
Planning with Semantic Attachments: An
Object-Oriented View

Andreas Hertle and Christian Dornhege and Thomas Keller and Bernhard Nebel1

Abstract. In recent years, domain-independent planning has been

applied to a rising number of real-world applications. Usually, the de-

scription language of choice is PDDL. However, PDDL is not suited

to model all challenges imposed by real-world applications. Dorn-

hege et al. proposed semantic attachments to allow the computation

of Boolean fluents by external processes called modules during plan-

ning. To acquire state information from the planning system a mod-

ule developer must perform manual requests through a callback in-

terface which is both inefficient and error-prone.

In this paper, we present the Object-oriented Planning Language

OPL, which incorporates the structure and advantages of mod-

ern object-oriented programming languages. We demonstrate how a

domain-specific module interface that allows to directly access the

planner state using object member functions is automatically gen-

erated from an OPL planning task. The generated domain-specific

interface allows for a safe and less error-prone implementation of

modules. We show experimentally that this interface is more efficient

than the PDDL-based module interface of TFD/M.

1 INTRODUCTION

In recent years, domain-independent planning has been applied to

a rising number of real-world applications, including battery charg-

ing [8], space applications [5], robotics [15, 21] or control of hybrid

systems [16]. In contrast to pre-scripted solutions as, for example,

finite state automatae, automated planning enables a flexible solu-

tion that can easily be adapted to changing task specifications. It also

allows to be used in dynamic systems with the need to react intel-

ligently to unforeseen situations. This makes planning attractive to

researchers and application developers from other areas.

The most common description language for planning tasks is the

Planning Domain Definition Language (PDDL), which is mostly

suited to describe planning problems on an abstract symbolic level.

This is often not sufficient for the challenges imposed by real-world

planning applications. Subproblems that, for instance, involve geo-

metric computations like object manipulation or navigation cannot be

modeled with PDDL, and are thereby beyond the scope of symbolic

planners. A way to solve complex real-world planning problems is

to decompose it into subtasks, and use a hierarchical combination

where specialized planners refine the high-level symbolic plan. The

assumption that the description given to the symbolic planning sys-

tem is on an abstraction level that permits a successful execution

of any generated plan is often not true, though. Instead of such a

top-down approach, hierarchical composition can also be achieved

in a bottom-up manner, where all information possibly relevant to

1 University of Freiburg, Germany, email: {hertle, dornhege, tkeller,
nebel}@informatik.uni-freiburg.de

the symbolic planner is precomputed by the lower level reasoners.

This, however, is usually too costly for practical application.

Alternatively, Dornhege et al. introduced an approach that inte-

grates high- and low-level planning more tightly: Semantic attach-

ments compute the semantics of Boolean fluents by an external pro-

cess during planning [4]. They are realized as modules that imple-

ment a generic interface in a user-provided library. PDDL/M is the

slightly modified version of PDDL that allows to attach such a mod-

ule to a Boolean fluent. TFD/M is a version of the Temporal Fast

Downward (TFD) planning system [6] which implements a domain-

independent interface that calls a module to compute the semantics of

the Boolean fluent it is attached to. In the implementation of a mod-

ule it is usually necessary to access the current planning state. The

generic nature of the interface imposes restrictions on its usability:

The exchange of state information between the planning system and

an external module is based on manual requests that are inefficient

and error-prone to implement.

In this paper we propose a solution that improves both efficiency

and usability of module interfaces. We introduce the Object-oriented

Planning Language (OPL), which incorporates structure and advan-

tages of modern object-oriented programming languages like Java or

C++. We use this structure to automatically generate domain-specific

module interfaces based on the definitions in the planning domain.

We prepare class definitions for module developers along the lines

of the OPL description, and objects as instances of these class def-

initions reflecting the current internal planning state. This provides

module developers with type-safe and efficient access to the inter-

nal state of the planning system, and is compatible with the generic

module interface of TFD/M. Figure 1 illustrates the integration of the

automatically derived interface between the planner’s generic inter-

face and a user-defined implementation.

Furthermore, we aim to create a system that lowers the learning

curve for application developers. We believe an object-oriented syn-

tax to be a step towards this goal. In contrast to PDDL, OPL is cen-

tered around object definitions, which contain member fluents and

actions and allow a natural domain representation. However, it is im-

perative that OPL can be used with state of the art planning systems

to be valuable. For this reason, we show the translation of OPL tasks

to PDDL and provide the necessary tools, which allow easy integra-

tion of OPL into any planning system capable of parsing PDDL.

2 RELATED WORK

Moved by considerable interest in planning solutions for real-world

problems, several steps were taken towards more realistic domain de-

scriptions: PDDL 2.1 was introduced in 2003 [7], extending the basic

STRIPS formulation by the possibility to express temporal and nu-

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-402

402

Figure 1. This figure gives an overview of how OPL task descriptions
including semantic attachments are integrated with a planning system. OPL
domain and problem are converted to PDDL and a domain-specific interface
is automatically generated. The interface works as an adapter between the
generic module interface in the planner and the module implementation.

meric features; SAS+ [1] allows the use of variables in finite-domain

representation (FDR); and the functional STRIPS formulation even

permits functional expressions to refer to objects [9], a mechanism

finally adopted in PDDL 3.1 as object fluents. Independent from

PDDL, some planning systems model their internal state with vari-

ables in FDR, which are achieved by performing an invariant synthe-

sis [11]. We consider this process, which led to the introduction of

object-fluents and variables in FDR, as first steps towards an object-

oriented language. While the last step has previously been taken by

Vaquero et al. [19] and Simpson et al. [18], our approach combines

object-orientation with semantic attachments and draws advantages

of the overlap these topics entail.

Our approach covers a wide area of possible applications, most

notably scenarios demanding a model of the planning task that

is abstract enough to be represented in a language that domain-

independent planning systems understand and can solve efficiently,

but at the same time not abstracting away necessary constraints that

allow a plan to be executed in the real world. A common field are

space applications as, for example, the CASPER project [3, 5], or

autonomous robots, which have become more and more capable of

fulfilling complex tasks in real-world scenarios like mobile manip-

ulation [10, 15, 20] or multi-robot coordination [21]. An area that

is often mentioned in the literature dealing with this problem is the

integration of task and motion planning.

Earlier approaches link symbolic representations and geometric

representations directly in a specialized planner. The aSyMov sys-

tem [2], for example, additionally uses Metric-FF [13] to compute

heuristics on a symbolic abstraction of the task. The approach by

Kaelbling and Lozano-Perez [15] computes new ground atoms dur-

ing the planning process by suggesters and verifies collision-free

robot paths by external procedures. They also follow a hierarchical

planning approach that plans “in the now”, meaning that they exe-

cute actions immediately when a plan prefix has reached the deepest

level of the hierarchy and becomes executable. This allows them to

plan abstractly for later tasks in the plan and thus they can reach deep

planning horizons.

Dornhege at al. introduce semantic attachments that provide a

generic interface to integrate external reasoning procedures as mod-

ules in domain-independent planning systems [4]. They implement

this concept in Hoffmann and Nebel’s Fast Forward planner [14]

and in TFD of Eyerich et al. [6], which performs forward-chained

search in timestamped state-space using the context-enhanced addi-

tive heuristic. The work by Wurm et al. [21] adds cost modules that

also allow to compute an action’s cost or duration by an external pro-

cedure. In this paper we use TFD/M’s generic domain-independent

interface to implement modules based on OPL.

3 THE OBJECT-ORIENTED PLANNING
LANGUAGE

In PDDL, type definitions are used to restrict the usage of objects in

parameter lists, thereby restricting the grounding of predicates and

operators. OPL places far greater importance on the specification of

custom types than PDDL. In addition to global fluents and actions,

an OPL task contains types with member fluents and actions, similar

to object-oriented programming languages’ class declarations. OPL

task definitions are separated into a domain and a problem descrip-

tion in the same way PDDL tasks are defined. Like PDDL, types can

inherit from other types, but will also inherit the super types’ member

fluents and actions.

OPL uses single inheritance. If no base type is specified, it de-

faults to Object, a built-in type with no members. The syntax ap-

pears similar to such languages as Java or C++ and names are case-

sensitive, which simplifies the generation of module interfaces for

case-sensitive programming languages. Consider this excerpt from

the OPL description for the ROOMSCANNING domain:

Domain RoomScanning {

Type Pose {number x; number y; number th;}

Type ScanTarget : Pose {boolean scanned;}

Type Door {Pose approachPose;

boolean open;}

... }

A type Pose is defined that contains numerical member fluents de-

scribing a pose in 2D space. The subtype ScanTarget inherits this

pose and defines an additional Boolean fluent scanned.

The dot . acts as the structure access operator in OPL: a member

fluent of a type can be referenced by obtaining an object (or object

fluent) of that type and then applying the . operator with the name

of the fluent. The result of the expression will have the type of the

referenced fluent. It is possible to chain such operations, if the refer-

enced fluent is an object fluent. The keyword this is used to address

the current object in member actions.

Like PDDL actions, OPL actions have a name and parameters and

define a (pre-)condition and an effect. For temporal planning, du-

rative actions also need a duration. The condition and effect state-

ments contain nested logical formulas that are semantically identical

to their PDDL counterparts with a slightly changed syntax. Prefix-

notation is used with a function-style syntax consisting of a name

and a comma separated parameter list enclosed in parentheses. The

equals keyword compares two numerical or object fluents.

In contrast to PDDL/M, semantic attachments are easily integrated

into OPL domains by simply declaring the type of semantic attach-

ment, its name and parameters. There is no need to specify an explicit

A. Hertle et al. / Planning with Semantic Attachments: An Object-Oriented View 403

library call for PDDL/M as that will be generated automatically with

the domain-specific interface. They can be used as any other fluent.

The ROOMSCANNING domain from above also defines a type

Robot that has the robot’s currentPose as a member fluent. The Robot

type has a drive action with one parameter dest that moves the robot

from its current pose to a destination. Additionally a cost module

driveCost with one parameter dest is defined that is used as the op-

erator’s cost instead of a numerical fluent. The action also uses a

condition module defined at global scope: pathExists will check if

there is a path from one pose to a destination.

Domain RoomScanning {

...

ConditionModule pathExists(

Pose from, Pose to);

Type Robot {

Pose currentPose;

CostModule driveCost(Pose dest);

Action drive(Pose dest) {

Cost {driveCost(dest);}

Condition {

and(not(equals(this.currentPose, dest)),

pathExists(this.currentPose, dest));}

Effect {assign(this.currentPose, dest);}}

Like PDDL problem files, OPL problems define the initial state

and goal. This example defines the problem Scenario1 for the

ROOMSCANNING domain.

Problem Scenario1(RoomScanning) {

Pose p1;

Pose p2 { x = 5; y = 1; th = 0.5; }

Target t1 { x = 0; y = -13; th = 0.5; }

Robot r1 { currentPose = p1; }

Goal { and(equals(r1.currentPose, p2),

t1.explored); } }

Type instantiation and initialization is combined. The goal is simply

stated as a formula like in PDDL. For a more precise definition of

OPL we refer to the work by Andreas Hertle [12].

4 TRANSLATION TO PDDL

The previous section illustrated the syntax and elements of an OPL

planning task. OPL is intended to be used by PDDL planning sys-

tems. Therefore we show how an OPL task can be converted to a

PDDL planning task here. In fact, the semantics of OPL is given by

a translation to PDDL – so this translation specifies the meaning and

is at the same time the way to enable planning in OPL by employing

a PDDL planner.

We need to convert member fluents and actions to PDDL fluents

and actions. Member fluents and actions are specific to an object

instance. When converting from OPL to PDDL this is resolved by

adding an additional parameter named ?this as the first parameter to

each member fluent and action representing the object it belongs to.

Additionally the name is prefixed by the type for uniqueness. The

OPL description of the ROOMSCANNING domain will be translated

to the following PDDL predicates and functions:

(:types

Door Pose - object

ScanTarget - Pose)

(:predicates

(ScanTarget_scanned ?this - ScanTarget)

(Door_open ?this - Door) ...)

(:functions

(Pose_x ?this - Pose) - number

(Pose_y ?this - Pose) - number

(Pose_th ?this - Pose) - number

(Door_approachPose ?this - Door) - Pose

...)

Finally, formulas in conditions and effects are replaced by their

PDDL analogues in prefix-notation. When using only global flu-

ents the translation is straight-forward. However, as we allow to

chain expressions over member fluents using the .-operator to ac-

cess structure elements, we need to translate such expressions to

PDDL. Chained expressions using structure element access are trans-

lated recursively. Variables and ground names are translated by their

identity. When referring to the member fluent of an object ?o with

the name m, we translate this to (m ?o <parameters>), where

<parameters> is the recursive translation of the fluent’s param-

eters. Note that such a chained expression might contain object flu-

ents as parameters. See for example the openDoor action from the

ROOMSCANNING domain. A global predicate inRange defines if

two objects of type Pose are directly reachable for the robot. The

openDoor action does not have any Pose parameter. Instead the

condition refers to the member object fluents of type Pose from the

robot (this) and the door.

boolean inRange(Pose p1, Pose p2);

Type Robot {

Action openDoor(Door door) {

Condition {and(

inRange(this.currentPose,door.approachPose),

not(door.open));}

Effect {door.open; } } }

The OPL action openDoor leads to the following PDDL action:

(:predicates

(inRange ?p1 - Pose ?p2 - Pose))

(:action Robot_openDoor

:parameters

(?this - Robot ?door - Door)

:condition (and

(inRange (Robot_currentPose ?this)

(Door_approachPose ?door))

(not (Door_open ?door)))

:effect (Door_open ?door)

5 AUTOMATIC GENERATION OF THE
DOMAIN-SPECIFIC MODULE INTERFACE

The implementation of semantic attachments in TFD/M provides

a generic domain-independent module interface. As a result of its

generic nature, the module interface is inefficient, and cumbersome

and error-prone to implement for a module developer. Information is

exchanged via object names and the current planner state is accessed

via callback functions. Requests are manually created based on the

fluent name and its parameters, which have to be supplied by the

module implementation. OPL provides a solution to this problem by

automatically generating a domain-specific interface from an OPL

domain description that acts as an adapter between TFD’s generic

A. Hertle et al. / Planning with Semantic Attachments: An Object-Oriented View404

interface and a domain-specific module implementation. Figure 1 il-

lustrates this concept.

The generated interface provides a safe and efficient way to im-

plement modules. OPL objects are represented as classes, i.e. ob-

jects in an object-oriented programming language. For TFD/M, this

is realized in C++. Module calls receive object instances as parame-

ters rather than object names. The generated classes provide mem-

ber functions for each member fluent to access the planner state.

Therefore, performing an error-prone, work-intensive manual call-

back based on object and fluent names as part of the actual module

implementation is not necessary anymore. The name mappings and

the state access are efficiently encapsulated in the automatically gen-

erated interface.

To demonstrate the generation process, consider the ROOMSCAN-

NING domain from Section 3, where the cost module driveCost is

defined in the Robot type. The following call stub is automatically

generated:

double Robot_driveCost(

const State* currentState,

const Robot* thisRobot,

const Pose* dest);

The first argument is the State object that allows access to global

fluents and also contains lists that allow to access all objects of each

type. If the module is a member of an OPL type, the next argument is

an object of the corresponding type class. Then follow the arguments

of the module as specified in the domain. Condition modules return

Boolean values and cost modules return floating point numbers.

For each of the types in the OPL domain a corresponding class is

created. If a type extends a base type in the domain, the generated

class is derived from the base type’s generated class. Otherwise it is

derived from OPLObject, a generic base class. Each member fluent

of the OPL type will generate a member function with the same name

that retrieves the fluent’s value in the current state. Boolean fluents

lead to bool return values and numerical fluents return float values.

Object fluents return a pointer to the class that was generated for the

corresponding OPL type.

As an example consider the OPL type Door from Section 4 that

contains an object fluent approachPose of type Pose and a Boolean

fluent open. This leads to the following class declaration in the

domain-specific interface:

class Door : public OPLObject {

public:

const Pose* approachPose() const;

bool open() const; };

We will now describe how implementations for such mem-

ber functions acquire a fluent’s value from the planner’s internal

state. The process requires a planner specific implementation of a

StateMapping class. Such a state mapping represents the value of one

ground fluent and is able to acquire the current value from a pointer

to the planner’s internal state,

First, two mapping tables are created during initialization: Fluent

mappings map from each ground fluent name to a StateMapping ob-

ject and have to be provided by the planner as it depends on the en-

coding of the planner’s internal state. For Boolean and numerical flu-

ents they are used to acquire values directly. For object fluents, object

mappings are created when OPLObjects are instantiated. They map

from a StateMapping to the OPLObject instance with the same name

as the object the StateMapping’s object fluent value points to. When

the current state changes between subsequent module calls, the state

pointer is updated without requiring additional copy operations.

In TFD/M, where a state s is a single vector of floating point num-

bers representing a task in FDR, the StateMapping implementation

stores a tuple (var, val). When a Boolean fluent is requested s[var]
is compared to val. For a numerical fluent s[var] is returned.

Figure 2. This figure shows the state look-up process. A ground name is
constructed (1) that is used to retrieve a fluent mapping (2). The fluent

mapping determines its value from the internal state (3). For object fluents
the object mappings map this value to an OPLObject (4).

Using these mapping tables the methods for accessing member

and global fluents can be generated. The required steps are illustrated

in Figure 2.

1. A key for querying the fluent mapping table is composed. The

fluent name is appended with the names of the parameters forming

the ground name of the fluent. Member fluents insert the object’s

name as the first parameter.

2. Next, the corresponding StateMapping is retrieved from the fluent

mapping table.

3. Now, the fluent value is retrieved from the internal state using

the StateMapping object. For Boolean and numerical fluents their

value is returned.

4. In case of object fluents, the StateMapping requests the planner

state in the same way, but is handed to the object mapping table

to retrieve an OPLObject pointer that is cast to the specific return

type.

If a member fluent does not have any parameters (besides the im-

plicit this), the StateMapping does not change for this fluent. There-

fore we can move step 1 and 2 to the initialization phase and store the

retrieved StateMapping in the object instance. During planning these

steps are then skipped and thus no look-ups are performed for ac-

cessing Boolean and numerical fluents, and only the object mapping

look-up is performed for object fluents.

By using this automatically generated interface module developers

now directly deal with objects instead of performing manual requests

for fluent values that are work-intensive and error-prone. This func-

tionality is now performed by the interface. Additionally, in some

cases, we can move look-ups to the initialization phase leading to a

more performant implementation.

6 EXPERIMENTAL RESULTS

We conducted three experiments using OPL domains including se-

mantic attachments. The performance improvement of OPL can only

A. Hertle et al. / Planning with Semantic Attachments: An Object-Oriented View 405

be measured in the presence of semantic attachments as otherwise

a translated OPL task is a PDDL task and thus behaves the same.

All experiments are conducted with the TFD/M planner developed

by Dornhege et al. [4]. We denote results achieved with the original

generic module interface as TFD/M, and the combination of TFD/M

with our automatically generated domain-specific module interface

as OPL.

The first experiment shows the computational overhead of TFD/M

and OPL compared to a base line planner not using semantic attach-

ments at all. We show representative results from the CREWPLAN-

NING domain in the temporal-satisficing track of the International

Planning Competition (IPC) 2008. The predicate available occurs in

most conditions of the domain. We add a condition module to the do-

main that is additionally called whenever available is used. The mod-

ule simply acquires the predicate from the planner state either with

the TFD/M generic module interface or via OPL’s domain-specific

interface and returns its truth value. Thus the applicability of the op-

erator is not changed and no additional computations are performed.

To ensure comparative results independent of the actual search pro-

cedure, we measured runtimes of testing operator applicability for

each planner on an identical set of states that was derived from the

closed list of the base line planner.

From the 30 problems of IPC 2008 we pick the last 20 problems

as the size of the closed list generated for the first ten problems is too

small to yield discriminative results. We conduct 150 test runs for

each problem and compute the overhead of TFD/M and OPL com-

pared to the base line. The results in Table 1 show that the runtime

scales well for both approaches, and is lower for OPL in all problems

instances.

Base [s] TFD/M [s] [%] OPL [s] [%]

11 0.22 0.23 7.09 0.22 2.20

12 0.24 0.26 7.19 0.25 2.51

13 0.02 0.02 10.06 0.02 3.25

14 0.03 0.04 10.13 0.03 1.79

15 0.02 0.02 10.78 0.02 2.85

16 0.20 0.22 5.56 0.21 1.47

17 0.24 0.26 5.76 0.25 2.60

18 0.34 0.35 3.19 0.34 1.11

19 0.68 0.71 3.89 0.69 1.61

20 0.86 0.89 3.78 0.87 1.54

21 1.00 1.04 4.64 1.02 2.37

22 0.05 0.06 10.79 0.06 3.28

23 0.04 0.05 14.40 0.04 4.09

24 0.06 0.07 10.61 0.06 3.47

25 0.56 0.59 5.09 0.57 2.08

26 0.56 0.58 4.69 0.57 1.75

27 0.61 0.63 4.09 0.62 2.08

28 1.83 1.87 2.03 1.84 0.66

29 2.04 2.11 3.05 2.08 1.71

30 2.11 2.19 3.94 2.14 1.66

Table 1. This table shows the results of the CREWPLANNING experiment.
Runtimes in seconds are averaged over 150 trials. The computational

overhead in percent is given in comparison to the base line without modules.

The second experiment is based on the TRANSPORT-NUMERIC

domain from the satisficing track of IPC 2008 and is designed to

show the impact of acquiring fluent values from the planner state.

The domain models a logistics task where packages are transported

by trucks. We replace the simple volume based condition check to

Figure 3. The figure illustrates the ROOMSCANNING domain. The robot
needs to explore a building and might need to open doors to reach different
rooms. The left side shows an overview of such a task, the right side an
example scene from executing a plan in the simulation environment.

see if another package can be loaded by a semantic attachment that

checks if the package fits geometrically into the truck given the cur-

rent cargo. The module requests the sizes of all packages to be stored

in the vehicle and the vehicle’s capacity from the internal planner

state. We use the TFD/M module implementation as described by

Dornhege et al. [4] and created an equivalent OPL domain together

with an OPL module that implements the same algorithm.

L V P TFD/M [s] OPL [s] Relative [%]

1 5 2 2 0.01 0.00 -61.6

2 10 2 4 0.12 0.04 -67.7

3 15 3 6 0.52 1.02 94.0

4 20 3 8 1.31 2.10 60.1

5 25 3 10 3.36 2.89 -13.9

6 30 4 12 87.53 17.92 -79.5

7 35 4 14 140.87 68.34 -51.5

8 45 4 18 54.42 29.17 -46.4

Table 2. This table shows the results of the TRANSPORT experiment. L, V,
P list the number of locations, vehicles and packages for each problem. The

last column gives the relative runtime of OPL compared to TFD/M.

We created eight problems with increasing complexity and com-

pare the TFD/M module with the OPL formulation. For each of the

eight problems 100 trials were conducted and we give the average

runtime. The standard deviation for all trials was lower than two per-

cent of the average runtime. The results in Table 2 show that the run-

time using the OPL module interface is significantly lower in most

cases than the original TFD/M interface’s. This is especially visible

in the more complex tasks (6 – 8) as in these cases the time for ini-

tialization is negligible. As problems three and four show, the initial-

ization time might dominate the positive runtime effects for simple

tasks.

The main objective of the third experiment is twofold. On the one

hand, it demonstrates the use of OPL in a real-world environment

including the application in a realistic robotics scenario. On the other

hand, it shows how a complex system is built easily by integrating an

existing path planner into TFD/M using the OPL planner interface.

The ROOMSCANNING domain that was used as an example in this

paper models an autonomous robot searching for items in various

rooms (see Figure 3). The environment is an office space with mul-

tiple rooms, corridors and doors. Some of the doors might be closed

and the robot has the ability to open doors. The robot has a metric

map of the environment and knows the coordinates for good scan

locations in every room. The goal is to scan all target locations in a

A. Hertle et al. / Planning with Semantic Attachments: An Object-Oriented View406

minimal amount of time.

The geometry of the world restricts the robot’s path to reach an-

other location. We implemented a module to compute the cost for

the drive action. The module implementation calculates the real

path cost by calling the external path planner used by the naviga-

tion component of the Robot Operating System (ROS) [17]. For the

experiment we created eight problems with varying complexity start-

ing from two scan targets without closed doors in the first task, up to

eight scan targets and two closed doors in the last.

Targets Doors Search time [s] Total time [s]

1 2 0 0.09 7.69

2 3 1 0.13 11.92

3 4 1 1.05 17.23

4 5 1 1.76 23.54

5 5 2 2.37 24.44

6 6 2 4.64 33.18

7 7 2 6.17 41.90

8 8 2 11.79 55.24

Table 3. This table shows the results of the ROOMSCANNING experiment.
Total time lists the time until the first valid plan was found. Search time

excludes the time spent waiting for module computations.

As can be seen in Table 3, the time required to find the first valid

plan increases with problem complexity. We show the total time, i.e.,

the time the planner needed to come up with a plan, and the search

time, i.e., the total time without the runtime of the path planner, sep-

arately. The observed runtimes are still acceptable for use in a real-

world robotics system and could be improved by using a more effi-

cient path planner.

7 CONCLUSION

We presented the Object-oriented Planning Language OPL, a novel

description language for planning tasks, which incorporates structure

and advantages of modern object-oriented programming languages

like Java or C++, allowing the design of real-world scenarios in a

natural way. We furthermore support semantic attachments, a con-

cept that was introduced to integrate external procedures to deter-

mine a fluent’s semantics, and use the object-oriented structure to

generate a more efficient domain-specific interface that acts as an

adapter between the generic interface of a planning system and a

domain-specific module implementation. The automatic generation

of the domain-specific interface produces a convenient to use and

type-safe implementation skeleton for external modules.

We also show how to translate OPL to PDDL, allowing any state of

the art planner based on PDDL to solve OPL tasks if combined with

the tools that are described in this paper. We adapted the PDDL/M

interface of TFD/M to also support OPL modules and compare them

experimentally to PDDL/M modules. Our evaluation shows that the

automatically generated interface is more efficient than the previous

implementation of semantic attachments in TFD/M due to the im-

proved look-up process when accessing the planner state.

ACKNOWLEDGEMENTS

This work was partially supported by Deutsche Forschungsgemein-

schaft (DFG) in the PACMAN project within the HYBRIS research

group (NE 623/13-1) and in the Transregional Collaborative Re-

search Center SFB/TR8 Spatial Cognition project R7-[PlanSpace],

as well as by the German Aerospace Center (DLR) as part of the

Kontiplan project (50 RA 1010).

REFERENCES

[1] C. Bäckström and B. Nebel, ‘Complexity results for SAS+ planning’,
Computational Intelligence, 11(4), 625–655, (1995).

[2] S. Cambon, F. Gravot, and R. Alami, ‘A robot task planer that merges
symbolic and geometric reasoning.’, in European Conference on Artifi-
cial Intelligence (ECAI), pp. 895–899, (2004).

[3] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau, ‘In-
tegrated planning and execution for autonomous spacecraft’, in IEEE

Aerospace Conference (IAC), (1999).
[4] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,

‘Semantic attachments for domain-independent planning systems’, in
Proceedings of the International Conference on Automated Planning

and Scheduling (ICAPS), pp. 114–121. AAAI Press, (September 2009).
[5] T. Estlin, D. Gaines, F. Fisher, and R. Castano, ‘Coordinating multiple

rovers with interdependent science objectives’, Autonomous Agents and
Multi-Agent Systems Conference (AAMAS), (July 2005).

[6] P. Eyerich, R. Mattmüller, and G. Röger, ‘Using the context-enhanced
additive heuristic for temporal and numeric planning’, in Proceedings

of the International Conference on Automated Planning and Scheduling

(ICAPS), pp. 130–137. AAAI Press, (September 2009).
[7] M. Fox and D. Long, ‘An Extension to PDDL for Expressing Temporal

Planning Domains’, Journal of Artificial Intelligence Research, 20, 61–
124, (2003).

[8] M. Fox, D. Long, and D. Magazzeni, ‘Automatic construction of effi-
cient multiple battery usage policies’, in Proceedings of the Interna-

tional Conference on Automated Planning and Scheduling (ICAPS),
(2011).

[9] H. Geffner, Functional Strips: a more flexible language for planning

and problem solving, 188–209, Kluwer, 2000.
[10] K. Hauser and J.C. Latombe, ‘Integrating task and PRM motion plan-

ning: Dealing with many infeasible motion planning queries’, in ICAPS
Workshop on Bridging the Gap between Task and Motion Planning,
(2009).

[11] M. Helmert, ‘Concise finite-domain representations for PDDL planning
tasks’, Artificial Intelligence, 173, 505–535, (2009).

[12] A. Hertle, Design and Implementation of an Object-Oriented Planning

Language, Master’s thesis, University of Freiburg, 2011.
[13] J. Hoffmann, ‘Extending FF to numerical state variables’, in European

Conference on Artificial Intelligence (ECAI), (2002).
[14] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan gen-

eration through heuristic search’, Journal of Artificial Intelligence Re-
search, 14, 253–302, (2001).

[15] L.P. Kaelbling and T. Lozano-Perez, ‘Hierarchical planning in the now’,
in IEEE Conference on Robotics and Automation (ICRA), (7 May
2011).

[16] J. Löhr, P. Eyerich, T. Keller, and B. Nebel, ‘A planning based frame-
work for controlling hybrid systems’, in Proceedings of the Interna-

tional Conference on Automated Planning and Scheduling (ICAPS),
(2012). To Appear.

[17] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, ‘ROS: an open-source robot operating system’,
in ICRA Workshop on Open Source Software, (2009).

[18] R. M. Simpson, D. E. Kitchin, and T. L. McCluskey, ‘Planning domain
definition using GIPO’, in The Knowledge Engineering Review, vol-
ume 22, pp. 117–134, (2007).

[19] Tiago Stegun Vaquero, Victor Romero, Flavio Tonidandel, and
Jose Reinaldo Silva, ‘itSIMPLE2.0: An integrated tool for designing
planning domains’, in Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS), (2007).
[20] J. Wolfe, B. Marthi, and S. J. Russell, ‘Combined task and motion plan-

ning for mobile manipulation’, in Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS), (2010).

[21] Kai M. Wurm, Christian Dornhege, Patrick Eyerich, Cyrill Stach-
niss, Bernhard Nebel, and Wolfram Burgard, ‘Coordinated exploration
with marsupial teams of robots using temporal symbolic planning’, in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), (October 2010).

A. Hertle et al. / Planning with Semantic Attachments: An Object-Oriented View 407

