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Abstract. Debugging consumes a considerable amount of time in
software engineering, but it is rarely automated. In this paper, we fo-
cus on improving existing fault localization techniques. Spectrum-
based fault localization (SFL) and slicing-hitting-set-computation
(SHSC) are two techniques based on program execution traces. Both
techniques come with small computational overhead and aid pro-
grammers to faster identify possible locations of faults. However,
they have disadvantages: SHSC results in an undesirable high rank-
ing of statements which are executed in many test cases, such as con-
structors. SFL operates on block level. Therefore, it cannot provide
fine-grained results. We combine SHSC with SFL in order to elimi-
nate these disadvantages. Our objective is to improve the ranking of
faulty statements so that they allow for better fault localization than
when using the previously mentioned methods separately. We show
empirically that the resulting approach reduces the number of state-
ments a programmer needs to check manually. In particular, we gain
improvements of about 50 % percent for SHSC and 25 % for SFL.

1 Introduction

There exist many techniques to automatically test software. These
techniques are able to expose a huge amount of errors in software.
Unfortunately, the next steps after fault detection, i.e., fault localiza-
tion and correction, are rarely automated. Therefore, not all of the
discovered errors can be corrected in an acceptable time. As a conse-
quence debugging has been identified as a bottleneck for improving
reliability [2].

In practice, there exist a considerable number of debugging tools,
which should assist the programmer in localizing faults. However,
most of these tools only enable programmers to execute a program
step by step [8]. This step-by-step execution is very time consuming.
Existing tools fail to lead the programmers to source code locations
where the fault might be most likely located. Instead, a programmer
has to narrow down the search space by introducing break points,
comparing intermediate outcome of the program with the expecta-
tions, applying changes, and re-executing the program in order to
validate these changes.

On the research side, automated debugging techniques and proto-
types are available which help to narrow down possible fault loca-
tions. However, there is still room for improvements. In this paper,
we borrow an idea from Mayer et al. [11] where the authors state
that no single technique is able to deal with all types of faults. Con-
sequently, a combination of different fault localization techniques
is necessary to build more accurate and robust debugging tools be-
cause the strengths of the individual approaches complement each
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other. The approach we introduce in this paper follows this idea.
In our Spectrum ENhanced DYnamic Slicing approach (SENDYS),
we combine spectrum-based fault localization (SFL) [8] with slicing-
hitting-set-computation (SHSC) [15]. The latter is a method based
on program slicing [13]. In our approach, the SFL results are used
as a-priori fault probabilities of single statements in the SHSC. This
ensures that statements used by many passing test cases are lower
ranked than statements, which are only used in failing test cases.

The advantage of combining SFL and SHSC lies in the use of the
available information for ranking fault candidates. SENDYS makes
use of the available dependence information like data and control
dependences of programs. In contrast to SFL, which is not able to
distinguish statements occurring in the same basic building block,
our method allows for fault localization at the statement level. More-
over, SENDYS analyzes the execution information from both passing
and failing test cases. This eliminates the weakness of SHSC: SHSC

always ranks initialization statements high. Thus SENDYS helps to
improve accuracy of fault localization compared to SHSC.

We illustrate the profitableness of SENDYS by means of an exam-
ple. This example deals with transactions on a bank account and is
a slight modified version of [15]. Figure 1 shows the source code of
this example.

1.public class BankAccount {
2. public long balance;
3. public long limit;
4. public BankAccount(long bal,long limit){
5. this.balance = bal;
6. this.limit = limit;
7. }
8. public void withdraw(long amount){
9. if((balance - amount) >= limit){
10. balance = balance - amount;
11. }
12. }
13. public void deposit(long amount){
14. balance = balance + amount;
15. }
16. public void transferTo(BankAccount acc){
17. long money = this.balance;
18. if(money!=0){ //FAULT
19. this.withdraw(money);
20. acc.deposit(money);
21. }
22. }
23.}

Figure 1. The Bank Account Example - Line 18 contains a fault. The
correct statement would be if(money>0){.

The balance of the account must never fall below the specified
limit. The balance can only be transferred to another account if it is
larger than zero. In this example program, we introduce a fault in
Line 18. We extended the original example with a constructor in or-
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Table 1. The Bank Account Example - An extended test suite.

Code T1 T2 T3 T4 T5

a1=new BA(0,-10) • • •
a1=new BA(-1,-10) •
a1.withdraw(1) • •
a2=new BA(1,0) •
a2=new BA(0,0) • • •
a2.desposit(2) • • •
a1.transferTo(a2) • •
a2.transferTo(a1) •
Test oracle

a1.balance -1 -1 – 1 0
a2.balance 2 – 3 0 2

der to be able to highlight the advantage of our approach. The original
bank account example contains only one test case (T1). Since our ap-
proach requires both passing and failing test cases, we extended the
test suite. Table 1 shows a compressed version of the extended test
suite. A test case is made up of the statements which are marked
with •. In addition, we add statements to check if the computed re-
sults equal the expected results (test oracle).

We organize this paper as follows: In Sections 2 and 3, we explain
the basic approaches, i.e., SHSC and SFL and highlight their advan-
tages as well as their weaknesses. In addition, we demonstrate the us-
age of these approaches by means of the bank account example. We
introduce SENDYS in Section 4, which combines these techniques,
and apply SENDYS to the bank account example. In Section 5, we
apply SENDYS to several programs with predefined faults. Further-
more, we compare the fault localization capabilities of SENDYS with
those of the two other approaches. Finally, we review related work in
Section 6 and conclude the paper in Section 7.

2 Fault Localization Based on Dynamic Slicing and
Hitting-Set Computation

Wotawa [14] discussed the relationship of model-based debugging
and program slicing. The basic idea of his technique is to combine
slices of faulty variables so that they result in minimal diagnoses.
Figure 2 describes the basic approach: For each variable x in a test
case T where the expected value does not correspond to the actual
value, a slice is computed. A slice is a subset of a program which
behaves like the original program for a given set of variables. In prin-
ciple, every type of slice can be computed, but by reasons of its pre-
cision and size a relevant slice [17] is favored over static [13] and
dynamic slices [10]. From these slices, the minimal diagnoses ΔS

are computed by means of the corrected Reiter algorithm [5]. This
computation is based on hitting sets. A hitting set is defined for a set
of sets CO as follows: A set h is a hitting set if and only if for all
x ∈ CO there exist a non-empty intersection between x and h, i.e.,
∀x ∈ CO : x ∩ h �= ∅. A hitting set h is said to be minimal if there
exists no real subset of h that is itself a hitting set.

The approach works for one or more failing test cases. In case of
a single failing test case with n statements in the slice, the approach
delivers n single-fault diagnoses.

Single-fault diagnoses are a valuable support for programmers.
However, in case of several faults, single-fault diagnoses miss to de-
tect the real faults. In this case, multiple-fault diagnoses can be use-
ful. Nevertheless, many multiple-fault diagnoses are confusing since
a programmer might check the same statement for correctness several
times. An extension of the approach [15] solves this problem by map-
ping back diagnoses to a summary slice. Figure 3 illustrates the com-
putation of such a summary slice: First, the initial fault probabilities

Algorithm AllDiagnoses(Π, TC)
Require: program Π and test suite TC
Ensure: set of minimal diagnoses ΔS

1: conflict set CO = {}
2: for all test cases T ∈ TC do

3: if test(Π, T ) = FAIL then

4: for all wrong variables values x at position n do

5: CO.add(Slice(Π, x, n, T ))
6: end for

7: end if

8: end for

9: return HittingSets(CO, |Π|)
Figure 2. AllDiagnoses algorithm for computing diagnoses from slices.

Algorithm HS-Slice (Π, ΔS)
Require: program Π and minimal diagnoses ΔS

Ensure: HS-slice S

1. Compute initial fault probability of all statements:

∀s ∈ Π : pF (s) =
1

|Π|
2. Compute the fault probability for all diagnoses:

∀Δi ∈ ΔS : p(Δi) =
∏

s∈Δi

pF (s)×
∏

s′∈Π\Δi

(1− pF (s
′))

3. Derive the probability that a statement s is faulty:

∀s ∈ Π : ppred(s) =
∑

Δ∈ΔS∧s∈Δ

p(Δ)

4. Normalize the fault probabilities:

∀s ∈ Π : p′F (s) =
ppred(s)∑

s′∈Π
ppred(s′)

5. return statements s in descending order of p′F (s)

Figure 3. HS-Slice algorithm for computing the fault candidates’ ranking.

pF (s) are computed for all statements s ∈ Π. It is assumed that each
statement is equal likely to be faulty. The fault probabilities p(Δi) for
all diagnoses Δi ∈ ΔS are computed. These fault probabilities are
used to compute the fault probabilities ppred(s) of the statements.
Finally, the statement probabilities are normalized (p′F (s)) and the
statements are sorted using their fault probabilities. The summary
slice enhanced by the fault probabilities is called HS-slice. It consists
of a set of pairs: S = {(s, p′F (s))|∃Δ ∈ ΔS : s ∈ Δ}.

We illustrate the application of this approach using the exam-
ple from Figure 1. There is one test case (T1) that reveals the
bug. This test case has two variables with wrong values. Thus
the slices for a1.balance (S1 = {5, 6, 9, 10, 17, 18, 19}) and
a2.balance (S2 = {5, 14, 17, 18, 20}) are computed. The Re-
iter algorithm provides 11 minimal diagnoses. There are 3 sin-
gle fault explanations ({5},{17} and {18}) and 8 double fault ex-
planations ({6,14},{6,20},{9,14},{10,14},{14,19},{9,20},{10,20}
and {19,20}). We set the initial fault probabilities to pF (s) = 1/9.
The fault probabilities for the single fault diagnoses are p(Δi) =
0.043. Those of the double fault probabilities are p(Δj) = 0.005.
Table 2 shows the results. The last column of the table shows that the
faulty statement is ranked at position 1, but there are 2 other state-
ments with the same ranking. Thus 3 of 9 statements (33 %) must be
investigated.
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Table 2. The Bank Account Example - Ranking of the statements based on
the slicing-hitting-set-approach. The faulty statement is marked with •.

Line s ppred(s) p′F (s) Ranking

5 0.043 0.200 1
6 0.011 0.050 6
9 0.011 0.050 6

10 0.011 0.050 6
14 0.022 0.100 4
17 0.043 0.200 1

• 18 0.043 0.200 1
19 0.011 0.050 6
20 0.022 0.100 4

The slicing-hitting-set-approach (SHSC) has two major limita-
tions: First, it is not able to localize faults which are caused by miss-
ing code. Second, it always ranks constructor statements high since
they are part of every slice. The combined approach introduced in
this paper is able to eliminate the second limitation.

3 Spectrum-based fault localization

Spectrum-based fault localization (SFL) is based on an observation
matrix from which similarity coefficients are computed for each
block. A block can be a component, a method or a compound state-
ment. Blocks with the highest coefficients are most likely to be faulty.

The observation matrix consists of two parts: the program spec-
tra and the error vector. A program spectrum is an abstraction of an
execution trace. It maps only one specific view of the dynamic be-
havior of a program [2]. This could be e.g. the number of times the
block was executed (block count spectrum) or more simple if the
block was visited at all (block hit spectrum). A detailed overview of
the different types of program spectra can be found in [7]. In this ap-
proach, block hit spectra are used. They only indicate which parts of
a program have been executed during a run [8]. In the case of block
hit spectra, the entries of the observation matrix are boolean values
(covered / not covered). The error vector indicates whether the re-
spective test case passes or fails. The information of the error matrix
can be further compressed by computing the values from Eqs. 1-3 for
each block.

a11(j) = |{i|xij = 1 ∧ ei = 1}| (1)

a10(j) = |{i|xij = 1 ∧ ei = 0}| (2)

a01(j) = |{i|xij = 0 ∧ ei = 1}| (3)

Spectrum-based fault localization is based on the assumption that
a high similarity of a block to the error vector indicates a high prob-
ability that a block is responsible for the error [3]. In principle, any
type of similarity coefficient can be used. We have chosen the Ochiai
coefficient since several experiments (e.g. [2, 3]) have shown that it
outperforms other coefficients like Tarantula and Jaccard. The Ochiai
coefficient is computed as described in Eq. 4.

sO(i) =
a11(i)√

(a11(i) + a01(i)) ∗ (a11(i) + a10(i))
(4)

We demonstrate the use of Spectrum-based fault localization by
means of our example from Figure 1. Table 3 shows the observation
matrix obtained when executing the test cases on the faulty program.
The rightmost columns show the computed coefficients and the re-
sulting ranking when using the Ochiai coefficient. The faulty state-
ment is ranked at third position together with 3 other statements. In
this case, 6 of 9 lines of code (67 %) must be investigated.

Table 3. The Bank Account Example - The observation matrix, the
resultant Ochiai coefficients and the subsequent ranking of the statements.

Line s T1 T2 T3 T4 T5 Coeff. Rank.

5 • • • • • 0.447 9
6 • • • • • 0.447 9
9 • • • 0.577 3

10 • • • 0.577 3
14 • • • • 0.500 7
17 • • • 0.577 3

• 18 • • • 0.577 3
19 • • 0.707 1
20 • • 0.707 1

Error •

The major drawback of spectrum-based fault localization is its
granularity. The finest granularity can only be a compound statement.
This is due to the fact that it is not possible to distinguish between
statements with identical execution patterns [8]. By using slices in
our combined approach, this drawback is eliminated. Another hand-
icap of SFL and many other debugging techniques is the lack of the
ability to advise the programmer that the fault might be caused by
missing code.

4 Combined approach

We combine the previously described approaches in SENDYS. Fig-
ure 4 illustrates this new approach: First, the observation matrix O
and the similarity coefficients sco(s) for all statements s ∈ Π are
computed and normalized (scnorm(s)). Afterwards, the minimal di-
agnoses ΔS are computed as described in Algorithm AllDiagnoses
(Figure 2). Finally, Algorithm HS-Slice (Figure 3) is used with the
normalized similarity coefficients scnorm(s) and the minimal diag-
noses ΔS as input. The resulting summary slice S′ is returned.

Algorithm SENDYS(Π, TC)
Require: program Π and test suite TC
Ensure: HS-Slice S′

1. Compute observation matrix O for program Π and test suite TC:

O = observationMatrix(Π, TC)

2. Compute similarity coefficients sco(s) for all statements s ∈ Π:

∀s ∈ Π : sco(s) = ochiai(s,O)

3. Compute the normalized values of the similarity coefficients
scnorm(s) for all statements s ∈ Π:

∀s ∈ Π : scnorm(s) =
sco(s)∑|Π|
j=1

sco(j)

4. Compute the minimal diagnoses ΔS :

ΔS = AllDiagnoses(Π, TC)

5. Compute the summary slice S′ with Algorithm HS-Slice. Start
with Step 2. Use scnorm(s) instead of pF (s).

6. return S′

Figure 4. SENDYS – The combined fault localization algorithm

We show the use of the combined algorithm for the running ex-
ample. Table 4 shows the fault probabilities and the ranking when
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using the normalized Ochiai coefficients as initial fault probabilities.
In this case only 2 of 9 statements (22 %) must be investigated.

Table 4. The Bank Account Example - Ranking of the statements based on
SENDYS. The faulty statement is marked with •.

Line s ppred(s) p′F (s) Ranking

5 0.032 0.163 3
6 0.008 0.043 9
9 0.011 0.054 7

10 0.011 0.054 7
14 0.018 0.092 5
17 0.040 0.205 1

• 18 0.040 0.205 1
19 0.012 0.063 6
20 0.024 0.122 4

The combined approach performs better than the original slicing-
hitting-set-approach when the fault is not part of the initialization of
the program. One might think that it performs worse when the fault
is located in the initialization, since it decreases the probabilities of
these parts. However, this is not the case. In order to illustrate a fault
in the initialization, we modify our example program from Figure 1
in the following way:

5. this.balance = balance;
18. if(money>0){

Using Ochiai, the faulty statement is ranked at position 2 together
with the other initialization statement. The union of all faulty exe-
cution traces comprises 5 statements. In the worst case, 3 of these
5 statements (60 %) must be investigated.

For computing the ranking of the statements by the original
slicing-hitting-set-approach and SENDYS, the dynamic slices for the
test cases T1 (Sa1.balance = {5, 17, 18}) and T3 (Sa2.balance =
{5, 14}) are computed. These slices result in 3 minimal diagnoses
({5}, {14,17} and {14,18}). The faulty statement is ranked at posi-
tion 1 for both approaches. This example demonstrates that the com-
bined approach is able to detect faults in initialization statements with
the same accuracy as the original slicing-hitting-set approach.

Similar to related approaches, our method is highly dependent on
the quality of the test suite and cannot detect missing statements.
However, our method eliminates the following disadvantages that are
present in the original approaches: On the one hand it does not rank
initialization statements high (compared to SHSC) and on the other
hand it is finer grained than SFL.

One might think that the combined approach is only valuable in
case of single faults, which is not true. As mentioned in [15], a
probability-based slice is a comprehensive but compact representa-
tion. It provides a better overview than a list of diagnoses. There
might be statements that are part of several slices. Such statements
are investigated by the programmer several times when processing
the diagnoses one after another. The summary slice HS-slice pro-
vides an overview of all statements and their fault probabilities. The
programmer can process the statements in descending order of their
fault probabilities. Thus each statement is investigated only once.

Our debugging method requires a marginal run-time overhead
compared to the single approaches. Both approaches, i.e., SFL and
SHSC, require a program Π to be executed, which can be performed
in O(Π). Given M test cases, the program must be executed M
times. Thus the test execution requires O(Π · M) time. The obser-
vation matrix used in SFL can be computed within O(Π · M) time.
The similarity coefficients are computed in O(M · N) time where
N is the number of statements in Π. The statements are ranked in

O(N ·logN) time. Thus SFL requires O(Π·M+M ·N+N ·logN)
time. For SHSC the relevant slices are required. The computation of
slices depends on the size of the execution trace. In the worst case,
the time complexity of computing all relevant slices is O(Π ·M). In
addition to the computation of the slices, it is necessary to compute
hitting-sets, which is in the worst case exponential in the size of Π.
However, when considering only single and double faults, we retain
polynomial complexity. As a consequence the complexity of Algo-
rithm AllDiagnoses (Figure 2) is O(Π ·M +N2). Since there exist
at maximum N2 diagnoses when considering only single and double
faults, the fault probabilities of the diagnoses and statements in Al-
gorithm HS-Slice (Figure 3) can be computed in O(N3) time. Thus
Algorithm HS-Slice (Figure 3) has O(N3) time complexity for single
and double fault diagnoses. Therefore, the overall run-time of SHSC,
including all parts of the approach and under the given assumptions,
has a time complexity of O(Π · M + N3). When combining these
time complexities, the SENDYS approach is still bounded by a com-
plexity of O(Π ·M +M ·N +N3).

5 Evaluation

In this section, we first deal with the experimental setup by giving
an overview of the implementation of the approach. Afterwards, we
introduce the tested programs by quantitatively and qualitatively de-
scribing them. Finally, we show the advantage of SENDYS over the
basic approaches through the results of the experiments.

Our implementation of SENDYS works with Java programs and
JUnit test cases. It utilizes the JavaSlicer2 for obtaining the execution
traces and the dynamic slices. The spectra information is obtained
from the execution traces.

Besides the fact that the slicer in use is only a dynamic slicer [10]
and not a relevant slicer [17], it has some weaknesses [6], which
influence the obtained results: First, data dependencies can vanish
when a method is called by reflection or when native code is exe-
cuted. Second, due to the restriction to dynamic slices, it is possible
that the real fault is not part of a slice. This is why we have to exclude
faults leading to incomplete slices from the case study. However, we
are still able to proof our concept.

We investigated the 8 programs listed in Table 5. BankAccount,
Mid and StaticExample are toy examples. The Traffic Light Example
is borrowed from the JADE project3. Since this program does not
have any JUnit test cases, we created our own. The source code of
the previously mentioned programs and of ATMS is public available4.
JTopas is taken from the Software Infrastructure Repository [4]. Tcas
is a Java Implementation of the traffic collision avoidance system
from the Siemens Set.

It was not possible to compute the possible fault locations for all
available faulty program versions because of the following three rea-
sons. First, no slices can be computed for test cases which produce
endless loops. Second, the slicer in use is not able to compute cor-
rect slices for all faulty program versions due to its limitations. Third,
JTopas includes predefined faults which are not detected by the avail-
able test cases. We excluded program versions from our case study
for which any of these cases apply. Table 5 gives an overview of the
number of faulty program versions used in the evaluation (see col-
umn Faults). The first number in the brackets indicates the number
of program variants which were excluded from the case study be-
cause there were no failing test cases. The second number indicates

2 http://www.st.cs.uni-saarland.de/javaslicer/
3 http://www.dbai.tuwien.ac.at/proj/Jade/
4 http://dl.dropbox.com/u/38372651/Debugging/EP.zip
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Table 5. Description of the investigated programs including the version
number (V), the Non Commenting Source Statements (NCSS), the number
of test cases (TC) and the number of investigated faults, which is tripartite:

faults with no failing test cases, excluded faults and investigated faults.

Program Description V NCSS TC Faults

Bank
Account

Demo program
simulating a bank
account

1 17 5 2(-/-/2)

Mid
Demo program re-
turning the medial
of three numbers

1 17 8 1(-/-/1)

Static
Example

Demo program
with static mem-
bers and methods

1 16 8 1(-/-/1)

Traffic
Light

Simulation system
of different phases
of traffic light

1 33 7 2(-/-/2)

ATMS
Assumption-based
Truth Maintenance
System

1 1573 14 3(-/1/2)

Reflec.
Visitor

Implementation of
the Visitor-Pattern 1 338 14 5(-/-/5)

JTopas Text parser
1 1368 127 8(4/3/1)
2 1485 115 12(11/-/1)
3 3931 183 14(7/4/3)

Tcas Traffic Collision
Avoidance System 1 77 1545 39(-/15/24)

the number of variants which were excluded because of endless loops
or limitations in the slicer. The third column indicates the number of
program variants that were used in the evaluation.

When comparing the fault localization capabilities of SENDYS

with those of the basic approaches, it turns out that SENDYS leads to
huge savings in the number of statements that must be investigated.
Table 6 compares the overall effectiveness of SENDYS to those of the
basic approaches with respect to the mean value of statements that
must be investigated in order to find the bug. Since the investigated
programs considerably differ in size, we have normalized the basic
values before computing the mean value: For each fault, instead of
using the absolute number, we used the ratio of the statements that
must be investigated and the total number of statements that were
executed in the failing test cases of that program version. From this
table it is obvious that SENDYS improves the fault localization capa-
bilities of SHSC by 50 % and those of SFL by 25 %. The poor results
of SHSC might result from the limitations of the slicer in use, since it
was not possible to compute correct slices for all slicing criteria.

Table 6. Average percentage of statements that must be investigated in
order to find the faulty one on basis of the total number of executed

statements in the failing test cases for SHSC, SFL and SENDYS.

SHSC SFL SENDYS

63.9 % 43.5 % 31.7 %

An interesting question is if SENDYS always improves the results
of the basic approaches. In 25 cases SENDYS improves the fault lo-
calization precision. In 14 cases it performs as good as the best of the
original approaches. In 3 cases it performs worse than SFL.

Figure 5 graphically compares the fault localization capabilities of
the three approaches for the 42 investigated faulty program versions.
The figure compares SENDYS with its basic approaches in terms of
the amount of code that must be investigated in order to find the
faulty statement. The x-axis represents the percentage of code that is
investigated. The y-axis represents the percentage of faults that are
localized within that amount of code. This figure reads as follows: If

you investigate the top 40 % ranked statements of the 42 investigated
faulty program versions, SENDYS contains the faulty statement for
65 % of the program versions. SFL only contains the faulty statement
for 45 % of the program versions, and SHSC for 18 % of the program
versions. It can be seen that when using SENDYS faults can be earlier
detected than when using one of the basic approaches.
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Figure 5. Comparison of SENDYS with SHSC and SFL (using Ochiai) in
terms of the amount of code that must be investigated.

So far, our experiments have been performed using the Ochiai co-
efficient. We have chosen the Ochiai coefficient since studies [2, 3]
have shown that it delivers better results than other coefficients. How-
ever, our approach works for other coefficients as well. Table 7 shows
the amount of statements that must be investigated in percentage of
the executed statements when using different similarity coefficients.
This table affirms that Ochiai performs better than Tarantula and Jac-
card. In addition, it shows that using SENDYS improves the fault lo-
calization capabilities. Still, SENDYS based on Ochiai performs best.
Figure 6 illustrates the fault localization capabilities of SENDYS with
different similarity coefficients. The figure compares SENDYS based
on the different similarity coefficients with the basic coefficients in
terms of the amount of code that must be investigated in order to find
the faulty statement.

Table 7. Average percentage of statements that must be investigated in
order to find the faulty one on basis of the total number of executed

statements in the failing test cases for different similarity coefficients.

Ochiai Tarantula Jaccard

Standalone 43.5 % 52.3 % 46.0 %
Part of SENDYS 31.7 % 33.7 % 34.8 %
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Figure 6. Comparison of SENDYS with different similarity coefficients in
terms of the amount of code that must be investigated.

The computational overhead of SENDYS compared to the basic
approaches is marginal. In this evaluation, the execution of the test
cases absorbs the major part of the total computation time. For the
larger programs (ATMS, JTopas, Reflection Visitor and Tcas), the
spectra creation and coefficients computation requires approximately
10 % of the time required for the execution. The computation time of
the slices and hitting sets ranges from 10 % to 25 % of the execution
time. The computations of SENDYS (Slice and spectra computation,
hitting sets, fault probabilities) account for 20 % to 35 % of the exe-
cution time.
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6 Related Research

Weiser [13] introduced the concept of static slicing. He defined a
slice as a program where zero or more statements are removed and
the reduced program behaves like the original program for a given set
of variables at a given location in the program. Since static slices tend
to be rather large, Korel et al. [10] introduced the concept of dynamic
slicing. Dynamic slices behave like the original program only for a
given test case because they rely on a concrete program execution.
Since dynamic slices are more restrictive, they yield smaller slices
than their static counterpart. Occasionally, dynamic slices do not in-
clude statements which are responsible for a fault if the fault causes
the non-execution of some parts of a program. This disadvantage is
eliminated by the usage of relevant slicing [17].

Many debugging techniques focus on the usage of failing test cases
only. In contrast, spectrum-based fault localization considers both
passing and failing test cases. There exist many spectrum-based ap-
proaches in literature, e.g. Tarantula [9], Jaccard and Ochiai [3]. It
has been shown that Ochiai locates faults better than the others.

Mayer et al. [11] combine spectrum-based fault localization (SFL)
with model-based software debugging (MBSD) in order to eliminate
the absence of a model in SFL and to assign a ranking to the di-
agnosis candidates. Mayer and Stumptner [12] provide an overview
of model-based debugging techniques. They state that debugging
with dependency-based models, such as SHSC, is faster than debug-
ging with value-based models, abstraction-based models or bounded
model checking, but it is less precise. Our approach is similar to the
previously described approach [11] since both use SFL and the con-
cepts of ”reasoning from first principles”. However, our approach has
a lower computational complexity since SHSC is less complex than
MBSD with more sophisticated models.

BARINEL [1] is a Bayesian framework that computes fault proba-
bilities per statement using maximum likelihood estimation. In con-
trast to our approach, it relies only on the information which state-
ments were covered. However, it does not make use of dependency
information. Thus, it does not filter statements which are executed in
faulty runs but do not contribute to the value of the faulty variable(s).

Xu et. al. [16] improve spectrum-based fault localization by
adding a noise reduction term to the suspiciousness coefficient com-
putation, called MINUS, and by using chains of key basic blocks
(KBC - Key Block Chain) as program features. We differ from their
approach by adding dynamic dependency information through slices
to the data available by Spectrum-based Fault Localization.

7 Conclusion

In this paper, we introduced a novel approach to fault localization
in programs, i.e., Spectrum Enhanced Dynamic Slicing (SENDYS).
SENDYS combines spectrum-based fault localization (SFL) with
slicing-hitting-set-computation (SHSC). The approach solves some
disadvantages of SFL and SHSC that occur when executing them indi-
vidually. We discussed the SENDYS approach in detail and compared
its outcome with the individual approaches in an empirical study. The
empirical study indicates that our combined approach outperforms
SFL and SHSC. SENDYS provides an improved ranking of fault can-
didates. Thus SENDYS is a more valuable aid for programmers when
debugging. In particular, SENDYS improves the fault localization ca-
pabilities of SHSC by 50 % and those of SFL by 25 %.

With respect to the SFL approach, we compared different coeffi-
cients used for ranking the statements. The empirical results show
that Ochiai is performing best compared to Tarantula and Jaccard

with respect to fault localization capabilities.
In future work we will compare the computation time and the diag-

nostic accuracy of our approach with those of more complex model-
based software debugging approaches, e.g. [12].
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