
An Anytime Algorithm for Finding the ε-Core in
Nontransferable Utility Coalitional Games

Greg Hines and Talal Rahwan and Nicholas R. Jennings1

Abstract. We provide the first anytime algorithm for finding the
ε-core in a nontransferable utility coalitional game. For a given set
of possible joint actions, our algorithm calculates ε, the maximum
utility any agent could gain by deviating from this set of actions. If
ε is too high, our algorithm searches for a subset of the joint actions
which leads to a smaller ε. Simulations show our algorithm is more
efficient than an exhaustive search by up to 2 orders of magnitude.

1 Introduction

Coalitional games are an important tool in multi-agent systems and
in AI in general. These games allow self-interested agents to work
together to achieve outcomes that could not be achieved by a sin-
gle agent, even when these agents have different priorities. Coalition
formation can be used in applications ranging from management of
the smart grid or e-marketplaces to communication networks [4, 5].
We can even use coalition formation to improve disaster response:
for example, the lack of coordination between the thousands of aid
groups responding to the Haiti earthquake led to a slow and chaotic
response [10].

In many of these settings, we can assume the existence of trans-
ferable utility (TU) [6]. The outcome achieved by a coalition is some
form of currency such as money, units of electricity, or throughput on
a network, that can be transferred from one agent to another. Trans-
ferable utility can therefore be seen as a useful tool for helping agents
reach a consensus.

However, we are interested in settings where transferable utility
does not exist. When helping with disaster response, for example,
aid groups are (ideally) not making money from saving lives, while
coalitions in wireless networks may assign a specific rate for each
user in the coalition which is not transferable [4]. These types of sit-
uations must instead be represented by nontransferable utility (NTU)
games. With these games, the utility an agent receives from an out-
come is completely intrinsic to itself and cannot be shared. With-
out transferable utility, reaching an agreement between agents can be
considerably more difficult.

For both TU and NTU games, a commonly considered solution
concept is the ε-core [6]. The ε-core consists of all partitions of
agents along with an assigned action for each agent such that no
agent can increase its utility by more than ε by getting a coalition
of agents to defect. While the core is often empty, for a large enough
ε, the ε-core will always be non-empty [6]. For TU games, there has
been considerable research on algorithms which can find the ε-core
or other solution concepts efficiently [3, 8, 9]. For NTU games, while
there has been work done on characterising when the core exists in

1 University of Southampton, UK, email: {gh2,tr,nrj}@ecs.soton.ac.uk

NTU, there has not been any work done on efficiently finding the
ε-core [7].

Against this background, we present the first anytime algorithm
for efficiently finding a coalition structure and joint action in the ε-
core, for any ε ≥ 0 such that the ε-core is non-empty. Our algo-
rithm is anytime in that it works by repeatedly finding the ε-core for
smaller and smaller values of ε, until the desired ε value is reached.
With anytime algorithms, it is possible to trade off computation time
for solution quality; if finding; if finding the desired ε proves to be
too time-consuming, we can terminate the algorithm early and take
the best ε found so far. The anytime property creates an algorithm
which is more applicable to the real world. For example, in a disaster
response scenario agents may not have time to wait around until the
perfect solution is found.

In more detail, our algorithm is based on the idea of regret; the
loss of utility a group of agents receive for accepting a given joint
action instead of choosing a different one. The goal is to recommend
a joint action which minimizes the regret for all agents. If the result-
ing regret is less than ε, we have found the ε-core. Since there is an
exponential number of possible joint actions, two challenges are how
to efficiently calculate regret and how to minimize it. To address both
of these challenges, we build on two ideas from research into pref-
erence elicitation: namely, minimax regret and utility independence
models.

The paper is presented as follows. We start by presenting our
model and reviewing related work. Next, we present our algorithm
and experimental results. Finally we conclude and discuss future
work.

2 Model and Related Work

2.1 Coalitional Game Theory

Our general setting is a coalition game with n agents in the set N.
An agent can be either a person, a specific group such as an NGO, or
a piece of software or hardware. Agent i has a finite set of possible
actions, Ai, to choose from. A coalition p ⊆ N has a set of possi-
ble joint actions Ap = ×i∈pAi to choose from. The set of actions
over all agents is AN. A partition of agents into a set of coalitions
is known as a coalition structure. Let p(CS, i) be the set of agents
in the same coalition as agent i (including itself) given the coali-
tion structure CS. An implementation ({p}, A{p}) is a set of disjoint
coalitions and a joint action for each of those coalitions.

Agent i’s preferences between joint actions is given by a utility
function ui : Ap(CS,i) → R. This utility is completely internal to the
agent and cannot be transferred from one agent to another. The order-
ing of the preferences can be completely different for every agent. An

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-414

414



agent’s utility value is determined only by the joint action which its
coalition chooses, i.e. the coalitions do not interact with each other.

A defecting implementation ({p}, A{p}) blocks the implementa-
tion (CS,A) (where p may or may not be in CS) if every agent in
p either prefers or is indifferent to ({p}, A{p}) over (CS,A) and at
least one agent in p strictly prefers ({p}, A{p}). An implementation
is in the core if no coalition of agents wishes to defect from the im-
plementation. Since the core may be empty or difficult to find, we can
also consider the ε-core [6]. An implementation is in the ε-core if it
is blocked by a defecting implementation but no agent in the defect-
ing coalitions increases their utility by more than ε. Note that since
coalitions do not interact with each other, we need only consider the
possible defections and not the possible alternative implementations.
For example, if there are two possible defections, then if the first de-
fection blocks the implementation it does so regardless of whether
the second defection occurs. This helps since the number of possi-
ble defections may be considerably less than the number of possible
alternative implementations.

The goal of our work is to provide an algorithm which can help a
group of agents that are trying to find an implementation which they
can all agree on. We consider a setting where the agents approach a
third party who will use our algorithm to find the best possible im-
plementation in a given amount of time. This implementation is the
default implementation; agents agree to follow this implementation
unless a coalition of agents is willing to defect. The default imple-
mentation will be in the ε-core, for some ε ≥ 0. If ε > 0, the agents
will have to decide if it is worth giving the third party additional time
to run our algorithm to try and reduce ε. We assume that all agents
truthfully report their utility values.

2.2 Preference Elicitation

Our algorithm searches for an implementation in the ε-core by find-
ing an implementation which minimizes regret. Regret is the loss of
utility an agent receives for accepting an implementation instead of
defecting. Creating an algorithm based on regret allows us to build
on research from preference elicitation on how to efficiently calculate
and how to minimize it. We can illustrate the use of preference elici-
tation by considering a slightly altered coalition formation problem.
Suppose we have the mode from Section 2.1 but with an added user
who is able to decide on the actions taken by each agent. This user
has a utility function u : AN → R and will choose an action which
maximizes u, i.e. the user does not care about the agents’ individual
utilities.

In the worst case, the complexity of representing u is exponen-
tial with respect to the number of agents [1]. However, we can often
find a more compact representation of u. For example, a common
compact representation of u is additive independence where we de-
compose u as

u(A) =
∑
i∈N

u(Ai), (1)

where u(Ai) : Ai → R is a utility function with respect to only
Ai [1]. The complexity of an additive independence representation
is linear.

Suppose additive independence holds and we are helping the user
choose between two joint actions A and A′. The downside of ad-
ditive independence is that we cannot choose the best joint action
merely by ordering Ai. Instead, choosing the best joint action re-
quires some information about the actual values for u(Ai) [1]. A
standard assumption in preference elicitation is that, due to cognitive

limitations, instead of providing specific values for u(Ai), the user
can only provide lower and upper bounds [1].

Based on only these lower and upper bounds, we cannot calculate
which joint action maximizes the user’s utility. Rather, a common al-
ternative is to choose the joint action which minimizes the maximum
possible regret or loss of utility. The maximum regret for choosing
A is

MR(A) = uupper(A′)− ulower(A)

where uupper(A′) is an upper bound on u(A′) and ulower(A) is a
lower bound on u(A). These upper and lower bounds can be cal-
culated using Equation 1 as well as the upper and lower bounds
for u(Ai) provided by the user. Suppose that MR(A) = 0.3 and
MR(A′) = 0.2. Now, Braziunas and Boutilier argue that, if we
know nothing else about the user’s preferences, we should choose
the joint action A′ since it achieves the minimax regret [1]. Since
minimax regret and utility independence models are used in prefer-
ence elicitation to efficiently calculate and minimize regret, we be-
lieve there is considerable value in adapting both of them for use with
calculating and minimizing regret in a coalition formation setting.

3 The Algorithm

In this section we present our algorithm, Minimax Coalition Forma-
tion (MCF). Our goal is to maximize the agents’ utility values by
finding an implementation that all agents can agree to, i.e. no coali-
tion of agents will wish to defect. If such an implementation exists, it
is in the core. Since the core may be empty or may be impractical to
find, we also consider the goal of finding an implementation that is
in the ε-core for a small value of ε. Our algorithm can be stopped at
any time and will return the best implementation found so far. With
enough time, our algorithm will find an implementation in the ε-core
for any ε such that the ε-core is nonempty. Our main contribution is
achieving these goals by adapting minimax regret for use with coali-
tion formation.

Our first step is to redefine regret in terms of coalition formation.
We begin by defining an agent’s regret for accepting a given imple-
mentation instead of defecting.

Definition 1 (Individual Pairwise Regret). Individual pairwise re-
gret is the loss of utility that agent i receives from accepting the
implementation (CS,A) instead of the defecting implementation
({p}, A′

{p}), i.e.,

PR(i, (CS,A), (p,A′
p)) = ui(p,A

′
p)− ui(CS,A).

For brevity, we will omit CS and p.

For example, if PR(i, A,A′
p) > 0, then agent i strictly prefers

the implementation (p,A′
p) over (CS,A). However, agent i can only

defect to (p,A′
p) if all the other agents in p also strictly prefer (p,A′

p)
or are at least indifferent. Otherwise at least one agent in p will block
the defection. This leads to the idea of a feasible defection.

Definition 2 (Feasible defection). The defecting implementation
({p}, A′

{p}) is feasible with respect to (CS,A) if

min
i∈p

PR(i, A,A′
p) ≥ 0,

that is, all agents in p prefer (p,A′
p) over (CS,A) or are at least

indifferent.

Using the idea of a feasible defection, we can generalize pairwise
regret from one agent to a coalition.

G. Hines et al. / An Anytime Algorithm for Finding the ε-Core in Nontransferable Utility Coalitional Games 415



Definition 3 (Coalition Pairwise Regret). The coalition pairwise re-
gret for the coalition of agents p with respect to the implementation
(CS,A) versus (p,A′) is

PR(A,A′
p)

=

{
maxi∈p PR(i, A,A′

p) if mini∈p PR(i, A,A′
p) ≥ 0

0 otherwise.

As a result, the coalition pairwise regret is zero as long as at least
one agent in p objects to the defection.

We next generalize pairwise regret to being with respect to the
set of joint actions Ap and use this generalization to determine if
(CS,A) is in the ε-core. For notational brevity, in the remainder
of this paper, we assume that only the coalition p is threatening to
defect. The generalization to multiple defections is straightforward.
Indeed, our experimental results examine this general case.

Definition 4 (Pairwise regret). For the implementation (CS,A) and
possible defection by the coalition p with the set of possible joint
actions Ap, the pairwise regret is

PR(A,Ap) = max
A′

p∈Ap

PR(A,A′
p).

Lemma 1. The implementation (CS,A) is in the ε-core if and only
if PR(A,Ap) ≤ ε.

Proof omitted for brevity.
Since p can choose its joint action after we have picked A, we

must pick a joint action which minimizes the worst-case possible
regret that could be caused by p. In this case, the optimal joint action
to choose is

Aopt(CS, p) = argmin
A∈A

PR(A,Ap),

and the corresponding best worst case regret is

ropt(CS, p) = min
A∈A

PR(A,Ap).

Unfortunately, calculating ropt (or finding Aopt) requires an ex-
haustive search of A and Ap. This is because calculating ropt requires
finding the worst case defection which all agents agree to, which in
the worst case may require an exhaustive search. We address this
problem by instead using an upper bound on ropt based on relaxed
pairwise regret.

Definition 5 (Relaxed Pairwise Regret). For the implementation
(CS,A) and defecting implementation ({p}, A′

{p}), the relaxed
pairwise regret

PR+(A,A′
p) = max

i∈p
PR(i, A,A′

p).

That is, the relaxed regret is the maximum regret over all agents in
p, regardless of whether or not all agents would agree to the joint
action A′

p. We can similarly define the relaxed pairwise regret with
respect to Ap as

PR+(A,Ap) = max
A′

p∈Ap

PR+(A,A′
p).

Since PR+ ≥ PR, PR+ is always a valid upper bound on the
possible regret. Thus, trying to minimize PR+ is a reasonable alter-
native to trying to minimize PR. However, as the following deriva-
tion shows, we encounter another problem when trying to efficiently

minimize regret:

min
A∈A

PR+(A,Ap)

= min
A∈A

max
A′

p∈Ap

max
i∈p

PR(i, A,A′
p)

= min
A∈A

max
i∈p

max
A′

p∈Ap

PR(i, A,A′
p)

= min
A∈A

max
i∈p

max
A′

p∈Ap

[
ui(p,A

′
p)− ui(CS,A)

]

= min
A∈A

max
i∈p

[
max

A′
p∈Ap

ui(p,A
′
p)− ui(CS,A)

]

Since miny maxx f(x, y) �= maxx miny f(x, y), we cannot further
simplify this equation. To overcome this, we consider a relaxed goal
of finding an upper bound on the optimal regret using maximum re-
gret.

Definition 6 (Maximum regret). Given a coalition structure CS, the
maximum regret is

MR(A,Ap) = max
A∈A

PR+(A,Ap). (2)

Calculating the maximum regret is straightforward:

MR(A,Ap) = max
A∈A

max
A′

p∈Ap

max
i∈p

PR(i, A,A′
p)

= max
A∈A

max
i∈p

[
max

A′
p∈Ap

ui(p,A
′
p)− ui(CS,A)

]

= max
i∈p

[
max

A′
p∈Ap

ui(p,A
′
p)−min

A∈A
ui(CS,A)

]

Using additive independence from Equation 1 we can further sim-
plify this equation so that it can be calculated efficiently. Letting A′

p,j

be the action for agent j in A′
p:

MR(A,Ap) = max
i∈p

⎡
⎣ max

A′
p∈Ap

∑
j∈p

u(A′
p,j)−min

A∈A

∑
j∈p(CS,i)

u(Aj)

⎤
⎦

= max
i∈p

⎡
⎣∑

j∈p

max
Aj∈Aj

u(Aj)−
∑

j∈p(CS,i)

min
Aj∈Aj

u(Aj)

⎤
⎦ . (3)

Since Equation 3 is maximizing over the sets of actions for each
agent as opposed to over all joint actions, Equation 3 can be calcu-
lated in polynomial time even when there is an exponential number
of possible joint actions.

We calculate the maximum regret for every possible coalition
structure. The coalition structure with the lowest maximum regret is
the minimax coalition structure (CS∗) and the corresponding regret
is the minimax regret (MMR). We should choose this coalition struc-
ture since it guarantees the lowest worst-case regret. If MMR ≤ ε,
then any implementation based on CS∗ will result in the maximum
regret being less than or equal to ε. If ε is below some desired thresh-
old, we can save considerable time by not having to figure out which
joint action gives the best implementation, since all will work.

If ε is too large, we reduce it by using our algorithm Minimax
Coalition Formation (MCF). Our first step is defining a relaxation of
(joint) actions, (joint) partial actions.

Definition 7 ((Joint) Partial Actions). A joint partial action Jp ⊆ Ap

is given by
Jp = ×i∈pJi,

where Ji ⊆ Ai is a partial action.

G. Hines et al. / An Anytime Algorithm for Finding the ε-Core in Nontransferable Utility Coalitional Games416



A : J = A1 × A2 × A3

Jp = {A1 × A2}

B : J = A
left
1 × A2 × A3

Jp = {A1 × A2}
C : J = A

right
1 × A2 × A3

Jp = {A1 × A2}

D : J = A
right
1 × A2 × A3

Jp = {A1 ×A2, (A1, A
′
2)}

Figure 1: An example of a search tree for the coalition structure CS
against a possible defection by agents 1 and 2. Nodes B and C were
created using an action branch, as shown in Algorithm 1, on A. Node
D was created using defection pruning, as shown in Algorithm 2, on
node C.

Given a joint partial action J ⊆ A and a set of joint partial ac-
tions Jp over Ap, we can define a generalization of maximum regret
(Equation 2):

MR(J, Jp) = max
A∈J

max
Jp∈Jp

max
A′

p∈Jp

PR+(A,A′
p). (4)

For example, our original definition of maximum regret can be writ-
ten as MR(A, {Ap}). Similarly to Equation 3, we can calculate
Equation 4 in polynomial time with respect to the number of partial
joint actions in Jp.

A preliminary step in decreasing the maximum regret is to make
sure that we only consider the Pareto optimal joint actions in J . A
Pareto optimal joint action is one which cannot be changed in any
way without decreasing the utility for at least one agent. If A ∈ J is
not a Pareto optimal joint action, then there is at least one joint action
in J which every agent either strictly prefers over A or is indifferent
to. As a result, including A in J can increase the maximum regret.
With additive independence, we can use joint partial actions to effi-
ciently express all Pareto optimal joint actions. If we let APO

N be the
set of all Pareto optimal actions and A

PO
i be the set of Pareto optimal

actions with respect to Ai then

A
PO
N = ×i∈NA

PO
i . (5)

Proof omitted for brevity. The set of Pareto optimal joint actions is
thus a joint partial action. As a result, we decrease the maximum
regret by setting J in Equation 4 to Equation 5.

Decreasing the maximum regret means refining either J or Jp in
Equation 4. MCF refines J and Jp using two methods, action branch-
ing and defection pruning, respectively. Action branching splits J
into smaller joint partial actions and chooses the subset which min-
imizes Equation 4. Defection pruning removes joint actions in Jp

which do not lead to feasible defections.
MCF uses a search tree to find the lowest possible maximum re-

gret. An example search tree is shown in Figure 1 where some coali-
tion structure CS where n = 3 and we are concerned with a possible
defection of p = {1, 2}. There will be one search tree for each pos-
sible coalition structure. Each node is identified by the tuple (J, Jp).
The root node, Node A in Figure 1 is (A, {Ap}). Our first method for
reducing the maximum regret, an action branch, shown in Algorithm

Algorithm 1 Action Branching Algorithm

Choose node (J, Jp) to split
Choose agent i and split Ji into Jright

i and J left
i

Create child nodes (Jright
i × Jj �=i, Jp) and (J left

i × Jj �=i, Jp)
Use defection pruning on both child nodes

Algorithm 2 Defection Pruning Algorithm

Require: Node (J, Jp)
loop

Aw
p = maxJp∈Jp argmaxAp∈Jp MR(J, {(A)})

Split Jp into (Aw
p ) ∪ J

′
p

if mini maxA∈J PR(i, A,Aw
p ) < 0 then

Remove Aw
p from Jp {There is at least one agent who will

always object to Aw
p }

else

Break
end if

end loop

1, simply splits J into two smaller joint partial actions. For example,
in Figure 1, Nodes B and C are created by an action branch on the
root node, A.

There are many possible heuristics that can be used to choose
which node to split and how to split it. We used a simple greedy
heuristic which always branched the minimax node and split a joint
partial action by the partial action corresponding to the the greatest
utility range over all agents. In a few cases, with this approach our
algorithm would become stuck and additional iterations of our al-
gorithm would not decrease the minimax regret. We identified such
cases when the minimax regret had not decreased after a certain num-
ber of iterations. Then we would branch on the node with the second
lowest maximum regret.

After each action branch, we use defection pruning on both child
nodes to remove infeasible joint actions from Jp. Consider, for ex-
ample, Node C in Figure 1 where Jp = {A1 × A2}. Suppose that

(A′
1, A

′
2) = arg max

(A1,A2)∈{A1×A2}
MR(J, {(A1, A2)}),

that is, the joint action (A′
1, A

′
2) maximizes MR(J, Jp). But if ei-

ther agent 1 or agent 2 objects to (A′
1, A

′
2), then it will not result in

a feasible defection. This means that MR(J, Jp) may be an overes-
timation. If this is the case, we can lower MR(J, Jp) by removing
(A′

1, A
′
2) from Jp. The first step in defection pruning is to decom-

pose Jp in such a way that (A′
1, A

′
2) is isolated. For example, if

A1 = {A1, A
′
1} and A2 = {A2, A

′
2}, then we can decompose Jp

as {A1 × A2, (A1, A
′
2), (A

′
1, A

′
2)}. If (A′

1, A
′
2) is not feasible, we

remove it from Jp (as demonstrated in Figure 1) and repeat this pro-
cess until no more joint partial actions can be pruned.

After we have split a node and pruned both of its children, we then
search for a node which minimizes the maximum regret. This node
is called the minimax node and the corresponding joint partial action
offers the lowest maximum regret found so far for the given coalition
structure. Since splitting and pruning will never increase the mini-
max regret, we only need to search through the leaf nodes to find
the minimax node. The overall minimax regret is the lowest mini-
max regret over all coalition structures. The corresponding coalition
structure and joint partial action give the best implementation found
so far. Since we can stop MCF after any iteration and go with the best
implementation yet found, MCF is an anytime algorithm.

G. Hines et al. / An Anytime Algorithm for Finding the ε-Core in Nontransferable Utility Coalitional Games 417



Figure 2: The median number of iterations to reach a given minimax
regret or ε value for both an exhaustive search and our MCF algo-
rithm.

Figure 3: The median number of iterations to find an implementation
in the core as the number of actions per agent varies for both an
exhaustive search and our MCF algorithm.

4 Experimental Results

We next present our experimental results. While the theory presented
in the previous section allows for arbitrary coalitions, for our ex-
periments we wanted to consider scenarios that could be plausible
in real-world examples. In the real world, many possible coalitions
may be unable to form: for example, communication infrastructure
limitations may limit the maximum size of coalitions or geograph-
ical constraints may prevent specific agents from working together.
To model such situations, we rely on the language for constrained
coalition formation provided by Rahwan et. al. [9]. The basic form
of this language models constraints on the individual coalitions, as
opposed to constraints over the whole coalition structure. We used
constrained coalition formation to create tractable test cases where
only coalitions of a specific size are allowed to form.

To demonstrate the difficulty of finding the ε-core, we began with
a simulation consisting of 4 agents, each with 5 possible actions, and
only coalitions of size 2 allowed. For each coalition structure, there
are 4 possible defecting coalitions (it is possible for different defec-
tions to result in the same coalition structure); these settings result
in 1875 possible implementations and for each implementation, 100
possible defecting implementations. For this scenario, as well as all
subsequent ones, we tested 100 cases to help ensure statistical sig-
nificance of the results. Due to a lack of alternative algorithms to

Figure 4: The median number of iterations to find an implementation
in the ε-core for ε = 0.05 as the number of agents varies using the
MCF algorithm.

compare ours against, our benchmark algorithm was an exhaustive
search (for brevity, the details of the exhaustive search are omitted).
Figure 2 shows the ε-core versus the median number of iterations of
the exhaustive search. Note the logarithmic x axis. The results, as
well as subsequent ones, showed a heavy-tailed distribution since the
difficult test cases tended to be especially difficult. As a result, all of
our figures show the median instead of the mean since the median
is more robust against outliers. Our error ranges were calculated us-
ing median absolute deviation, the median absolute difference from
the median, which is also robust against outliers. Even in this simple
setting, the exhaustive search takes, on average, almost 8000 itera-
tions to find an implementation in the core. We also see that initially
ε decreases quickly, while later on the decrease is much slower. This
slowing down is due to the nature of random sampling; the smaller ε
is the more iterations are needed to decrease it. For this initial simu-
lation, as well as the subsequent ones, for roughly 1% to 2% of the
test cases, the core was empty. Given the low percentages, these test
cases were ignored.

We next ran MCF in the same setting. Since the majority of the
work in our algorithm is done by the pruning, we counted the num-
ber of iterations for our algorithm by the number of iterations of the
defection pruning method. We identified MCF as being stuck if the
minimax regret had not decreased after 10 iterations. The results are
also shown in Figure 2. As with the exhaustive search, with our al-
gorithm the minimax regret initially decreases very quickly but with
additional iterations the rate of decrease slows. This is because as
joint partial actions get smaller, the range of utility values they give
gets smaller. Thus, action branches on smaller joint partial actions
will produce child nodes with similar maximum regret values, which
slows the decrease in the maximum regret.

Our algorithm provides a substantial increase in efficiency over
the exhaustive search. For larger values of ε, our algorithm can find
an implementation in the ε-core 8 times faster. This difference only
increases for smaller values of ε: on average, our algorithm finds an
implementation in the core 23 times faster than the exhaustive search.

We next examined how both of these algorithms fared as we in-
creased the number of actions per agent. Figure 3 shows the median
number of iterations for both algorithms to find the core versus the
number of actions per agent. Note the log axis on the y axis. While
the average number of iterations increases for both algorithms, the
number of iterations for our algorithm remains significantly below
that needed for an exhaustive search. More importantly, the differ-

G. Hines et al. / An Anytime Algorithm for Finding the ε-Core in Nontransferable Utility Coalitional Games418



ence in performance between the two algorithms increases. While
our algorithm is initially 23 times faster, at its best it is over 130
times faster. This shows that our algorithm is better able to handle an
increase in complexity.

Finally, we examined how our algorithm performed as we in-
creased the number of agents. We examined a setting where coali-
tions were only of size 2 and each agent had 20 possible actions.
Figure 4 shows the median number of iterations for MCF to find the
ε-core for ε=0.05 versus the number of agents. We see that increasing
from 6 to 8 agents results in a substantial increase in the number of
iterations. This is due mostly to the increase in the number of pos-
sible coalition structures. With 6 agents, we have 15 possible coali-
tion structures which gives an average of 84 iterations per coalition
structure. With 8 agents, we have 105 possible coalition structures
giving an average of 109 iterations per coalition structure. Thus, for
each individual coalition structure, our algorithm scales very well de-
spite the number of joint actions increasing by a factor of 400. With 4
agents, our algorithm was unsuccessful 2% of the time, with 6 agents
5% of the time and with 8 agents 20% of the time. Our algorithm is
thus able to solve the vast majority of the test cases with 8 agents
efficiently despite having over 2.6 · 1012 possible implementations
and over 11,000 possible defecting implementations.

5 Conclusions

The goal of this paper was to help a group of agents coordinate in
such a way that each agent maximized their own utility by efficiently
finding an implementation in the ε-core. Our algorithm is an anytime
algorithm; if finding the ε-core for a specific ε turned out to be too
time-consuming, our algorithm can terminate and return the best ε
found so far. For any ε such that the ε-core is nonempty, our algorithm
will eventually find an implementation in that ε-core. We achieved
these goals by minimizing regret and adapting methods from prefer-
ence elicitation.

There are many interesting possibilities for expanding on this
work. One goal is developing better heuristics for helping to select
and split nodes during an action branch. Another goal is dealing with
the quickly growing number of coalition structures. Since coalition
structures may have many coalitions in common, there may be pos-
sibilities for increasing efficiencies. Building on the work done on
constrained coalition formation would allow our algorithm to scale
efficiently with even more complex coalitions [9]. Finally, we would
like to generalize our setting by examining other utility independence
models such as generalized additive independence or the model pro-
posed by Deng and Papadimitriou [1, 2].

REFERENCES

[1] D. Braziunas and C. Boutilier. Minimax Regret-based Elicita-
tion of Generalized Additive Utilities In Proceedings of UAI
’07, Vancouver, 2007.

[2] X. Deng and C. Papadimitriou. On the complexity of cooper-
ative solution concepts. Mathematics of Operations Research,
pages 257–266, 1994.

[3] K. Larson and T. Sandholm. Anytime coalition structure gen-
eration: An average case study. Journal of Experimental and
Theoretical AI, 11:1–20, 2000.

[4] S. Mathur, L. Sankar, and N.B. Mandayam. Coalitions in co-
operative wireless network. IEEE Journal on Selected Areas in
Communications, 2008.

[5] R.-C. Mihailescu, M. Vasirani, and S. Ossowski. Dynamic
coalitional formation and adaptation for virtual power stations
in smart grids. In Proceedings of ATES ’11, Taipei, 2011.

[6] M. Osborne and A. Rubinstein. A Course in Game Theory.
MIT Press, 1994.

[7] A. Predtetchinski and P. Herings. A necessary and sufficient
condition for nonemptiness of the core of a non-transferable
utility game. Journal of economic theory, 116:84–92, 2004.

[8] T. Rahwan and N. R. Jennings. An improved dynamic pro-
gramming algorithm for coalition structure generation. In Pro-
ceedings ofAAMAS ’08, Estoril, 2008.

[9] T. Rahwan, T. Michalak, E. Elkind, P. Faliszewski, J. Sroka, M.
Wooldridge, and N.R. Jennings. Constrained coalition forma-
tion. In Proceedings of AAAI ’11, San Francisco, 2011.

[10] C. Renois. Haiti faces NGO quandary, 2011.

G. Hines et al. / An Anytime Algorithm for Finding the ε-Core in Nontransferable Utility Coalitional Games 419


