
Online Voter Control in Sequential Elections
Edith Hemaspaandra1 and Lane A. Hemaspaandra2 and Jörg Rothe3

Abstract. Previous work on voter control, which refers to situations
where a chair seeks to change the outcome of an election by delet-
ing, adding, or partitioning voters, takes for granted that the chair
knows all the voters’ preferences and that all votes are cast simulta-
neously. However, elections are often held sequentially and the chair
thus knows only the previously cast votes and not the future ones,
yet needs to decide instantaneously which control action to take. We
introduce a framework that models online voter control in sequential
elections. We show that the related problems can be much harder than
in the standard (non-online) case: For certain election systems, even
with efficient winner problems, online control by deleting, adding,
or partitioning voters is PSPACE-complete, even if there are only
two candidates. In addition, we obtain completeness for coNP in the
deleting/adding cases with a bounded deletion/addition limit, and for
NP in the partition cases with only one candidate. Finally, we show
that for plurality, online control by deleting or adding voters is in P,
and for partitioning voters is coNP-hard.

1 Introduction

The study of the computational properties of voting systems has
been an exceedingly active area within computational social choice.
In particular, various types of manipulation, electoral control, and
bribery in voting have been classified in terms of their computational
complexity (see [6]). This paper focuses on voter control, a model
introduced by Bartholdi et al. [1], where a chair attempts to alter the
outcome of an election via changing its structure by deleting, adding,
or partition of voters.
To the best of our knowledge, all previous work on control (see,

e.g., [1, 8, 7, 9, 4, 5]) takes for granted that the chair has full knowl-
edge of all the voters’ preferences and that all votes are cast simulta-
neously. However, in many settings voters vote sequentially and the
chair’s task in such a setting may often be quite different: Knowing
only the already cast votes but not the future ones, the chair must
decide online (i.e., in that moment) whether there exists a control ac-
tion that guarantees success, no matter what votes will be cast later
on. We introduce a framework to model online voter control in se-
quential elections. Our approach is inspired by the area of “online
algorithms” [2], algorithms running and performing computational
actions based only on the input data seen thus far.
In our framework of online voter control, the chair’s task stated

above is based on a “maxi-min” idea (although here, due to the time
effects, that can involve more than two quantifiers), a typical online-
algorithmic theme; in that framing of the chair’s task we are fol-
1 Dept. of Computer Science, Rochester Institute of Technology, Rochester,
NY 14623, USA, url: www.cs.rit.edu/∼ eh.

2 Dept. of Computer Science, University of Rochester, Rochester, NY 14627,
USA, url: www.cs.rochester.edu/∼ lane.

3 Inst. für Informatik, Heinrich-Heine-Univ. Düsseldorf, 40225 Düsseldorf,
Germany, email: rothe@cs.uni-duesseldorf.de.

lowing the approach used for online manipulation of [10]. Note that
another central online-algorithmic theme, a strictly numerical ratio
approach to so-called “competitive analysis,” does not apply here,
because voting is commonly based on an ordinal notion of prefer-
ences, which makes competitive ratios inappropriate in our setting.
Sequential (or otherwise “dynamic”) voting has been studied in other
contexts as well, e.g., from a game-theoretic perspective as “Stack-
elberg voting games” [15] (see also [3]), or using an axiomatic ap-
proach [14] or Markov decision processes [13]. None of this work
has considered the issue of voter control or has applied methods of
online algorithms.

2 Motivation

The coming sections will give our definitions, results, and some
proofs. However, before that, the present section will very infor-
mally present some motivation and examples. In particular, we give
example settings in which it is natural to study sequential action,
in which the election’s “chair” has a use-it-or-lose-it ability to do
addition/deletion/partition-choice for each voter as the voter votes,
and the chair knows the votes of the voters seen so far, but not of
future voters. Of course, theoretical models don’t capture the many
interactions and subtleties of the real world, and so our models don’t
perfectly capture the full richness of even these sample situations.
Nonetheless, we feel that for many cases, such as those we are about
to mention, the theoretical models we develop in this paper are far
closer to capturing the real-world situation than are existing mod-
els of simultaneous voting or even existing models where votes are
sequential but all voters’ preferences are known ahead of time.
As a concrete example (and let us for the moment not worry about

what the particular election system is), consider a College faculty
meeting at which, going right around the room, the faculty members
hand their handwritten paper ballots to the Dean, who then passes
them on to her administrative assistant, who quietly adds them to the
totals he is keeping. But let us further assume that the Dean is a shifty
person, and can, for a certain number of ballots, slip the piece of pa-
per into her pocket after reading the vote, without that being noticed,
and without the people in the room being likely to notice that there
aren’t quite enough votes in the totals (let’s suppose it is a big col-
lege). And the question is whether the Dean can ensure that one of a
few alternatives she favors can be made a winner of the election, us-
ing at most the given amount of vote-to-pocket shifting. This setting
loosely corresponds to our sequential version of control by deleting
voters. For vividness, our examples are about humans voting and a
human chair (in the above, the Dean), and in the case just given, pa-
per ballots. However, our model applies also to more electronically
focused cases of preference aggregation, such as situations where the
chair is a doctored voting machine, or perhaps is a web site and the
voters are automated agents.

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-396

396

The above example is about deleting voters, but there are also nat-
ural examples for adding or partitioning voters. For partitioning vot-
ers, imagine that a school’s undergraduate admissions office is going
to use a panel, whose members will each be assigned to one of two
faculty committees, to vet applying students (perhaps with the com-
mittees purportedly looking for different things, e.g., one is looking
for traditional smartness and the other is looking for unusual levels
of passion and creativity), with all applicants’ folders given to both
committees, and with each committee by voting selecting its favorite
proposals, and then only the winners of those two vetting elections
move on to a final election in which all the panel members vote. Sup-
pose a particular admissions office staff member (who is the chair
in this example), with all the faculty members lined up and coming
into the room, as each faculty member steps to the doorway briefly
chats with the faculty member well enough to discern the likely votes
he or she will cast, and then right there assigns the person to either
the smartness committee or the passion committee. If the admissions
staff member does so with the goal of ensuring that at least one of
a certain set of students (perhaps the students who are great foot-
ball quarterbacks, or the students whose parents might fund a new
admissions building) will be admitted, that very loosely put would
be captured by our sequential version of control by partition of vot-
ers. For adding voters, a natural model might be a political candidate
(who is the chair in this example) going door to door through her dis-
trict in a preset order, and knowing from public records which voters
are registered voters and which are not, and at each door meeting and
learning the voter’s preferences among the candidates, and then for
those voters who are not registered deciding whether to use charisma
to convince them to register and vote, with the limitation that the
candidate has only so much charisma to use.
The above are a few very informal examples of settings where se-

quential action is natural, and one knows the votes cast so far but not
those to be cast in the future (except who will be casting them and
in which order). Let us finish this informal section by briefly giving
a mini-example of the flavor of the goal we have for our chairs, and
how that affects their actions. We are assuming that chairs are very
pessimistic; what they want to know is whether there is some ac-
tion they can take at the given moment so that one of their preferred
candidates will win no matter what the value is of all the currently
unknown-to-them future votes—but assuming that their own future
decisions are similarly aimed at this same goal. To make this more
concrete, let us discuss the most important real-world election sys-
tem: plurality. In our addition-of-voters example above, suppose the
candidate going door to door has only one preferred candidate in
the election, namely, herself. Then it is quite clear and simple what
she should do. Until she runs out of charisma, she should for each
unregistered voter she meets for whom she is the favorite candidate
expend her charisma to have that person become a registered voter.
That is an “operational” approach that would work perfectly. But
more must be said. The question our pessimistic candidate (and our
decision problems) want answered at each point is whether, what-
ever the preferences still to come after the current point are, that
candidate will win. And it is also clear how to judge that. The can-
didate, as she starts speaking with a given unregistered voter who
likes our candidate the most (we can similarly describe how to rea-
son in the other cases), reasons as follows: I need to assume that all
future voters (whose preferences I don’t currently know!) concen-
trate their votes on a candidate other than me who currently has the
most votes (in the tally I have been building in my canvas so far),
and that I use my charisma to (if it is not expended) add the current
unregistered voter, and then I suppress those hypothetical against-me

voters, and would that leave me a winner of this election? If the an-
swer is yes, then the candidate should be very happy, as she knows
she can guarantee herself victory as long as she doesn’t later do any-
thing overtly stupid with her charisma. The example we just gave is
in effect explaining why it holds that (so-called constructive) control
by adding voters is in polynomial time for sequential plurality elec-
tions. Now, one might assume that plurality is such a simple system
that for all types of sequential control we will obtain polynomial-
time algorithms. However, as Theorem 9 we will show that that is
not the case (unless P = NP). The proof of that result is in effect
giving an example—although admittedly a more complex one—in
which a coNP-hard problem, namely the complement of Hitting Set,
is transformed into an election control instance about sequentially
partitioning voters (the control setting we described above in our ex-
ample about college admissions).

3 Preliminaries
We assume familiarity with complexity-theoretic notions such as
the complexity classes P, NP, coNP, and PSPACE, the polynomial-
time many-one reducibility (≤p

m), and with ≤
p
m-hardness and ≤

p
m-

completeness for a complexity class. A standard NP-complete prob-
lem is the satisfiability problem (SAT) from propositional logic, a
standard coNP-complete problem is the tautology problem, and the
quantified boolean formula problem (QBF) is a standard PSPACE-
complete problem.

Voter Control Types in Simultaneous Elections

A pair (C,V) is called a (standard or simultaneous) election if C
is a set of candidates and V a list of voters that all have cast their
votes simultaneously. We assume that each vote in V has the form
(v, p), where v is the name of this voter and p is v’s (total) preference
order overC. For example, ifC = {c,d,e} then (Bob,d > e > c) ∈V
indicates that Bob (strictly) prefers d to e and e to c.
Bartholdi et al. [1] introduced the standard types of (constructive)

voter control in simultaneous elections as follows. An election sys-
tem is a mapping from votes/candidates to a winner set. Let E be a
given election system. In control by deleting voters (E -CCDV), given
an election (C,V), a distinguished candidate c ∈ C, and a nonnega-
tive integer k ≤ ‖V‖, we ask whether we can delete at most k voters
from V such that c is an E winner of the resulting election. In con-
trol by adding voters (E -CCAV), we are given a candidate set C, a
list V of registered voters with preferences over C, a list V ′ of as yet
unregistered voters with preferences over C, a distinguished candi-
date c ∈ C, and a nonnegative integer k ≤ ‖V ′‖, and the question is
whether we can add to V at most k voters from V ′ such that c is an
E winner of the resulting election. Finally, in control by partition of
voters, we are given an election (C,V) and a distinguished candidate
c ∈ C, and we ask whether V can be partitioned into two sublists,
V1 and V2, such that c is an E winner of the election (W1 ∪W2,V),
whereWi for i ∈ {1,2} is the (possibly empty) set of winners of sub-
election (C,Vi) that have survived the tie-handling rule used. Of the
two tie-handling models introduced by Hemaspaandra et al. [8] we
focus on the ties-promote (TP) model only, where all winners of a
subelection proceed to the runoff, as that model fits more naturally
the nonunique-winner model in which we will define our online con-
trol problems. The resulting problem is denoted by E -CCPV.
The destructive variants of these three problems, denoted by

E -DCDV, E -DCAV, and E -DCPV, are obtained by requiring that
the distinguished candidate c is not a winner of the election resulting
from the control action at hand [8].

E. Hemaspaandra et al. / Online Voter Control in Sequential Elections 397

Online Voter Control in Sequential Elections
We study online voter control in sequential elections, where we as-
sume that the voters vote in order, one after the other, each expressing
preferences over all the candidates. If u is the current voter andC the
given candidate set, an election snapshot for C and u is specified by
a triple V = (V<u,u,Vu<), where the voters in V<u have already cast
their votes, each a preference order over C, now it is u’s turn to cast
a vote, and the future voters in Vu< will cast their votes in the order
listed. (V<u and u of course list the votes cast and who cast them, but
Vu< just gives the order of the voters following u.)
We now define our notions of online voter control for the stan-

dard voter control types stated above, and the related problems. They
all will start from a basic online voter control setting (an OVCS, for
short), augmented by appropriate additional information according to
the control type at hand. A basic OVCS (C,u,V,σ ,d) consists of a set
C of candidates, the current voter u (which isn’t strictly needed here,
as u is clearly singled out within V anyway), an election snapshot
for C and u, the chair’s preference order σ onC, and a distinguished
candidate d ∈C. Let E be a given election system and letWE (C,V)
denote the E winner set of (standard) election (C,V). For each online
voter control type we will define, the question the chair faces is: Is
it possible to decide whether or not to exert the action of this control
type to the current voter u (e.g., whether or not to delete u) such that,
no matter what votes the remaining voters after u wish to cast, the
chair’s goal can be reached by the current decision regarding u and
by using the chair’s future decisions of this type (if any), each being
made using the chair’s then-in-hand knowledge about what votes will
have been cast by then?4 By the chair’s goal we mean either to en-
sureWE (C,V ′)∩{c | c ≥σ d}
= /0 for each possible ultimate election
(C,V ′) (i.e., each V ′ is a possible vote list resulting from the control
type at hand after all decisions have been made by the chair and all
voters have cast their votes) in the constructive case, or to ensure that
WE (C,V ′)∩{c | d ≥σ c} = /0 in the destructive case.5 Note, in par-
ticular, that due to the conditions WE (C,V ′)∩{c | c ≥σ d}
= /0 and
WE (C,V ′)∩{c |d ≥σ c}= /0 that define the chair’s goal, we adopt the
nonunique-winner model in defining our problems. So, to formally
define our problems, it remains to specify for each control type the
information by which the basic OVCS is augmented. What kind of
decisions the chair is to make in the course of a sequential election
will always be clear from the control type at hand (e.g., whether or
not to delete a voter in “online control by deleting voters”).
Let B = (C,u,V,σ ,d) be a given basic OVCS. For online control

by deleting voters, B is augmented by the following additional in-
formation: A nonnegative integer k (the deletion upper bound); for
each voter v before u, there is a flag saying if v was deleted and the
vote cast by v (if not deleted)—at most k voters can be marked as
deleted for the input to be syntactically legal; a vote to cast for the
current voter u (if u is not to be deleted). We denote these prob-
lems by online-E -CCDV (constructive) and online-E -DCDV (de-

4 Note that this maxi-min-inspired (but with more quantifiers) approach is
really about alternating quantifiers. We are asking if there exists a current
action of the chair, such that for all potential revealed vote values that come
between now and the next time the chair has to decide on an action, there
exists a next action by the chair, such that for all the chair reaches
her goal.

5 Why do we provide an ordering σ rather than just providing as a list the set
of candidates who are good enough to count as reaching our goal? For the
decision-problem version of online manipulation, which is our formulation
here, providing such a set would be just as good. But by making σ a part of
the input, wemake the model compatible, for the future, with the interesting
optimization problem of trying to find the most preferred candidate within
σ for which the chair can ensure that there is among the winner set one of
the candidates in the segment from that candidate to the top candidate in σ .

structive). (We certainly could equivalently formulate the problem
in a way that masks out all earlier deleted voters, and so removes the
need for the flagging; but we prefer the above version as it allows the
actual history of the voting situation to be part of the instance.)
For online control by adding voters, B is augmented by the fol-

lowing additional information: A nonnegative integer k (the addition
upper bound); each voter v in V has a flag saying if v is unregistered
(i.e., can be added) or registered—umust be unregistered; each voter
v before u has another flag saying if v was added—at most k voters
have that flag set in any syntactically legal input; the vote cast is given
for each registered or added unregistered voter before u, and also u’s
potential vote (if u is to be added). We denote these problems by
online-E -CCAV (constructive) and online-E -DCAV (destructive).
For online control by partition of voters, B is augmented by the fol-

lowing additional information: Each voter v before u has a flag saying
which part of the partition v was assigned to (“left” or “right”), and
the vote cast by v and also u’s vote is given. We denote these prob-
lems by online-E -CCPV (constructive) and online-E -DCPV (de-
structive), as we focus on the ties-promote (TP) rule. This is the right
choice for the nonunique-winner model, which itself is here more
natural than the unique-winner model, since our online control prob-
lems are defined via upper-cuts (“make d or a better candidate win,”
in the constructive case) or lower-cuts (“make sure that neither d nor
a worse candidate wins,” in the destructive case).
A natural worry about our maxi-min approach to online voter con-

trol is that it is always possible that all the future voters are hostile to
one’s goals. And in that case, one may be, depending on the election
system, powerless to reach one’s goal in the worst case, and so the
maxi-min outcome is easily seen to be failure to reach one’s goal.
Although this worry exists in a weaker form for online manipula-
tion and online bribery, since for those if one is allowed almost no
vote-changing one is in many cases obviously in trouble, at least in
those settings one can do whatever one wants to those votes one does
manipulate or bribe. In control, one doesn’t get to set the value of a
single vote, and that is pretty extreme.
This is a valid worry, but there are some things that keep it in per-

spective. Primarily, our paper is trying to find out the very greatest
complexity that control can ever have (when restricted to election
systems having polynomial-time winner problems). And so we can
look at election systems that sidestep the above worry, due to their
properties simply not matching the intuition above, which is that we
are using an election system in which a lot of bad-for-us votes result
in a bad-for-us output. In effect, we are seeking to understand the lim-
its of behavior, in order to set a bounding box on the behaviors that
can be realized. Of course, for many natural election systems, the
effect mentioned in the previous paragraph will hold, and for many
inputs that fact can be exploited to help achieve polynomial-time al-
gorithms for the control problem; indeed, in this paper itself, we give
examples of achieving polynomial-time algorithms for a natural sys-
tem: plurality. Of course, problems may start with some votes already
cast, and this may itself potentially make for interesting “endgame”
decision issues, as may issues involving weighted votes. Also, we
very much hope further studies will be conducted (by us or by oth-
ers) employing a range of models, including ones beyond maxi-min.
Due to space limitations here, most proofs are omitted, including

the rather difficult and novel proof of Theorem 4. Omitted proofs can
in general be found in our full technical report version [12].

E. Hemaspaandra et al. / Online Voter Control in Sequential Elections398

4 General Upper and Lower Bounds

Theorem 1 For each election system E with a polynomial-time win-
ner problem,6 online-E -CCDV, online-E -DCDV, online-E -CCAV,
online-E -DCAV, online-E -CCPV, and online-E -DCPV are each in
PSPACE.

Theorem 1 settles all general (i.e., regarding any voting system
for which winner determination is easy) upper bounds for our online
voter control problems. We now turn to their lower bounds.

4.1 Control by Deleting and by Adding Voters

Theorem 2 There exist election systems E and E ′ with polynomial-
time winner problems such that online-E -CCDV, online-E -CCAV,
online-E ′-DCDV, and online-E ′-DCAV are PSPACE-complete,
even if limited to only two candidates.

PROOF. Let (C,V) be an election. We define election system E as
follows. E interprets—in some fixed, natural encoding—the lexi-
cographically least candidate name in C as a boolean formula, Φ,
whose variable names must be the strings x1,x2, . . . ,x2� for some �,
where x2� actually appears in Φ (the other variables don’t have to;
no variables other than x1,x2, . . . ,x2� are allowed). If these syntactic
requirements fail to hold, everyone loses in E . Otherwise, if any two
voters inV have the same name, everyone loses in E . Otherwise, or-
der the voters in V lexicographically by name of the voter, and let
v1,v2, . . . ,vz be the voter names in this order. If z < 2� or if there are
less than two candidates, everyone loses in E . Otherwise, if for some
odd i, 1 ≤ i ≤ 2�− 1, the two lowest order bits of vi are not 00 or
01, or if for some even i, 2 ≤ i ≤ 2�, the two lowest order bits of
vi are not 10 or 11, everyone loses in E . Otherwise, assign the vari-
ables of Φ(x1,x2, . . . ,x2�) as follows. For each odd i, 1 ≤ i ≤ 2�−1,
set xi to true if the two lowest order bits of vi are 01, and set xi to
false otherwise (i.e., the two lowest order bits of vi are 00). For each
even i, 2≤ i ≤ 2�, set xi to true if the name of the least preferred can-
didate in the vote of vi is lexicographically less than the name of the
next to least preferred candidate in the vote of vi, and set xi to false
otherwise. If this assignment satisfies Φ, everyone wins in E , and
otherwise everyone loses. This ends the specification of E . Since a
boolean formula whose variables have all been assigned can be eval-
uated in polynomial time, E has a polynomial-time winner problem.
By Theorem 1, online-E -CCDV is in PSPACE. To show PSPACE-

hardness of online-E -CCDV, we ≤p
m-reduce the PSPACE-complete

problem QBF′, a variant of QBF, to it. QBF′ is the set of
boolean formulas of the form F(x1,x2, . . . ,x2�), for some �, such
that the variable x2� appears in F , all variables appearing in
F are from the variable name collection “x1”, “x2”, . . . , “x2�”,
and (∃b1)(∀b2) · · ·(∃b2�−1)(∀b2�) [F(x1 := b1,x2 := b2, . . . ,x2� :=
b2�) evaluates to true], where bi ∈ {0,1} and xi := bi means that vari-
able xi is set to true if bi = 1, and is set to false if bi = 0, for 1≤ i≤ 2�.
Let F(x1,x2, . . . ,x2�) be a given instance of QBF′, where x2� ex-

plicitly appears in F . (If our input is syntactically incorrect, we
map it to a fixed no-instance of online-E -CCDV.) We construct
from F an instance of online-E -CCDV, consisting of a basic OVCS
(C,u,V,σ ,d), augmented by the additional information of online
control by deleting voters, as follows. Define C = {a,b}, where a
encodes F (in our fixed, natural encoding of boolean formulas) and
b is the string lexicographically immediately following a; the current

6 The statement of Theorem 1 holds even for election systems whose winner
problems are in PSPACE.

voter is u = v1;V will be specified below; the chair’s preference order
is a >σ b; for specificity, we let d = a be the distinguished candidate
(though that does not matter, as all candidates win or all lose in E);
the deletion limit is k = �; and a vote a > b to cast for u if not deleted
(again, the vote doesn’t matter, as u = v1 will specify an assignment
to x1 by her name, not by her vote). There are (3/2) · 2� = 3� voters
in V such that the name of the ith voter, vi, is the binary string uiwi,
where ui is the binary representation of i and wi = 00 if i ≡ 1 mod 3,
wi = 01 if i ≡ 2 mod 3, and wi = 10 if i ≡ 0 mod 3, 1 ≤ i ≤ 3�.
This completes the description of our ≤p

m-reduction from QBF′ to
online-E -CCDV, which clearly can be computed in polynomial time.
We claim that F ∈ QBF′ if and only if the chair’s goal can be

reached by at most k deletions of voters. Why? By the definition
of E , everyone loses unless our k = � deletions are used on exactly
one of v3i−2 and v3i−1, for each i, 1 ≤ i ≤ �. No v3i, 1 ≤ i ≤ �, can
be deleted if there is to be a winner. And the “exactly one of v3i−2
and v3i−1” choices, 1 ≤ i ≤ �, specify an assignment of truth values
to the odd-numbered variables: For each i, 1 ≤ i ≤ �, x2i−1 is set to
true if v3i−2 is deleted and v3i−1 is not, and is set to false if v3i−1
is deleted and v3i−2 is not. On the other hand, for each i, 1 ≤ i ≤ �,
the truth value of x2i is specified by the vote of voter v3i, since after
these � deletions, v3i will be the 2ith voter name in the lexicographic
order. It follows that the chair’s goal can be reached by at most k dele-
tions of voters if and only if (∃b1)(∀b2) · · ·(∃b2�−1)(∀b2�) [F(x1 :=
b1,x2 := b2, . . . ,x2� := b2�) evaluates to true], which is true if and
only if F ∈QBF′.
PSPACE-hardness of online-E -CCAV for the election system E

defined above can be shown via essentially the same ≤p
m-reduction

from QBF′. The only difference is that we now map the given QBF′
instance F to an instance of online-E -CCAV, which is defined ex-
actly as the online-E -CCDV instance constructed above, except that
all voters vi with i ≡ 0 mod 3 are specified as registered voters, and
all other voters are unregistered. The correctness argument is analo-
gous.
The destructive cases can be shown analogously, by modifying

the election system E defined above as follows, yielding our mod-
ified system E ′: Whenever everyone loses (wins) in E , everyone
wins (loses) in E

′. It follows from Theorem 1 and the above ≤p
m-

reduction fromQBF′ that online-E ′-DCDV and online-E ′-DCAV are
both PSPACE-complete. ❑

For control by deleting or adding voters, the deletion or addition
limit k is part of the problem instance. Now, we consider restrictions
of these problems in which this limit is bounded by a constant. For a
given election system E and a fixed k, let online-E -CCDV[k] be the
restriction of online-E -CCDV to those inputs whose deletion limit
is at most k, and define the problem variant online-E -CCAV[k] anal-
ogously. We now show that this change in the definition brings the
complexity of these problems from PSPACE down to coNP.

Theorem 3 For each k ≥ 0, the following hold:

1. For each election system E with a polynomial-time winner prob-
lem, online-E -CCDV[k] and online-E -CCAV[k] are in coNP.

2. There exists an election system E with a polynomial-time winner
problem such that online-E -CCDV[k] and online-E -CCAV[k] are
coNP-complete, even if limited to only two candidates.

4.2 Control by Partition of Voters

Theorem 4 There exist election systems E and E ′, whose win-
ner problems can be solved in polynomial time, such that

E. Hemaspaandra et al. / Online Voter Control in Sequential Elections 399

online-E -CCPV and online-E ′-DCPV are PSPACE-complete, even
if limited to only two candidates.

The above result establishes PSPACE-completeness for construc-
tive and destructive online control by partition of voters in election
systems with polynomial-time winner problems, even if there are at
most two candidates. Can we make do with one? The following result
shows that if we could, then PSPACE would equal NP∩ coNP.7

Theorem 5 1. For each election system E with a polynomial-time
winner problem, online-E -CCPV and online-E -DCPV, when in-
puts are restricted to at most one candidate, are both in NP.

2. There exist election systems E and E ′ with polynomial-time win-
ner problems such that online-E -CCPV and online-E ′-DCPV,
even when restricted to one candidate, are both NP-complete.

Corollary 6 The following three statements are equivalent:

1. PSPACE=NP∩ coNP.
2. There exists an election system E with a polynomial-time win-

ner problem such that online-E -DCPV is PSPACE-complete even
when restricted to one candidate.

3. There exists an election system E with a polynomial-time win-
ner problem such that online-E -CCPV is PSPACE-complete even
when restricted to one candidate.

The analogues of the destructive cases of both parts of Theorem 5
also hold when “online” is removed, i.e., for the problem E -DCPV.
In contrast, the constructive non-online analogue of Theorem 5’s first
part can be strengthened to a P upper bound. (Why can we get a P
result here but not in Theorem 5? Our proof (available in our full
version) that establishes the following result does not apply if some
voters are already committed to sides of the partition—it is assuming
(and truly using the fact) that we have full control of where all voters
go. But in the online setting, the current voter u can be a voter who
does not come first and so some voters may already be assigned to
sides of the partition. And why do we get P for constructive but not
destructive? The effect the proof (available in our full version) of the
following theorem uses is specific to the constructive case.)

Theorem 7 For each election system E with a polynomial-time win-
ner problem, E -CCPV, when inputs are restricted to at most one
candidate, is in P.

5 Online Control for Plurality

We have seen in the previous section that online control can be a very
hard, namely a PSPACE-complete, problem, even for voting systems
whose winners can be determined in polynomial time. In this sec-
tion, we study online control for plurality voting. In this very simple,
yet popular voting system, every voter gives one point to her most
preferred candidate, and all candidates with the most points win. It is
known that non-online control by adding and by deleting voters can
be done in polynomial time, both in the constructive [1] and in the
destructive [8] case. We now show that the corresponding types of
online control are also easy.

Theorem 8 online-plurality-CCDV, online-plurality-CCAV,
online-plurality-DCDV, and online-plurality-DCAV are each in P.

7 Are elections with just one candidate even ever interesting in the real world?
We feel they are. For example, a referendum is essentially an up-or-down
vote on one “candidate.” So is a vote on whether to recall an elected official,
or to impeach a judge, or ratify a person who has been nominated for a
sports hall of fame.

PROOF. For online-plurality-CCDV, let (C,u,V,σ ,d) be a given ba-
sic OVCS, augmented by the additional information of online con-
trol by deleting voters: a deletion upper bound k, for each voter v
before u a flag saying if v was deleted and the vote cast by v (if not
deleted), where at most k voters can be marked as deleted, and a
vote to cast for u (if u is not to be deleted). If d is the chair’s bot-
tom choice in σ , we are done, since the input then is trivially in
online-plurality-CCDV (unless it is syntactically illegal). If exactly
k voters have been marked as already deleted, we can do no more
deletions, so u and all later voters go in, and we assume (as this is
the most challenging case) that all later voters vote for one particular
candidate in Λd = {c ∈C | c <σ d} that among the candidates in Λd
has the most first place votes after u is put in, and so we can easily
answer the online control question. If less than k voters have been se-
lected already for deletion, then delete u if and only if u’s top choice
is a highest scoring (with respect to the voters before u) candidate in
{c ∈ C | c <σ d}. Then assume that all later voters vote for one par-
ticular candidate in Λd = {c ∈C |c <σ d} that among the candidates
in Λd has the most first place votes after u is put in. And assume we
delete as many of those as the deletion amount left (after u) allows.
It is easy to see whether this results in “d or better” being a winner
(in which case our algorithm answers “yes”) or not (in which case
our algorithm answers “no”). (One might comment that it would suf-
fice, especially to just handle the decision version, to follow the very
simple “operational” approach mentioned in Section 2. However, we
have given a more dynamic description of the process both as we
want to make clear how the chair can decide what action to take at
each point and as the description above is also helping establish the
correctness of the actions taken.)
For online-plurality-CCAV, let (C,u,V,σ ,d) be a given basic

OVCS, augmented by the additional information of online control
by adding voters: an addition upper bound k, for each voter the infor-
mation of whether she is registered or not, and for each unregistered
voter before u the information of whether she has been added or not,
the vote of each registered or added voter before u, and u’s potential
vote. Again, the question is trivial if d is the chair’s bottom choice
in σ . Otherwise, we can see what u’s vote is and if k has yet been
reached. If k has not been reached yet, we add u if and only if u’s top
choice belongs to {c ∈C |c ≥σ d}.8 And in the worst case all future
voters vote for the same member of {c ∈C | c <σ d}, which will be
one that after u votes has the most first-place votes among those.
The two destructive cases can be handled analogously. The main

differences are, in both cases, that the question now is trivial to decide
if d is the chair’s top choice in σ ; in the deleting voters case, that u
is to be deleted (provided the deletion limit k has not been reached
yet) if and only if u’s top choice is a highest scoring (with respect to
the voters before u) candidate in {c ∈C | c ≤σ d}; and in the adding
voters case, that u is to be added (provided the addition limit k has
not been reached yet) if and only if u’s top choice belongs to {c ∈
C |c >σ d}. And, in both cases, we again assume that all future votes
will belong to some particular member of {c ∈C |c ≤σ d} that after
u votes has the most first-place votes among those candidates. ❑

Non-online control by partition of voters, in the model (ties-
promote) we feel is most natural and have adopted in this paper, is
known to be NP-complete [8] in both the constructive and destruc-
tive cases. In contrast, the corresponding types of online control are
8 Sure enough, u’s top choice could be one of those candidates that end up
having only few votes, so adding u could be a wasted addition that will
block some future good addition in some vote sequences, but in the worst
case all future voters put first a candidate disliked by the chair; so our action
is fine within the quantifier structure of the problem.

E. Hemaspaandra et al. / Online Voter Control in Sequential Elections400

both coNP-hard. This implies that these problems cannot be in NP,
unless NP = coNP, which is considered to be highly unlikely. It re-
mains open whether or not they are in coNP; we conjecture that they
are not.

Theorem 9 online-plurality-CCPV and online-plurality-DCPV are
both coNP-hard.

PROOF. We prove this by a reduction from the complement of the
NP-complete problem Hitting Set: Given a set B = {b1, . . . ,bm}, a
nonempty collectionS = {S1, . . . ,Sn} of subsets of B, and a positive
integer k ≤ m, does S have a hitting set of size at most k, i.e., does
there exist a set B′ ⊆B such that ‖B′‖ ≤ k and for all Si ∈S , Si∩B′
=
/0.
We turn an instance (B,S ,k) of hitting set into the follow-

ing instance of online partition of voters. The set of candidates is
{c,w,b1, . . . ,bm}∪A, where A = {ai | 1 ≤ i ≤ 4mnk + 1}. The cur-
rent voter is u. The votes before u that are on the left side of the
partition are exactly the same as the votes before u that are on the
right side of the partition. Both sides of the partition consists of the
following votes.

• 4nk votes c > w > · · · , where · · · denotes that the remaining can-
didates follow in some arbitrary order.

• 4nk votes w > c > · · · .
• For every i, 1≤ i ≤ n, 2k votes Si > c > · · · , where Si denotes the
candidates in Si in some arbitrary order.

• For every j, 1 ≤ j ≤ m, as many votes b j > B−{b j} > c > w >
· · · as needed to make the score of b j equal to 4nk − 1 in this
subelection.

• For every i, 1 ≤ i ≤ 4mnk, one vote ai > c > · · · and one vote
ai > w > · · · .

Voter u votes a4mnk+1 > w > · · · . And there are k voters after u.
The chair’s top choice is c and the chair’s bottom choice is w,
and the distinguished candidate is c in the constructive case (i.e.,
for online-plurality-CCPV) and w in the destructive case (i.e., for
online-plurality-DCPV). A simple but crucial observation is that no
candidate a ∈ A will ever make it to the final round, since her score in
the first round will be at most 2+k. If c and w participate in the final
round, c gets 8mnk points and w gets 8mnk + 1 points from voters
whose top choice was in A. This will ensure that c and w are the only
possible winners in the final round.
We will show thatS does not have a hitting set of size at most k if

and only if c can always be made a winner in the constructed election,
and we will show that S does not have a hitting set of size k if and
only if w can always be made to not be a winner in the constructed
election. This will prove the theorem.
First suppose that S has a hitting set of size at most k. Let B′ be

a hitting set of size k. B′ exists, since k ≤ m. Let the k voters after u
vote such that the top choice of the ith voter is the ith candidate in B′.
Then, no matter how we partition the voters, the set of candidates
that participate in the final round is {c,w} ∪ B′. The scores in the
final round are as follows: (a) score(c) = 8nk+8mnk, (b) score(w) =
8nk + 8mnk + 1, and (c) for all b ∈ B′, score(b) ≤ 8mnk−m + k. It
follows that c is not a winner and that w is a winner.
For the converse, note that we can always make sure that the set of

candidates in the final round is of the form {c,w}∪B′, where B′ ⊆ B
and ‖B′‖ ≤ k, by putting all the voters after u in the same first-round
election. If there is no hitting set of size at most k, then B′ is not
a hitting set. It follows that in the final election the following hold:
(a) score(c) ≥ 8nk+8mnk +4k, (b) score(w) ≤ 8nk+8mnk +1+k,

and (c) for all b ∈ B′, score(b) ≤ 8mnk−m + k. It follows that c is
the unique winner of this election. ❑

6 Conclusions and Open Questions

Inspired by the maxi-min approach of online algorithms, we stud-
ied online voter control in sequential voting. We showed that for
suitably constructed election systems with polynomial-time winner
problems, the resulting problems can be extremely hard, namely
PSPACE-complete, even for only two candidates. For plurality, how-
ever, online control by deleting or adding voters is easy, just as in
the non-online case. In future work we will study online voter con-
trol also for other natural election systems. Can one obtain PSPACE-
completeness results for highly natural, existing systems, for exam-
ple? Another interesting task will be to investigate online control by
a typical-case analysis. We have also studied online candidate con-
trol in sequential voting [11] and have already started to investigate
online bribery.

Acknowledgments We are deeply grateful to the reviewers. This
work was supported in part by grants NSF CCF-{0426761,0915792,
1101452,1101479}; DFG RO-1202/15-1; ARC DP110101792; an
SFF grant from HHU; a DAAD PPP/PROCOPE grant; and AvH
Foundation Bessel Awards to E. & L. Hemaspaandra.

REFERENCES
[1] J. Bartholdi, III, C. Tovey, and M. Trick, ‘How hard is it to control an

election?’, Math. and Computer Modeling, 16(8/9), 27–40, (1992).
[2] A. Borodin and R. El-Yaniv, Online Computation and Competitive

Analysis, Cambridge University Press, 1998.
[3] Y. Desmedt and E. Elkind, ‘Equilibria of plurality voting with absten-

tions’, in Proc. ACM-EC’10, pp. 347–356. ACM Press, (2010).
[4] G. Erdélyi, M. Nowak, and J. Rothe, ‘Sincere-strategy preference-based

approval voting fully resists constructive control and broadly resists de-
structive control’, Math. Logic Quarterly, 55(4), 425–443, (2009).

[5] G. Erdélyi, L. Piras, and J. Rothe, ‘The complexity of voter partition
in Bucklin and fallback voting: Solving three open problems’, in Proc.
AAMAS’11, pp. 837–844. IFAAMAS, (2011).

[6] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra, ‘Using com-
plexity to protect elections’, Comm. of the ACM, 53(11), 74–82, (2010).

[7] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe,
‘Llull and Copeland voting computationally resist bribery and construc-
tive control’, JAIR, 35, 275–341, (2009).

[8] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, ‘Anyone but him:
The complexity of precluding an alternative’, Artificial Intelligence,
171(5–6), 255–285, (2007).

[9] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, ‘Hybrid elections
broaden complexity-theoretic resistance to control’, Math. Logic Quar-
terly, 55(4), 397–424, (2009).

[10] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, ‘The com-
plexity of online manipulation of sequential elections’, Technical
Report arXiv:1202.6655 [cs.GT], Computing Research Repository,
arXiv.org/corr/, (February 2012).

[11] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, ‘Controlling
candidate-sequential elections’, in Proc. ECAI’12. IOS Press, (2012).
To appear.

[12] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, ‘On-
line voter control of sequential elections’, Technical Report
arXiv:1203.0411 [cs.GT], Computing Research Repository,
arXiv.org/corr/, (March 2012).

[13] D. Parkes and A. Procaccia, ‘Dynamic social choice: Foundations and
algorithms’. Working paper, May 2011.

[14] M. Tennenholtz, ‘Transitive voting’, in Proc. ACM-EC’04, pp. 230–
231. ACM Press, (2004).

[15] L. Xia and V. Conitzer, ‘Stackelberg voting games: Computational as-
pects and paradoxes’, in Proc. AAAI’10, pp. 697–702. AAAI Press,
(2010).

E. Hemaspaandra et al. / Online Voter Control in Sequential Elections 401

