
Complexity of Branching Temporal Description Logics

Vı́ctor Gutiérrez-Basulto and Jean Christoph Jung and Carsten Lutz 1

Abstract. We study branching-time temporal description logics
(TDLs) based on the DLs ALC and EL and the temporal logics CTL
and CTL∗. The main contributions are algorithms for satisfiability
that are more direct than existing approaches, and (mostly) tight el-
ementary complexity bounds that range from PTIME to 2EXPTIME

and 3EXPTIME. A careful use of tree automata techniques allows
us to obtain transparent and uniform algorithms, avoiding to deal di-
rectly with the intricacies of CTL∗.

1 Motivation

Classical Description Logics (DLs), such as those that underly the
W3C recommendation OWL, are fragments of first order logic and
aim at the representation of and reasoning about static knowledge.
The inability to capture dynamic and temporal aspects has often been
criticized because many relevant applications depend on this type of
knowledge, for example: (1) in medical ontologies such as SNOMED

CT and FMA [9], there are many concepts that can only be accu-
rately described by referring to dynamic aspects; think, for example,
of repeating patterns that indicate a disease such as malaria or of find-
ings such as hyperplasia (a proliferation of cells) which potentially
develop into a tumor in the future. (2) DLs are used as a language
for describing the conceptual model of databases and considerable
research has been devoted to extending this approach to capture also
the evolution of databases over time [2, 5]. As a reaction to this short-
coming of classical DLs, various kinds of temporal description logics
(TDLs) have been proposed, for details please see the surveys [1, 18]
and references therein.

A prominent approach to TDLs, originated in [20] and surveyed
in [18], is to combine static DLs with temporal logics that are com-
monly used in hardware and software verification, based on a two-
dimensional product-like semantics. While a large body of literature
is available for linear-time TDLs based on combinations of DLs with
the temporal logic LTL [3, 7, 4, 13], only limited research was de-
voted to branching-time TDLs based on CTL and CTL∗ [15, 8].
From the perspective of ontology applications such as those dis-
cussed under (1) above, this is slightly surprising because using LTL
operators often results in a modeling that is unrealistically strict.
As an example, consider the statement ‘each student will eventu-
ally be a graduate’. In TDLs based on LTL, this is modeled as
Student � �Graduate or Student � StudentUGraduate, exclud-
ing the possibility that a student leaves university without a degree.
In TDLs based on CTL, it is possible to use the much more cautious
statement Student � EStudentUGraduate based on the existen-
tial path quantifier E, stating that there is a possible future in which
the student obtains a degree and leaving open the possibility of other

1 Bremen Universität,Germany, email: {victor, jeanjung,
clu}@informatik.uni-bremen.de

possible futures. Strict statements such as ‘each human will eventu-
ally die’ can be expressed as Human � A�A�Dead based on the
universal path quantifier A.

It has been shown in [15] in the context of monodic temporal first-
order logic that TDLs based on CTL are typically decidable whereas
TDLs based on CTL∗ have to be appropriately restricted in order to
attain decidability: inside concept implications, only state concepts
should be allowed, but no path concepts (these correspond to state
formulas and path formulas in CTL∗). Since decidability is obtained
by translating into monadic second order logic on trees, these results
only come with a non-elementary upper complexity bound. The aim
of this paper is to reconsider branching-time TDLs based on CTL
and CTL∗ (under the mentioned restriction), to develop more direct
algorithms for the satisfiability problem, and to analyze the compu-
tational complexity. We concentrate on TDLs that are most natural
from the perspective of ontology applications: we consider the ba-
sic DLs ALC and EL, allow the application of temporal operators
to concepts and (sometimes) to TBox statements (but never to roles),
and assume constant domains—please consult [18] for more infor-
mation on these choices.

Our investigation starts with the TDLs CTLALC and CTL∗
ALC in

the case where temporal operators can only be applied to concepts
(Section 3). We use a uniform approach to both logics that consists
of a combination of Pratt-style type elimination and methods based
on non-deterministic tree automata. The approach is enabled by the
fact that the interaction between the DL dimension and the tempo-
ral dimension is limited, similar to the fusion of modal logics [14].
Note, however, that fusions correspond to expanding domains while
we use constant domains which impose additional technical difficul-
ties. We emphasize that the careful combination of types and exist-
ing tree automata for CTL and CTL∗ allows us to avoid many of the
technical intricacies of CTL∗, resulting in a rather transparent over-
all approach. We obtain EXPTIME-completeness for satisfiability in
CTLALC and 2EXPTIME-completeness for satisfiability in CTL∗

ALC ,
thus the combined logics are computationally no more complex than
their components.

As the next step, we stick with CTLALC and CTL∗
ALC , but addi-

tionally allow the application of temporal operators to TBoxes (Sec-
tion 4). To establish an elementary upper bound, we again use a uni-
form approach; it is based on a careful combination of alternating
2-way tree automata and non-deterministic tree automata for CTL
and CTL∗. We obtain a 2EXPTIME upper bound for CTLALC and
a 3EXPTIME upper bound for CTL∗

ALC . For CTLALC , we prove
a matching lower bound using a reduction from the word problem
of alternating Turing machines, which shows that, in the presence
of temporal TBoxes, the combination of ALC and CTL results in
an increase of computational complexity by one exponential. For
CTL∗

ALC , the complexity remains open between 2EXPTIME and
3EXPTIME.

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-390

390

Finally, we consider the combinations of the inexpressive DL EL
with fragments of CTL, allowing the application of temporal opera-
tors to concepts, only (Section 5). The crucial advantage of EL over
ALC is that it admits efficient (polytime) reasoning and our main aim
is to understand in how far this property transfers to a TDL based on
EL. It is interesting to note that linear-time TDLs based on EL and
LTL are computationally not very attractive as they turn out to be of
the same complexity as the corresponding combination of ALC and
LTL [3]. In the branching time case, we are able to identify a poly-
time TDL that could be viewed as an analog of non-temporal EL; it
includes the temporal operators E� and E�. Most other versions of
CTLEL turn out to be hard for PSPACE or EXPTIME.

Proof details are deferred to the appendix of the long ver-
sion of this paper, made available at http://www.informatik.uni-
bremen.de/tdki/research/papers.html.

2 Preliminaries

We introduce CTL∗
ALC and CTLALC . Let NC and NR be countably

infinite sets of concept names and role names. CTL∗
ALC-state con-

cepts C and CTL∗
ALC-path concepts C, D are defined by the gram-

mar

C ::= � | A | ¬C | C �D | ∃r.C | EC
C,D ::= C | C � D | ¬C | ©C | �C | CUD

where A ranges over NC, r over NR, C,D over state concepts, and
C, D over path concepts. CTLALC is the fragment of CTL∗

ALC in
which temporal operators ©,�,U must be immediately preceded
by the path quantifier E. Without further qualification, the term con-
cept refers to a state concept. As usual, we use ⊥ to abbreviate the
state concept ¬�, C �D for ¬(¬C � ¬D), and ∀r.C for ¬∃r.¬C;
other Boolean operators such as C ↔ D are defined as usual. In
CTL∗

ALC , we additionally use AC to abbreviate the state concept
¬E¬C and �C for the path concept ¬�¬C. In CTLALC , the abbre-
viations A©C, ACUD, E�C, and A�C are defined as is usual in
CTL [11].

A CTL∗
ALC-TBox T is a finite set of concept inclusions (CIs)

C � D with C,D CTL∗
ALC-state concepts. A CTLALC-TBox is de-

fined analogously. Note that inclusions between path concepts are
not admitted as they result in undecidability [15].

The semantics of classical, non-termporal DLs such as ALC is
given in terms of interpretations of the form I = (Δ, ·I), where
Δ is a non-empty set called the domain and ·I is an interpretation
function that maps each A ∈ NC to a subset AI ⊆ Δ and each
r ∈ NR to a binary relation rI ⊆ Δ×Δ. The semantics of branching
TDLs is given in terms of temporal interpretations, which are infinite
trees in which every node is associated with a classical interpretation.
For the purposes of this paper, a tree is a directed graph T = (W,E)
where W ⊆ (N \ {0})∗ is a prefix-closed non-empty set of nodes
and E = {(w,wc) | wc ∈ W,w ∈ N∗, c ∈ N} a set of edges;
we generally assume that wc ∈ W and c′ < c implies wc′ ∈ W
and that E is a total relation. The node ε ∈ W is the root of T . For
brevity and since E can be reconstructed from W , we will usually
identify T with W .

A temporal interpretation is a structure I = (Δ, T, {Iw}w∈W)
where T = (W,E) is a tree, and for each w ∈ W , Iw is an interpre-
tation with domain Δ. We usually write AI,w instead of AIw , and
intuitively d ∈ AI,w means that in the interpretation I, the object d
is an instance of the concept name A at time point w. Note that each
time point shares the same domain Δ, i.e., we make the constant do-
main assumption. Intuitively, this means that objects are not created

or destroyed over time; it is the most general choice since expanding,
decreasing, and varying domains can all be simulated [14].

We now define the semantics of CTL∗
ALC-concepts. A path in a

tree T = (W,E) starting at a node w is a minimal set π ⊆ W such
that w ∈ π and for each w′ ∈ π, there is a c ∈ N with w′c ∈ π.
We use Paths(w) to denote the set of all paths starting at the node w.
For a path π = w0w1w1 · · · and i ≥ 0, we use π[i] to denote wi and
π[i..] to denote the path wiwi+1 · · · . The mapping ·I,w is extended
from concept names to CTL∗

ALC-state concepts as follows:

�I,w = Δ

(C �D)I,w = CI,w ∩DI,w

(∃r.C)I,w = {d ∈ Δ | ∃e : (d, e) ∈ rI,w ∧ e ∈ CI,w}
(E C)I,w = {d ∈ Δ | d ∈ CI,π for some π ∈ Paths(w)}

where CI,π refers to the extension of CTL∗
ALC-path concepts on a

given path π, defined as:

CI,π = CI,π[0] for state concepts C
(¬C)I,π = Δ \ CI,π

(C � D)I,π = CI,π ∩ DI,π

(©C)I,π = {d ∈ Δ | d ∈ CI,π[1..]}
(�C)I,π = {d ∈ Δ | ∀j ≥ 0.d ∈ CI,π[j..]}

(CUD)I,π = {d ∈ Δ | ∃ j ≥ 0.(d ∈ DI,π[j..]

∧(∀ 0 ≤ k < j. d ∈ CI,π[k..]))}.

A temporal interpretation I is a model of a concept C if CI,ε �= ∅;
it is a model of a TBox T if CI,w ⊆ DI,w for all w ∈ W and all
C � D in T . Thus, a TBox T is interpreted globally in the sense
that it has to be satisfied at every time point. As an example, consider
the TBox

Student � E�(Graduated �A�∃worksFor.Company)

Prof � A(Prof URetired � (Retired → ©Retired))

and note that the first CI is formulated in CTLALC while the latter is
CTL∗

ALC proper.

3 CTL∗
ALC and CTLALC: The Basic Case

Our aim is to establish algorithms and tight complexity bounds for
deciding satisfiability in CTLALC- and CTL∗

ALC , which is the fol-
lowing problem: given a concept C and a TBox T , decide whether
there is a model I of T with CI,ε �= ∅.

Non-deterministic Tree Automata

A crucial ingredient to our approach are nondeterministic Büchi tree
automata for CTL and CTL∗ as described in [17, 22], which we now
introduce in some detail. Let Σ be a finite alphabet and k ≥ 1. A
Σ-labeled k-ary tree is a pair (T, τ) where T is a tree in which every
node has exactly k successors and τ : T → Σ assigns a letter from
Σ to each time point. We sometimes identify (T, τ) with τ . A nonde-
terministic Büchi tree automaton (NBTA) over Σ-labeled k-ary trees
is a tuple A = (Q,Σ, Q0, δ, F) where Q is a finite set of states,
Q0 ⊆ Q is the set of initial states, F ⊆ Q is a set of recurring
states, and δ : Q× Σ → 2Q

k

is the transition function.
Let (T, τ) be a Σ-labeled k-ary tree. A run of A on τ is a Q-

labeled k-ary tree (T, r) such that r(ε) ∈ Q0 and for each node
w ∈ T , we have 〈r(w · 1), . . . , r(w · k)〉 ∈ δ(r(w), τ(w)). The run
is accepting if for every path π = w0w1 · · · which starts at ε, we
have r(wi) ∈ F for infinitely many i. The set of trees accepted by

V. Gutiérrez-Basulto et al. / Complexity of Branching Temporal Description Logics 391

A is denoted by L(A). The emptiness-problem for NBTAs, which
will be used as a part of our algorithm, can be decided in quadratic
time [24].

We now assert the existence of NBTAs for CTL and CTL∗, as
well as their constructability within certain time bounds. We refrain
from introducing CTL and CTL∗ in full detail, and only mention
that they are obtained from CTLALC and CTL∗

ALC by dropping the
constructor ∃r.C; their semantics is based on 2NC -labeled trees of
unrestricted arity (in this context, we refer to the elements of NC

as propositional letters). Please refer to [11] for full details. We use
pl(ϕ) to denote the set of propositional letters in a CTL∗-formula ϕ.
For n > 0, we use Modn(ϕ) to denote the set of all 2pl(ϕ)-labeled
n-ary trees that satisfy ϕ at the root. Note that ϕ is satisfiable iff
Mod#E(ϕ) �= ∅, where #E(ϕ) is the number of subformulas of ϕ
that are of the form Eψ.

Theorem 1 ([17, 22]) For a CTL∗-formula ϕ and n ≥ 0, one can
construct an NBTA Aϕ = (Q,Σ, δ, Q0, F) in time poly(|Q| + n)

such that L(Aϕ) = Modn(ϕ), Σ = 2pl(ϕ), |Q| ∈ 22
poly(|ϕ|)

,
and |Q| ∈ 2poly(|ϕ|) when ϕ is a CTL formula.

The Decision Procedure

We now describe the uniform decision procedure for satisfiability in
CTLALC and CTL∗

ALC . It yields a tight EXPTIME upper bound for
the former case and a tight 2EXPTIME upper bound for the latter.
The lower bounds are inherited from CTL and CTL∗ [12, 23].

Let C be a concept and T a TBox, formulated in CTL∗
ALC or

its fragment CTLALC . We assume w.l.o.g. that T is of the form
{� � CT } and use cl(T) to denote the set of state concepts that
occur in T , closed under subconcepts and single negation. A type for
T is a set t ⊆ cl(T) such that CT ∈ t. A temporal type for T has the
form (t, i) with t a type for T and i ≥ 0 a distance that denotes how
far a time point w of a tree structure is from the root (i.e., the length
|w| of the word w). For any n ≥ 0, we use ttpn(T) to denote the
set of all temporal types (t, i) for T with i ≤ n. The algorithm starts
with the set of temporal types ttpn0

(T) for some appropriate bound
n0 to be determined later and then generates a decreasing sequence
S0 ⊇ S1 ⊇ . . . where S0 = ttpn0

(T) and Sj+1 is obtained from
Sj by eliminating temporal types that, intuitively, cannot occur in
any model of T . The algorithm terminates when no further types are
eliminated, i.e., when Sj = Sj+1. It returns “satisfiable” if there is a
surviving (t, i) with C ∈ t and i = 0, and “unsatisfiable” otherwise.

We now formally describe the elimination condition. For a type t,
let t denote the result of replacing every concept C ∈ t \ NC with
a fresh concept name XC , and let cn denote the set of all resulting
concept names, including those in T . For C ∈ cl(T), let C denote
the result of replacing in C every subconcept ∃r.D with X∃r.D . Let
�E(T) denote the number of state concepts in cl(T) that are of the
form EC. A temporal type (t, i) is removed from Sj if it violates one
of the following:

1. if ∃r.C ∈ t, then there is a (t′, i) ∈ Sj such that {C} ∪ {¬D |
¬∃r.D ∈ t} ⊆ t′;

2. (t, i) is Sj-realizable, i.e., there is a 2cn-labeled �E(T)-ary tree
(T, τ) that satisfies the following conditions, where ρ(i) =
min{n0, i}:

(a) for some w ∈ T with |w| = i, we have τ(w) = t;

(b) for each w ∈ T , there is a (t, ρ(i)) ∈ Sj with τ(w) = t;

(c) ε satisfies A�
∧

XC∈cn

XC ↔ C.

Condition 1 takes care of the DL dimension of CTL∗
ALC while Con-

dition 2 takes care of the (Boolean constructors and the) temporal di-
mension; intuitively, the tree (T, τ) describes the temporal evolution
of a single domain element. The intuition behind the number n0 and
the use of ρ(·) in Condition 2 is that time points which are close to
the root of the structure behave in a special way. For example, when
T = {� � A©©¬A}, then time points w with distance |w| < 2
are special in that they can satisfy A. Using binary counting, one can
construct similar examples where time points with exponential dis-
tance are still special; see [18] for a similar observation for LTLALC .
The final result S of type elimination represents the infinite expan-
sion Sω := S ∪ {(t,m) | (t, n0) ∈ S ∧m > n0}. For being able to
build a model, we want all (t, i) ∈ Sω to satisfy Conditions 1 and 2
when, in Condition 2, ρ(i) is replaced with i. This suggests the main
property to attain by choosing an appropriate bound n0:

(∗) if (t, n0) ∈ S is S-realizable, then (t, n0 +
) is S-realizable for
any
 ≥ 0.

One might be tempted to choose n0 = |tp(T)|. While this is indeed
sufficient for CTLALC , it does not work for CTL∗

ALC , where types
do not capture enough information about models and time points of
double exponential distance can still be special. To solve this prob-
lem, we observe that NBTAs can used to verify Condition 2 above,
and that this suggests a concrete bound n0. Specifically, let ϕ be the
formula from Condition 2(c) and Aϕ the corresponding NBTA from
Theorem 1 with set of states Q.

Lemma 1 When choosing n0 := |Q| · |tp(T)| as a bound for the
type elimination procedure, then Property (∗) is satisfied and “satis-
fiable” is returned iff C is satisfiable w.r.t. T .

The proof of the first part of Lemma 1 that asserts satisfaction of (∗) is
rather subtle and involves a very careful use of automata techniques.
We have not yet said how NBTAs can be used to verify Condition 2.
The idea is to construct three NBTAs, one for each of the parts (a)
to (c), build the intersection NBTA which accepts precisely the 2cn-
trees required for Condition 2, and then to perform an emptiness test.
For part (c), we can simply use Aϕ. Moreover, it is easy to define an
NBTA At,i with i ≤ n0 states that verifies the condition in part (a),
and the same is true for part (b) and an NBTA ASj with n0 states.
Details are left to the reader.

It remains to show that the algorithm runs in double exponential
time in the case of CTL∗

ALC and in exponential time for CTLALC .
We use |T | to denote the size of T , which is the number of symbols
needed to write it. The bound n0 is in O(22

poly(|T |)
) for CTLALC and

in O(2poly(|T |)) for CTL∗
ALC . The number of steps of the type elimi-

nation procedure is bounded by 2O(|T |) ·n0. The number of states in
Aϕ is n0 and thus it remains to recall that the intersection of a con-
stant number of NBTAs can be constructed with only a polynomial
blowup and that emptiness can be decided in quadratic time.

Theorem 2 Satisfiability is EXPTIME-complete for CTLALC and
2EXPTIME-complete for CTL∗

ALC .

4 CTL∗
ALC and CTLALC: Temporal TBoxes

We again study satisfiability of CTL∗
ALC- and CTLALC-TBoxes, but

now allow temporal operators to be applied also to concept inclusions
in a TBox. CTL∗

ALC-state TBoxes ϕ and CTL∗
ALC-path TBoxes ψ, ϑ

are formed according to the grammar

ϕ ::= C � D | ¬ϕ | ϕ ∧ ϕ | Eψ

ψ, ϑ ::= ϕ | ¬ψ | ϑ ∧ ψ | ©ψ | ψUϑ.

V. Gutiérrez-Basulto et al. / Complexity of Branching Temporal Description Logics392

We define truth relations I, w |= ϕ and I, π |= ψ (where I is
a temporal model, w a time point in I, and π a path in I) in the
obvious way, c.f. Section 2; in particular, I, w |= C � D iff
CI,w ⊆ DI,w. A temporal CTL∗

ALC-TBox is a CTL∗
ALC-state TBox;

temporal CTLALC-TBoxes are defined in the expected way. We say
that I is a model of a temporal CTL∗

ALC-TBox ϕ if I, ε |= ϕ. Tem-
poral TBoxes are useful for expressing the dynamics of policies; for
example, the temporal CTLALC-TBox

A�(Student � ∃fails.MajorExam � A�¬Student)

says that, in all possible futures, there will be a policy such that all
students who fail a single major exam will immediately and lastingly
be exmatriculated.

Alternating Automata

To derive algorithms and upper bounds for the satisfiability of tem-
poral TBoxes, we use a careful mixture of NBTAs and alternating
Büchi tree automata. More precisely, an alternating 2-way Büchi
tree automaton (2ABTA) over Σ-labeled k-ary trees is a tuple A =
(Q,Σ, Q0, δ, F) where all components except δ are as for NBTAs.
For a set X , let B+(X) be the set of Boolean formulas built from
elements in X using ∧, ∨, true and false. Let Y ⊆ X . We say that
Y satisfies a formula θ ∈ B+(X) if assigning true to the mem-
bers of Y and assigning false to the members of X \ Y makes
θ true. Let [k] = {−1, 0, . . . , k}. For any w ∈ (N \ {0})∗ and
m ∈ k, we put mov(w,m) = w if m = 0, mov(w,m) = w · m
if m > 0, and mov(w,m) = u if m = −1 and w = uc
with c ∈ N. The transition function δ of a 2ABTA is a function
δ : Q× Σ× {t, f} → B+([k]×Q).

Let (T, τ) be a Σ-labeled k-ary tree. For w ∈ T , put root(w) = t
if w = ε and root(w) = f otherwise. A run of A on τ is a T × Q-
labeled tree (Tr, r) such that r(ε) = (ε, q0) for some q0 ∈ Q0 and
whenever x ∈ Tr, r(x) = (w, q), and δ(q, τ(w), root(w)) = θ,
then there is a set S = {(m1, q1), . . . , (mn, qn)} ⊆ [k] × Q such
that S satisfies θ and for 1 ≤ i ≤ n, we have x · i ∈ Tr , mov(w,mi)
is defined, and τr(x · i) = (mov(w,mi), qi). The emptiness prob-
lem for 2ABTAs is EXPTIME-complete [21]. Using the root flag as
an additional third component in the transition function is slightly
unorthodox, but easily seen to not cause any problems. It will allow
use to construct more compact 2ABTAs later on.

The Decision Procedure

Let ϕ be a temporal CTL∗
ALC-TBox whose satisfibility is to be de-

cided. We use cl(ϕ) to denote the set of state concepts that occur
in ϕ, closed under subconcepts and single negation. A concept type
for ϕ is a set t ⊆ cl(ϕ) and tp(ϕ) denotes the set of all concept types
for T . We use sub(ϕ) to denote the set of all state subformulas of ϕ.

A quasi-world for ϕ is a pair (S1, S2) with S1 ⊆ tp(ϕ) a set of
concept types and S2 ⊆ sub(ϕ) a formula type such that

1. if t ∈ S1 and ∃r.C ∈ t, then there is a t′ ∈ S1 with {C}∪ {¬D |
¬∃r.D ∈ t} ⊆ t′;

2. for all C � D ∈ sub(ϕ), we have C � D ∈ S2 iff, for all t ∈ S1,
C ∈ t implies D ∈ t.

Let qw(ϕ) denote the set of all quasi-worlds for ϕ. A quasi-model
M for ϕ is a qw(ϕ)-labeled tree, of any outdegree.

For t ∈ tp(ϕ), t is the result of replacing every C ∈ t \ NC with
a fresh concept name XC , and cnX denotes the set of all resulting

concept names, including those in T . For C ∈ cl(T), C denotes the
result of replacing in C every subconcept ∃r.D with X∃r.D . For ev-
ery ψ ∈ sub(ϕ), ψ denotes the result of replacing every subformula
C � D of ψ with a fresh concept name Yψ (which plays the role of a
propositional letter for CTL / CTL∗) and cnY is the set of all concept
names thus introduced. For S ⊆ sub(ϕ), we set S = {ψ | ψ ∈ S}.
For M a quasi-model, we use M2 to denote the 2cnY -labeled tree
obtained by associating each node w ∈ M with the label S2(w).

A quasi-model M = (T, τ) is proper if the following conditions
are satisfied:

1. M2 |= ϕ;
2. for all w ∈ T with τ(w) = (S1, S2) and all s ∈ S1, there is a

2cnX -labeled tree (T, τ ′) such that

(a) τ ′(w) = s;

(b) for all w′ ∈ T with τ(w′) = (S′
1, S

′
2), there is an s′ ∈ S′

1 such
that τ ′(w′) = s′;

(c) ε satisfies A�
∧

XC∈cnX

(XC ↔ C).

Intuitively, Condition 1 ensures that M satisfies the temporal TBox ϕ
and Condition 2 guarantees that, for each required domain element,
we can consistently select a type from the quasi-world at each node
of M. The following result shows that to decide satisfiability of ϕ, it
suffices to check the existence of a proper quasi-model for ϕ.

Proposition 2 ϕ is satisfiable iff there is a proper quasi-model for ϕ.

The following NBTAs will be used in our decision procedure. Let ϑ
be the formula in Condition 2(c). By Theorem 1, we find an NBTA
Aϕ = (Q1,Σ1, δ1, Q

0
1, F1) that accepts exactly the 2cnY -labeled

#f
E(ϕ)-ary trees which satisfy ϕ, where #f

E(ϕ) denotes the set of
state formulas of the form Eψ in sub(ϕ); we also find an NBTA
Aϑ = (Q2,Σ2, δ2, Q

0
2, F2) that accepts exactly the 2cnX -labeled

#c
E(ϕ)-ary trees which satisfy ϑ, where #c

E(ϕ) denotes the set of
state concepts of the form EC in sub(ϕ).

We aim at constructing a 2ABTA A on qw(ϕ)-labeled trees that
accepts precisely the proper quasi-models for ϕ. For doing this, we
have to restrict the outdegree of quasi-models in an appropriate way.
Set k := |qw(ϕ)|·|tp(ϕ)|·|Q2|. The following is proved by replacing
Condition 2(c) with a version based on the NBTA Aϑ and carefully
analyzing its runs.

Lemma 3 There is a proper quasi-model for ϕ iff there is a quasi-
model for ϕ that is a k-ary tree.

The desired 2ABTA A will thus run on k-ary trees. For simplicity
and because Theorem 1 admits any outdegree, we can actually as-
sume both Aϕ and Aϑ to run on trees of outdegree k (this does
not result in a change to the state set Q2, thus does not impact k).
Since 2ABTAs are trivially closed under intersection, it suffices to
construct separate 2ABTAs A1 and A2 to deal with Conditions 1
and 2 of proper quasi-models. To obtain A1, manipulate Aϕ so that
it has input alphabet qw(ϕ) and each symbol (S1, S2) is treated
as S2, and view the resulting automaton as a 2ABTA. The 2ABTA
A2 = (Q,Σ, δ, {q0}, F) verifies Condition 2 by simulating a run
of Aϑ for every w ∈ T with τ(w) = (S1, S2) and every s ∈ S1.
Formally, set Q∗

2 = Q2 ∪ {∗} and

Q = {q0} ∪ (Q2 ×Q∗
2) ∪ (Q2 × 2cnX ×Q∗

2)

V. Gutiérrez-Basulto et al. / Complexity of Branching Temporal Description Logics 393

and the transition relation δ is as follows, for ω = (S1, S2):

δ(q0, ω, ·) =
∧k

i=1(i, q0) ∧
∧

s∈S1

∨
q∈Q2

(0, (q, s, ∗))

δ((q, q′), ω, ·) =
∨

s∈S1
(0, (q, s, q′))

δ((q, s, q′), ω, t) =
∨

(q1,...,qk)∈δ2(q,s)|q′∈{q1,...,qk}
∧k

i=1(i, (qi, ∗))

δ((q, s, q′), ω, f) =
∨

p∈Q2
(−1, (p, q′))) ∧∨

(q1,...,qk)∈δ2(q,s)|q′∈{q1,...,qk}
∧k

i=1(i, (qi, ∗))
where · in the third component means that the transition exists both
when the component is t and f, and ‘∗’ behaves like a wildcard for
all states of Q2 with the test ∗ ∈ {q1, . . . , qk} always being success-
full. Finally, we set F = F2. Note that runs of the original NBTA
Aϑ must start at the root of the tree, but when simulating Aϑ in A,
we have to start at an arbitrary tree node. In fact, this is the reason
why we need a 2-way automaton and states of the form (q, q′) and
(q, s, q′), which intuitively mean that we are currently simulating a
run of Aϑ in state q and have already decided to assign q′ to some
successor of the current node (we do not need to memorize which
successor since the transitions of Aϑ are closed under permuting the
successors). The state (q, s, q′) additionally selects an s ∈ S1 for the
current tree node, see Condition 2. A careful analysis shows that our
approach yields the following upper bounds.

Theorem 3 Satisfiability of temporal TBoxes is in 2EXPTIME for
CTLALC and in 3EXPTIME for CTL∗

ALC .

For CTLALC , we can establish a matching 2EXPTIME lower
bound by reducing the word problem of exponentially space-
bounded, alternating Turing machine (ATM). The reduction is too
long to be presented here in full detail, so we only sketch some cen-
tral ideas. Assume an ATM M and an input word α to M are given.
We construct a temporal CTLALC-TBox ϕM,α such that models of
ϕM,α correspond to accepting computation trees of M on α. In par-
ticular, the computation tree is represented by the temporal develop-
ment of a single domain element d0 with each time point w corre-
sponding to a tape cell and a configuration of M being represented
by exponentially many consecutive time points. A major challenge
is to transport information (a symbol found on a type cell) exponen-
tially far down the tree using a polysize TBox. The solution is to store
the information in additional domain elements generated with exis-
tential restrictions; to recover the stored information to the ‘main’
domain element d0, we cannot use r since roles can vary freely over
time; instead, we use the temporal TBox to exchange information be-
tween domain elements. In a nutshell, this can be done by temporal
TBox statements such as

A�(� � A ∨ � � ¬A)

which ensures that the truth value of A, and thus a single bit of in-
formation, is shared by all domain elements. To transport symbols in
our ATM reduction, we need to refine this basic idea, for example
by using a suitable set of binary counters to manage distances in the
tree. The resulting TBox ϕM,α has the form A�ψ with ψ a Boolean
combination of CIs C � D.

Theorem 4 Satisfiability of temporal CTLALC-TBoxes is
2EXPTIME-complete.

5 Fragments of CTLEL
The EL-family of DLs is a popular family of lightweight ontology
languages [6] whose key feature is to admit polytime reasoning while

still providing sufficient expressiveness for many applications. In
particular, members of the EL-family are used in medical ontolo-
gies such as SNOMED CT and underlie the OWL 2 EL profile of
the OWL 2 ontology language. We consider fragments of CTLEL,
the fragment of CTLALC that disallows the constructor ¬ (and thus
also the abbreviations C�D and ∀r.C). Throughout this section, we
only allow the application of temporal operators to concepts, but not
to TBoxes. As an example, consider the following CTLEL-TBox:

PhDStudent � E�(Phd �E�∃worksFor.Uni),
∃worksFor.Uni � E�E�Professor

Because of the absence of negation, satisfiability in CTLEL is triv-
ial; as in non-temporal EL, we therefore consider subsumption as the
central reasoning problem. Formally, a concept D subsumes a con-
cept C w.r.t. a TBox T , written T |= C � D, if CI ⊆ DI for
all temporal interpretations I that are a model of T . For example, the
above TBox implies that every PhD student has the possible future of
becoming a professor, formally T |= PhDStudent � E�Professor.

With the aim of identifying a computationally efficient branching-
time TDL, we consider various fragments of CTLEL obtained by
admitting sets of temporal operators. In this context, we view each
operator from the set E©C, A©C, E�C, E�C, A�C, A�C,
ECUD and ACUD as primitive instead of as an abbreviation. For
uniformity, we denote fragments of CTLEL by putting the available
temporal operators in superscript; for example, CTLE�,E�

EL is CTLEL
with only the operators E� and E�. We obtain a landscape of tem-
poral variants of EL with the complexity of subsumption ranging
from PTIME over PSPACE-hard to EXPTIME-complete.

A tractable fragment

We assume that the input TBox is in the following normal form.
A basic concept is a concept of the form �, A, ∃r.A,E�A,E�A
where A is a concept name. Now, every CI in the input TBox is re-
quired to be of the form

X1 � . . . �Xn � X

with X1, . . . , Xn, X basic concepts. Every TBox can be transformed
into this normal form in polytime such that (non-)subsumption be-
tween the concept names that occur in the original TBox is preserved,
c.f. [6]. We show that concept subsumption w.r.t. CTLE�,E�

EL -TBoxes
can be decided in polynomial time by reducing it to subsumption in
the extension EL++ [6] of EL. In particular, EL++ allows to specify
properties on roles, such as reflexivity, transitivity, and role hierarchy
statements of the form r � s. We introduce fresh role names succ�
and succ�. Intuitively, a role name succ� represents the ‘going on
step to the future’ relation and a subrole succ� of succ� is used to
deal with concepts of the form E�A. We require that

• succ� is transitive and reflexive,
• succ� and succ� are total; and
• succ� � succ�.

We obtain an EL++-TBox T ′ from a CTLE�,E�
EL -TBox T by (i) re-

placing every subconcept E�A with ∃succ�.A, (ii) replacing ev-
ery subconcept E�A with MA for some fresh concept name MA,
(iii) adding for each fresh concept name MA introduced in step
(ii) the concept inclusion

MA � A � ∃succ�.MA

V. Gutiérrez-Basulto et al. / Complexity of Branching Temporal Description Logics394

and (iv) including the properties of roles listed above. Note that the
role inclusion succ� � succ� is needed since ∅ |= E�A � E�A.
It is now possible to show the following.

Lemma 4 Let A,B be two concept names occurring in T . Then,
T |= A � B iff T ′ |= A � B.

Since concept subsumption in EL++ can be decided in PTIME [6],
we obtain the desired result.

Theorem 5 In CTLE�,E�
EL , subsumption can be decided in PTIME.

We note that this is the first temporal description logic based on EL
that turns out to admit PTIME reasoning; see also [3]. While the
expressive power of CTLE�,E�

EL is clearly rather restricted, we be-
lieve that it might still be sufficient for some applications. In some
sense, the situation parallels the one for non-temporal EL. Note that
the example given at the beginning of this section is formulated in
CTLE�,E�

EL .

Intractable Fragments

We show that CTLE�,E�
EL is a maximal tractable fragment of CTLALC

in the sense that adding further temporal operators destroys tractabil-
ity. We start with the extension CTLE�,E�,A�

EL and prove the fol-
lowing by a reduction from QBF validity. Since the strategy of the
reduction is rather standard, we defer details to the technical report.

Theorem 6 Subsumption in CTLE�,E�,A�
EL is PSPACE-hard.

We conjecture that ELE�,E�,A� is actually PSPACE-complete, but
leave an upper bound as future work.

The remaining candidate operators for extending CTLE�,E�
EL are

E©, A©, A�, EU , AU . It turns out that subsumption is EXP-
TIME-complete in any of the resulting extensions. In fact, one does
not even need both temporal operators from CTLE�,E�

EL for the lower
bounds.

Theorem 7 Subsumption is EXPTIME-complete in

(a) CTLA�,E�
EL (b) CTLE�,E©

EL (c) CTLA�,A©
EL

(d) CTLEU
EL (e) CTLAU

EL (f) CTLA©
EL

The upper bounds are obvious since all listed TDLs are a fragment
of CTLALC , and the lower bounds are established as follows. It is
well-known that every non-convex extension of EL is at least as
hard as ALC, where convexity means that whenever T |= C �
D1 � · · · � Dn with n ≥ 2, then T |= C � Di for some i [6].
The same is true for non-convex fragments of CTLEL and CTLALC .
To establish the lower bound in Theorem 7, it thus suffices to ar-
gue that the listed fragments are not convex. For example, consider
CTLA�,E�

EL , set T = ∅ and

C = A�A �A�B
D1 = E�(A �E�B)
D2 = E�(B �E�A)

Clearly, T |= C � D1 � D2, but neither T |= C � D1 nor T |=
C � D2. Most remaining cases are similar to related fragments of
LTLEL studied in [3] and are treated in detail in the technical report.

The logic CTLA©
EL is an exceptional case since it can be proved

to be convex. However, it is nevertheless EXPTIME-hard, which fol-
lows from the observation that, after dropping the contructor ∃r.C,
CTLA©

EL is a notational variant of the description logic FL0 which
is shown to be EXPTIME-complete in [6, 16].

6 Conclusion

As future work, it would be interesting to determine the precise
complexity of satisfiability of temporal CTL∗

ALC-TBoxes, which is
currently open between 2EXPTIME and 3EXPTIME, and to analyze
branching-time TDLs based on the DL-Lite family of DLs. It also
seems natural to generalize the expressive power of the branching
time component as demanded by applications. This includes captur-
ing statements such as ‘it is likely that an irregular mole develops
into a melanoma in the future’ and ‘all students will graduate within
8 semesters’.

REFERENCES

[1] Alessandro Artale and Enrico Franconi, ‘Temporal description logics’,
in Handbook of Time and Temporal Reasoning in Artificial Intelligence,
pp. 375–388, 2005.

[2] Alessandro Artale, ‘Reasoning on temporal conceptual schemas with
dynamic constraints’, in TIME, pp. 79–86, 2004.

[3] Alessandro Artale, Roman Kontchakov, Carsten Lutz, Frank Wolter,
and Michael Zakharyaschev, ‘Temporalising tractable description log-
ics’, in TIME, pp. 11–22. IEEE Computer Society, (2007).

[4] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev, ‘Past and future of DL-Lite’, in AAAI, 2010.

[5] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev, ‘Tailoring temporal description logics for rea-
soning over temporal conceptual models’, in FroCos, volume 6989 of
LNCS, pp. 1–11, 2011.

[6] Franz Baader, Sebastian Brandt, and Carsten Lutz, ‘Pushing the EL
envelope’, in IJCAI, pp. 364–369, 2005.

[7] Franz Baader, Silvio Ghilardi, and Carsten Lutz, ‘LTL over description
logic axioms’, in KR, pp. 684–694, 2008.

[8] Sebastian Bauer, Ian M. Hodkinson, Frank Wolter, and Michael Za-
kharyaschev, ‘On non-local propositional and weak monodic quantified
CTL’, J. Log. Comput., 14(1), pp. 3–22, 2004.

[9] Olivier Bodenreider and Songmao Zhang, ‘Comparing the represen-
tation of anatomy in the FMA and SNOMED CT’, in AMIA Annual
Symposium, pp. 46–50, 2006.

[10] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer, ‘Alterna-
tion’, J. ACM, 28(1), pp. 114–133, 1981.

[11] Edmund. M. Clarke, Orna Grumberg, and Doron Peled, Model check-
ing, MIT Press, 1999.

[12] Michael J. Fischer and Richard E. Ladner, ‘Propositional dynamic logic
of regular programs’, J. Comput. Syst. Sci., 18(2), pp. 194–211, 1979.

[13] Enrico Franconi and David Toman, ‘Fixpoints in temporal description
logics’, in IJCAI, pp. 875–880, 2011.

[14] Dov Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev,
Many-dimensional modal logics: theory and applications, Studies in
Logic, 148, 2003.

[15] Ian M. Hodkinson, Frank Wolter, and Michael Zakharyaschev, ‘Decid-
able and undecidable fragments of first-order branching temporal log-
ics’, in LICS, pp. 393–402. 2002.

[16] Martin Hofmann, ‘Proof-theoretic approach to description-logic’, in
LICS, pp. 229–237, 2005.

[17] Orna Kupferman and Moshe Y. Vardi, ‘Safraless decision procedures’,
in FOCS, pp. 531–542, 2005.

[18] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev, ‘Temporal de-
scription logics: A survey’, in TIME, pp. 3–14, 2008.

[19] Christos H. Papadimitriou, Computational complexity, Academic Inter-
net Publ., 2007.

[20] Klaus Schild, ‘Combining terminological logics with tense logic’, in
EPIA, volume 727 of LNCS, pp. 105–120, (1993).

[21] Moshe Y. Vardi, ‘Reasoning about the past with two-way automata’, in
ICALP, volume 1443 of LNCS, pp. 628–641, 1998.

[22] Moshe Y. Vardi, ‘Automata-theoretic techniques for temporal reason-
ing’, in In Handbook of Modal Logic, pp. 971–989, 2006.

[23] Moshe Y. Vardi and Larry J. Stockmeyer, ‘Improved upper and lower
bounds for modal logics of programs: Preliminary report’, in STOC, pp.
240–251, 1985.

[24] Moshe Y. Vardi and Pierre Wolper, ‘Automata-theoretic techniques for
modal logics of programs’, J. Comput. Syst. Sci., 32(2), 183–221, 1986.

V. Gutiérrez-Basulto et al. / Complexity of Branching Temporal Description Logics 395

