemProg(Oϕ↑t,Kϕi) = O(ϕ↑t ∧ ϕt
i).

Observe that ontic actions increment the current timestep, while epis-
temic actions do not (they do not modify the current state).

Example 4 (Example 1, continued) The memoryful progression of
O� by K¬(x1 ↔ x2), then switch(x1), then K¬(x1 ∧ x2) is
O(�0 ∧ (x0

1 ↔ ¬x0
2) ∧ (x1

1 ↔ ¬x0
1) ∧ (x1

2 ↔ x0
2) ∧ ¬(x1

1 ∧ x1
2)).

Clearly, the memoryful progression of Oϕ↑t by α (resp. Kϕi)
has a size linear in |ϕ↑t| and |Σα| (resp. |Kϕi|). Hence iterating
the memoryful progression of Φ0 a polynomial number of times
poly(|π|) yields a (memoryful) knowledge state of polynomial size.

Lemma 1 Let Oϕ0 be a knowledge state, and L = (�1, . . . , �T) be
a sequence of U ontic actions and T−U feedbacks. Then the iterated
progression M of M0 by L satisfies an epistemic formula Φ iff the
iterated memoryful progression Oϕ↑U of Oϕ0 by L entails ΦU .

Proof Sketch Renaming variables, M |= Φ is equivalent to MU |=
ΦU . On the other hand, it is easily seen from the definitions that
MU is exactly Mod(∃X0, . . . , ∃XU−1ϕ↑U). Because ΦU contains
only variables in XU , it follows that MU |= ΦU is equivalent to
Mod(ϕ↑U) |= ΦU [8, Corollary 7], i.e., to Oϕ↑U |= ΦU . �

Recall that a problem is in Πp
2 if its complement can be solved by a

polytime nondeterministic algorithm which uses an NP-oracle.

Proposition 2 Plan verification is in ΠP
2 for while-free KBPs.

Proof We use Algorithm 1, which decides whether π is not valid
using an oracle for propositional satisfiability. Intuitively, it simulates
an execution of π, and guesses a sequence of feedbacks witnessing
that π is not valid. Clearly, it runs in nondeterministic polynomial

Algorithm 1: Deciding whether a while-free π is not valid

t := 0, Oϕ↑0 = Φ0 ;
while π is not the empty KBP do

if π = α;π′ and α is ontic then

Oϕ↑t+1 := MemProg(Oϕ↑t, α);
π := π′, t := t+ 1;

else if π = α;π′ and α is epistemic then
guess a feedback Kϕi in Ωα;
check that ϕ↑t ∧ ϕi is satisfiable;
Oϕ↑t := MemProg(Oϕ↑t,Kϕi);

else {π is of the form if Φ then π1 else π2; π′}
if Oϕ↑t |= Φt then π := π1;π

′ else π := π2;π
′;

check Oϕ↑t �|= Gt;

time, and it uses a polynomial number of calls to the oracle: one per
check that ϕ↑t∧ϕi is satisfiable, a linear number per check Oϕ↑t |=
Φt (Proposition 1), and a linear number for the final check. �

Proposition 3 Plan verification is ΠP
2 -hard. Hardness holds even if

the KBPs π are restricted to be while-free and either to AO = ∅ (no
ontic action), or to AE = ∅ (no epistemic action).

Proof We give two reductions from the (Πp
2-complete) problem of

deciding the validity of a QBF ∀x1 . . . xp∃y1 . . . yqϕ, where ϕ is
a propositional formula over {x1, . . . , xp} ∪ {y1, . . . , yq}. In both
cases we build a planning problem P = (Φ0, AO, AE , G) and a
KBP π, with Φ0 = O� and G = ¬K¬ϕ.

Given only epistemic actions, let π = test(x1); . . . ; test(xp).
Then π is not a valid plan if and only if there is a sequence of
feedbacks for test(x1), . . . , test(xp) such that K¬ϕ holds, i.e., the
agent knows that ϕ is false. This is equivalent to there being values
for x1, . . . , xp such that whatever the value of y1, . . . , yq , ϕ is false,
that is, to ∀x1 . . . xp∃y1 . . . yqϕ not being valid.

Similarly, with AE = ∅ let π = reinit({x1, . . . , xp}). Then π is
not valid if and only if there is a trace of π, i.e., values for x1, . . . , xp,
such that K¬ϕ holds, i.e., ∀x1 . . . xp∃y1 . . . yqϕ is not valid. �

6 VERIFYING KBPS WITH LOOPS

For general KBPs, we now show verification to be EXPSPACE-
complete (EXPSPACE is the class of decision problems with an
exponential space algorithm). On the way, we build a polysize KBP
with a doubly exponentially long trace, which we use as a clock.
Since the construction is of independent interest, we present it first.

6.1 A Very Slow KBP

We write > for the lexicographic order on states. For instance, 2X

is ordered by x1x2x3 > x1x2x̄3 > x1x̄2x3 > · · · > x̄1x̄2x̄3 for
n = 3 variables. Given X and a knowledge state M over a superset
of X , we write MX for {sX | s ∈ M}, where sX denotes the
restriction of s to the variables in X . This allows us to use auxiliary
variables and still talk about the knowledge state about X .

We build a compact KBP (of size polynomial in n) with exactly
one trace, of size 22

n − 1. As discussed in Section 4, this is impossi-
ble with standard policies, but possible for KBPs because their con-
figurations include a knowledge state, and there are 22

n − 1 of them
(every nonempty subset of 2X). Hence there can be a program π
which passes through 22

n

different configurations while being spec-
ified with only O(n) variables and in space |π| polynomial in n.

Routines and Actions We build our KBP so that its execution
passes through each possible knowledge state exactly once. To do
so, we need some specific actions and routines which allow to go
from a knowledge state to the next one.

The first routine determines the state s in M with the greatest re-
striction MX (wrt >), and stores it over some auxiliary variables
g1, . . . , gn. For instance, if the current knowledge state satisfies
MX = {x̄1x̄2x3, x̄1x2x3, x1x̄2x̄3}, then after executing the rou-
tine, the agent knows g1 ∧ ¬g2 ∧ ¬g3 (and MX is unchanged).

We define πn
g to perform a dichotomic search in M . For instance,

if K((x1 ↔ g1) → ¬x2) is true, then no assignment in M which
satisfies x1 ↔ g1 (i.e., by construction, none of the assignments
with greatest x1) satisfies x2, hence the greatest one satisfies ¬x2.
Precisely, πn

g is the following KBP:

If K(¬x1) then g1 := 0 else g1 := 1;
If K((x1 ↔ g1) → ¬x2) then g2 := 0 else g2 := 1;

J. Lang and B. Zanuttini / Knowledge-Based Programs as Plans – The Complexity of Plan Verification 507

. . .
If K(

∧n−1

i=1
xi ↔ gi) → ¬xn) then gn := 0 else gn := 1;

We now introduce an ontic action which adds a given state sa ∈
2X to MX . We assume sa is encoded over some auxiliary variables
a1, . . . , an. The action an

add is a simple nondeterministic one, which
either does nothing or sets x1, . . . , xn to the values of a1, . . . , an.
Formally, its action theory is (

∧n

i=1
x′
i ↔ xi) ∨ (

∧n

i=1
x′
i ↔ ai)

(and no effect on auxiliary variables). Hence after taking this action,
the agent exactly knows that either the environment is in the same
state as before, or it is in the state a1 . . . an.

We finally introduce a routine πn
r , which removes a given state

sr ∈ 2X (encoded over auxiliary variables r1, . . . , rn) from MX .
We assume that the agent knows the state to be removed, that is, M
satisfies Kri ∨K¬ri for all i = 1, . . . , n.

Recall that by definition, knowledge states are nonempty. Hence
we allow removal of sr only if there is another state sg ∈ MX ,
ensuring MX \ {sr} �= ∅. Then πn

r removes sr from MX by identi-
fying a distinguished state sg �= sr in MX , then executing an action
an
r which maps any state to itself except for sr , which it maps to sg .
We identify sg by running πn

g . If it turns out that sg is precisely
sr , as can be decided since the agent knows (i) the value of sr by
assumption, and (ii) that of sg by construction of πn

g , then πn
r re-

places sg with the least assignment in MX , using the dual of πn
g .

Finally, an
r is defined to be the deterministic ontic action with theory∧n

i=1
x′
i ↔

(
xi ⊕ ((

∧n

i=1
xi ↔ ri) ∧ (xi ⊕ gi))

)
(and no effect

on auxiliary variables). A case analysis shows that an
r maps s to it-

self except for sr which it maps to sg , as desired.

Proposition 4 The progression M ′ of a knowledge state M by πn
g

satisfies
∧n

i=1
Kgεii , where gεii is gi (resp. ¬gi) if the greatest state

in MX satisfies xi (resp. ¬xi). The progression by an
add (resp. πn

r)
satisfies M ′

X = MX ∪ {sa} (resp. M ′
X = MX \ {sg}).

Importantly, πn
g , a

n
add, π

n
r all have a description of size at most

quadratic in n. Finally, we use a routine, written πd (“decrement”),
which replaces the state encoded by g1, . . . , gn by its predecessor wrt
> (its definition is straightforward, and omitted for space reasons).

A Slow KBP We see a knowledge state M as a vector 	m =
m1m2 . . .m2n−1m2n , with mi = 1 if and only if the ith state si
(wrt >) is in M . Then our KBP starts with 	m0 = 00 . . . 01 (i.e.,
M0 = {11 . . . 1} ≡ Kx1∧· · ·∧xn), and loops until 	mt = 10 . . . 00
(M t = {00 . . . 0} ≡ K¬x1∧· · ·∧¬xn). The loop changes the cur-
rent 	mt to 	mt+1 using the Gray code, which is a way to enumerate
all Boolean vectors by changing exactly one bit at a time.

Definition 2 (Gray Code) The successor of 	m according to the
Gray Code is obtained from 	m as follows:

1. if 	m has an even number of 1’s, flip m2n ,
2. otherwise, let g = max{i | mi = 1} and flip mg−1.

For instance, the enumeration is 0001, 0011, 0010, 0110 . . . 1000
for n = 2 (we do not use 0000). In terms of knowledge states, this is
{x1x2}, {x1x̄2, x1x2}, {x1x̄2}, {x̄1x2, x1x̄2}, . . . , {x̄1x̄2}, which
indeed passes through all knowledge states.

By definition of 	mt, the greatest i with mt
i = 1 identifies the great-

est state in M t, and flipping mt
i amounts to add/remove si to M t.

With this in hand, our KBP clockn (Algorithm 2) uses a set of n vari-
ables X and auxiliary variables g1, . . . , gn, a1, . . . , an, r1, . . . , rn.

Proposition 5 The unique trace for clockn in M0 has size 22
n − 1.

Algorithm 2: The KBP clockn

odd ← 1 {number of 1’s in knowledge state M0};
while ¬K(¬x1 ∧ · · · ∧ ¬xn) do

if K¬o then {even number of 1’s, flip m2n}
if K(¬x1 ∨ · · · ∨ ¬xn) then

{11 . . . 1 /∈ M t, add it}
a1 := 1; a2 := 1; . . . ; an := 1; an

add;
else r1 := 1; r2 := 1; . . . ; rn := 1; πn

r

else {odd number of 1’s, flip mg−1}
πg; πd;
if K(x1 �↔ g1 ∨ · · · ∨ xn �↔ gn) then

{sg−1 /∈ M t, add it}
a1 := g1; a2 := g2; . . . ; an := gn; an

add;
else r1 := g1; r2 := g2; . . . ; rn := gn; πn

r ;
odd := ¬odd;

6.2 EXSPACE-hardness

We now show that verifing general KBPs is EXPSPACE-complete.
We prove hardness with a reduction from nondeterministic un-
observable planning (NUP) [5]. An instance of NUP is a triple
(ϕ0, AHJ, ϕG) where ϕ0, ϕG are propositional formulas and AHJ

is a set of ontic, nondeterministic actions (see below). The question
is whether there is a plan, i.e., a sequence of actions, which reaches a
state satisfying ϕG from any state satisfying ϕ0 (in our terms, whose
traces in Oϕ0 all end in a knowledge state satisfying KϕG).

The actions considered by Haslum and Jonsson (HJ-actions for
short) [5] are different from ours. They are defined inductively as
follows (we adapt their notation for consistency):

• xi := 0 and xi := 1 are HJ-actions for any xi ∈ X ,
• if a1, a2 are HJ-actions, then a1; a2 is an HJ-action,
• if ϕ is a propositional formula and a1, a2 are HJ-actions, then if ϕ

then a1 else a2 is an HJ-action5,
• if a1, a2 are HJ-actions, then a1|a2 is an HJ-action.

The semantics of executing such an action is the same as ours for
the three first constructs, given that ϕ0 defines the initial knowledge
state Oϕ0. As for nondeterminism, the progression of M t by a1|a2

is simply defined to be Prog(M t, a1)∪Prog(M t, a2) (at execution
time exactly one of a1, a2 occurs, but we do not know which one).

The idea of our reduction is to build a KBP, written simulate,
which explores all possible plans (up to size 22

n

, see below) for an
NUP problem, and which is valid if and only if none achieves the
goal. For this, we first associate a routine (KBP) π(a) to any HJ-
action a, so as to be able to use a in simulate. Indeed, conditional
HJ-actions are not allowed in KBPs because they branch on objective
formulas, and nondeterministic HJ-actions are not directly allowed.

For a of the form if ϕ then a1 else a2, we define π(a) by “pushing
in” the objective test to the assignments. Precisely, we define π(a) to
be the c := ϕ;πc(a1);π¬c(a2) with πc defined inductively by:

• πc(x := ψ) = (x := (x⊕ (c ∧ (x⊕ ψ)))),
• πc(a1; a2) = (πc(a1);πc(a2)),
• πc(if ϕ then a1 else a2) = (c′ := c ∧ ϕ;πc′(a1);π¬c′(a2)),
• πc(a1|a2) = (πc(a1)|πc(a2)).

Intuitively, executing a or π1(a) in M t leads to the same knowledge
state M t+1, while π0(a) leaves M t unchanged (the construction of

5 In [5] this operator is n-ary, but as the conditions are mutually inconsistent,
their ϕ1?a1 : . . . : ϕk?ak can be rewritten as if ϕ1 then a1 else (if ϕ2
then a2 else (. . .)), which has the same size.

J. Lang and B. Zanuttini / Knowledge-Based Programs as Plans – The Complexity of Plan Verification508

πc(x := ψ) is the same as for the action an
r in Section 6.1). Interest-

ingly, this construction shows that the restriction to purely subjective
branching conditions in KBPs is without loss of generality.

Finally, for nondeterminism we use the action reinit(h), where
h is an auxiliary variable, for simulating a coin flip (h stands for
“heads”), and we define π(a1|a2) to be (reinit(h);πh(a1);πh(a2)).

Lemma 2 For any HJ-action a, the KBP π(a) can be built effi-
ciently, and for any M , the progressions M ′

HJ and M ′ of M by a
(resp. π(a)) satisfy (M ′

HJ)X = M ′
X (ignoring auxiliary variables).

Proposition 6 The verification problem for KBPs is EXSPACE-
hard. Hardness holds even if only one while-loop is allowed and the
KBPs to be verified are known to terminate.

Proof We use both results that deciding whether an NUP instance
has a plan is EXPSPACE-complete, and that an instance has a plan
if and only if it has one of size at most 22

n

[5].
Given an NUP instance (ϕ0, AHJ, ϕG), we build the knowledge-

based planning problem (Oϕ0, AO, AE ,¬KϕG) and the KBP sim-
ulate. This KBP uses the set of n variables X of the NUP in-
stance, together with auxiliary sets of variables of size n for use by
clockn (using disjoint sets of variables makes clockn run in paral-
lel of the simulation itself). Then it loops over a guess of an action
in AHJ = {a1, . . . , ak}: this is achieved by flipping k coins (us-
ing reinit({h1, . . . , hk})) and executing the first action whose coin
turned heads (determined by taking the epistemic actions test(hi))6.

The KBP simulate is depicted as Algorithm 3. We let clockn+ be
a KBP which counts up to 22

n

(obtained, say, by adding a dummy ac-
tion to clockn). Clearly, simulate can be built in polynomial time.

Algorithm 3: The KBP simulate

initialize clockn+ ;
{Loop until NUP goal reached for sure or clock beeps};
while ¬KϕG ∧ ¬K(¬x1 ∧ · · · ∧ ¬xn) do

run one step of clockn+;
reinit({h1, . . . , hk}); test(h1); . . . ; test(hk);
if Kh1 then π(a1);
else if Kh2 then π(a2);
. . . ;
else if Khk then π(ak);

Let p be a plan of length at most 22
n

for the NUP instance. Then by
definition, the trace of simulate in which precisely the actions in p
are chosen by reinit({h1, . . . , hk}) ends up with KϕG being true,
i.e., the goal ¬KϕG being false. Hence simulate is not valid. Con-
versely, only a choice of actions which achieve KϕG can witness
that simulate is not valid, hence if simulate is not valid then there
is a plan for the NUP instance. Hence NUP reduces to the comple-
ment of KBP verification, hence the latter is coEXPSPACE-hard,
that is, EXPSPACE-hard. �

Proposition 7 The verification problem for KBPs is in EXPSPACE.

Proof The proof mimicks Proposition 2 and Algorithm 1. Because
a while loop being executed more than 22

n

times would necessarily
start at least twice in the same knowledge state and hence run for-
ever, such loops are unrolled 22

n

times. These can be counted over
2n bits, hence in exponential space. As for the current knowledge

6 Clearly, log k coins would be enough, but we keep the presentation simple.

state, instead of using memoryful progression (which would grow as
the number of steps unrolled), we maintain M t in extension (as its
explicit list of states), again in exponential space. Hence the prob-
lem is in coNEXPSPACE, hence in coEXPSPACE=EXPSPACE
by Savitch’s theorem. �

7 CONCLUSION

We investigated the use of knowledge-based programs as compact
representations of policies or plans. It turns out that they are an in-
teresting representation, dual to standard once in the sense that they
can be exponentially more compact, but execution is computationally
more difficult, as well as verification.

Compactness of plans is an important feature in many contexts. An
example context is the sending of plans from the Earth to a rover on
a distant planet, where time windows severely limit communication.

In general, this work is a first step towards bridging knowledge-
based programming and AI planning. We are currently investigating
plan generation, that is, synthesis of KBPs.

Another interesting direction for future work is to identify (more)
tractable fragments for verification. The complexity of verifying
purely epistemic or purely ontic KBPs with while is still open. On
another dimension, it could be interesting to consider KBPs with exe-
cutions bounded by, for instance, a polynomial, which can be verified
by simulation with memoryful progression.

ACKNOWLEDGEMENTS

Supported by the French National Research Agency under grant
ANR-10-BLAN-0215.

REFERENCES

[1] C. Bäckström and P. Jonsson, ‘Limits for compact representations of
plans’, in Proc. ICAPS 2011, pp. 146–153, (2011).

[2] B. Bonet, H. Palacios, and H. Geffner, ‘Automatic derivation of finite-
state machines for behavior control’, in Proc. AAAI-10, (2010).

[3] J. Claßen and G. Lakemeyer, ‘Foundations for knowledge-based pro-
grams using es’, in KR, pp. 318–318, (2006).

[4] R. Fagin, J. Halpern, Y. Moses, and M. Vardi, Reasoning about Knowl-
edge, MIT Press, 1995.

[5] P. Haslum and P. Jonsson, ‘Some results on the complexity of planning
with incomplete information’, in Proc. 5th European Conference on
Planning (ECP 1999), pp. 308–318, (1999).

[6] A. Herzig, J. Lang, and P. Marquis, ‘Action representation and partially
observable planning in epistemic logic’, in Proceedings of IJCAI03, pp.
1067–1072, (2003).

[7] J.Halpern and Y. Moses, ‘Characterizing solution concepts in games
using knowledge-based programs’, in Proceedings of IJCAI-07, (2007).

[8] J. Lang, P. Liberatore, and P. Marquis, ‘Propositional independence:
Formula-variable independence and forgetting’, J. Artif. Intell. Res.
(JAIR), 18, 391–443, (2003).

[9] N. Laverny and J. Lang, ‘From knowledge-based programs to graded
belief-based programs part i: On-line reasoning’, Synthese, 147(2),
277–321, (2005).

[10] N. Laverny and J. Lang, ‘From knowledge-based programs to graded
belief-based programs, part ii: off-line reasoning’, in IJCAI, pp. 497–
502, (2005).

[11] H. J. Levesque, ‘All i know: a study in autoepistemic logic’, Artificial
Intelligence, 42(2–3), 263–309, (March 1990).

[12] R. Reiter, ‘On knowledge-based programming with sensing in the situ-
ation calculus’, ACM Trans. Comput. Log., 2(4), 433–457, (2001).

[13] J.Y. Halpern R.I. Brafman and Y. Shoham, ‘On the knowledge require-
ments of tasks’, Journal of Artificial Intelligence, 98(1–2), 317–350,
(1998).

[14] R. Rosati, ‘On the decidability and complexity of reasoning about only
knowing’, Artificial Intelligence, 116, 193–215, (2000).

J. Lang and B. Zanuttini / Knowledge-Based Programs as Plans – The Complexity of Plan Verification 509

