
Towards Generalizing the Success of Monte-Carlo
Tree Search beyond the Game of Go

António Gusmão and Tapani Raiko 1

Abstract. Monte-Carlo Tree Search and specifically the variants
of the UCT algorithm have been a break-through in AI of the board
game Go. However, UCT has had limited applicability to other do-
mains. We study the limitations of some of the existing variants of
UCT in a small-scale Markov decision process (MDP), and pro-
pose new variants that can reduce those limitations. Our experiments
show great improvements in performance against traditional UCT
and comparable performance to estabilished reinforcement learning
algorithm, thus opening possibilities for applying UCT in other prob-
lem domains.

1 Introduction

Abramson [1] proposed the expected-outcome heuristic for game
state evaluation. The value of a game state is the expected outcome
of the game given random play from that moment on. The value can
be used to evaluate leaf nodes in a game-tree that has the current
state as the root node and possible moves as children of the node.
The expected-outcome heuristic applies to a large number of games
with or without randomness or hidden information and with one or
more players. Expected outcome heuristic is also known as roll-out
analysis or play-out analysis.

The use of the stochastic play-out analysis in tree search became
really useful when the stochasticity of the evaluation function was
taken into account in a bandit based tree search known as the UCT
(Upper Confidence bound in Trees) algorithm [8]. Its application in
computer Go [7] revolutionalized the whole field. Monte-Carlo tree
search has seen extensive use in games, but its application to other
problem domains has been limited.

The game of Go has some properties that fit the UCT algorithm
well. First, the number of available moves at a time is large, which
prevents the use of brute-force search to explore all the possibilities
as the search tree grows exponentially with respect to depth. In UCT,
the number of visits is constant with respect to search depth, so the
searches become deeper. Second, evaluation of a non-terminal state
in Go is notoriously difficult [14] but UCT only needs to evaluate
terminal states. In Go, the game tends to lead into a terminal state
regardless of the used policy. Third, loops in the game are forbidden
by rules and actions are determenistic, so the tree structure repre-
sentation of the state space used in UCT fits it well. This paper will
consider problems that arise when loops are common.

In the next section we will review existing work on the topic and
discuss their limitations. In Section 3, we will propose new variants
of the UCT algorithm, and in Section 4 we will make experimental
comparisons.

1 Aalto University School of Science, Finland, email: antoniogus-
mao@gmail.com, tapani.raiko@tkk.fi

2 Monte Carlo Tree Search and the UCT
Algorithm

Monte Carlo Tree Search (MCTS) is a family of experience-based al-
gorithms that learn by sampling event sequences and store the statis-
tics in tree structures. These statistics are used to repeatedly solve a
one-state Markov decision process (MDP) problem called stochastic
multi-armed bandit. First we discuss the multi-armed bandit prob-
lem and its solution by using the asymptotically optimal algorithms
UCB and UCB-V. Then we review UCT, a tree algorithm based on
repeated application of UCB that is able to solve full MDPs and de-
scribes how these ideas have been applied to game playing, particu-
larly in the board game Go.

2.1 Stochastic Multi-Armed Bandit

The stochastic multi-armed bandit problem has been extensively
studied in statistics and is one of the simplest problem instances
involving the exploration versus exploitation dilemma. Consider an
agent that, at each time step, is repeatedly given the same K ac-
tion possibilities. Each action incurs an immediate numerical reward
taken from an unknown stationary probability distribution that de-
pends on the action selected, i.e. rewards are independent and identi-
cally distributed [4]. The agent’s goal is to select actions as to maxi-
mize the expected sum of rewards over a possibly infinite number of
time steps. This is equivalent to a one-state Markov decision process
with undiscounted rewards.

Denote the expected reward obtained from taking an action as the
value of that action. Clearly, solving a multi-armed bandit problem
is trivial if one knows the value of each of the actions - simply keep
taking the action with best value. Because the values are unknown,
the agent needs to estimate them by repeatedly trying each of the
actions - the agent needs to explore. On the other hand, to achieve
its main goal, the agent needs to exploit its current knowledge by
taking the actions with best values. Exploration and exploitation are
balanced by an allocation policy that defines the next action to take
given a sequence of past actions and rewards obtained. The expected
regret of an allocation policy allows one to compare different policies
and, after T action selections, is given by

LT = max
a

E

(
TX

t=1

R(a, t)

)
− E

(
TX

t=1

R(a(t), t)

)
, (1)

where R(a, t) is the reward obtained from taking action a at time t.
Action a(t) indicates which action was actually taken at time t. The
first term in (1) is the reward the agent would get if he always picked
the optimal action, whereas the second term is the reward from the
actions a(t) he actually took. Thus, the regret is the loss caused by

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-384

384

the policy not always picking the best action. It has been proven that,
for a large class of reward distributions, there is no policy whose
regret grows slower than O(log(T)) [10].

Many algorithms have been proposed to solve the multi-armed
bandit problem, such as ε-greedy, softmax strategy, εn-greedy
(log(T) regret bound [4]) and UCB. Next, the UCB algorithm is de-
scribed, which asymptotically achieves the optimal O(log(T)) regret
bound.

2.2 UCB Algorithms

UCB [4] stands for Upper Confidence Bounds and is a class of ban-
dit algorithms that has been gaining popularity due to its theoretical
guarantees, together with practical efficiency and ease of implemen-
tation. One of the simplest UCB algorithms is UCB1, a deterministic
policy which, at each decision step, picks the action a with the largest
ρ(a)

ρ(a) =
1

T

TX
t=1

R(a, t)

| {z }
average reward

+

s
2b2 ln(T)

N(a)| {z }
bias factor

, (2)

where T is the total number of actions taken so far and N(a) is the
number of times action a was taken (

P
a N(a) = T). Rewards are

assumed to lie almost surely on the [0, b] range, with b > 0.
The regret of UCB1 was proven to grow asymptotically at

O(ln(T)) rate. Additionally, Auer et al. [4] presented UCB2 and
UCB-Tuned. UCB2 achieves smaller constants in the asymptotically
regret bound but obtained worse empirical results. UCB-Tuned in-
cludes in its bias factor a measure of the empirical variance of re-
wards and outperformed both UCB1 and UCB2. This is intuitive
since actions with low value variance do not require so much explo-
ration as few samples are needed to get an accurate measure of their
expected value. Although regret bounds for UCB-Tuned were not
shown by Auer et al., later Audibert et al. [3] laid theoretical foun-
dations for a more general form of UCB using variance estimates in
the bias factor, UCB-V.

Let c ≥ 0 be an arbitrary constant. Denote R(a, T) as the empiri-
cal expected reward of action a after T episodes and V (a, T) as the
empirical variance, defined respectively by:

R(a, T) =
1

N(a)

X
{t|a(t)=a}

R(a, t) (3)

V (a, T) =
1

N(a)

X
{t|a(t)=a}

ˆ
R(a, t) − R(a, T)

˜2
, (4)

where {t|a(t) = a} is the set of times t at which the action a was
chosen. UCB-V plays the arm with maximal B(a, T):

B(a, T) = X(a, T) +

s
2V (a, T)ξ(T)

N(a)
+ c

3bξ(T)

N(a)
, (5)

where ξ(T) are non-negative and non-decreasing real numbers for
all T ≥ 0. The function ξ(T) is called exploration function and it
determines how the bias evolves with subsequent plays. A common
choice is ξ(T) = q log(T), with an arbitrary constant q.

2.3 UCT Algorithm

UCT [8] stands for upper confidence trees and is a Monte-Carlo tree
search (MCTS) method that sets up a multi-armed bandit problem for

each state and picks actions using UCB algorithms. Its applications
include learning in episodic MDPs and minimax game tree search.

Consider a reinforcement learning agent. Denote Q(s, a) as the
value of action a in state s and As as the set of available action at
state s. Let β(s, a) be a real-valued bias factor. The value under UCT
is given by:

QUCT (s, a) = Q(s, a) + β(s, a). (6)

If actions are selected based on the UCB1 bandit algorithm, ac-
cording to Equation (2), the bias factor is

β(s, a) =

s
2b2 ln(N(s))

N(s, a)
,

where N(s) it the number of times state s was visited and N(s, a) is
the number of times action a was taken in state s.

Essentially, UCT adds a bonus to each action value, the bonus be-
ing determined by the bias factor β(s, a). When the bias factor is
given by UCB1, taking action a at state s results in a decrease of the
bonus given to a and an increase to the one given to all other actions
that could have been taken, i.e. β(s, a) is decreased and β(s, a′) is
increased for all a′ �= a, a′ ∈ As. This helps understand the rea-
son why UCB1 never stops exploring. It follows directly from Equa-
tion (2) that, in an infinite number of action selections at state s, any
action will have its value increased to infinity if it is not picked in-
finitely often.

UCT was described by Kocsis and Szepesvári [8] using UCB1.
The authors proved that action values Q(s, a) converge to their ex-
pected value at a rate of O(log(N(s))/N(s)). It has been proven
that UCB1 picks the best action exponentially more times than all
other actions [4].

2.4 UCT and Game AI

The UCT algorithm is a best-first search method that is able to learn
an evaluation function by repeatedly playing or simulating game
episodes. Most Monte-Carlo tree search algorithms, in particular
UCT, can be applied to game AI under a simple common structure.
A game played from start to finish constitutes one episode. A tree is
built incrementally from each experienced or simulated episode, and
the whole procedure consists in repeating the following four steps:

1. Selection: starting at the root (either the starting state or the cur-
rent game state), recursively pick actions until a previously unseen
state is encountered.

2. Simulation: from the new state onward, take actions according
to a default policy (e.g. random policy) until a terminal state is
reached (end of the game).

3. Expansion: add one or more newly found states to the tree.
4. Backpropagation: propagate the result back to all visited states

during the episode.

Each game episode, e, consists of a sequence of state-action pairs:

e = {(s1, a1), (s2, a2), ..., (sm, am)}

The final pair (sm, am) must result in either a win or a loss. In UCT
using UCB1, each tree node z stores:

• s: the state corresponding to the tree node.
• Q(z, a): the action values for all actions a ∈ As.
• N(z, a): the number of times action a was taken in node z

A. Gusmão and T. Raiko / Towards Generalizing the Success of Monte-Carlo Tree Search Beyond the Game of Go 385

Actions values, Q(z, a), are an empirical estimate of the probabil-
ity of winning from node z (and state s) when action a is taken.

The selection process follows the UCB1 policy. At each node z
(and corresponding state s), the agent picks action a with maximal:

QUCT (z, a) = Q(z, a) + c

s
ln(
P

a′ N(z, a′))
N(z, a)

. (7)

Note that compared to Equation (2), a real-valued constant c was
introduced to balance the importance of exploration and exploitation.
This constant should reflect the agent’s prior knowledge regarding
the amount of exploration required.

The selection process progresses down the tree until a new node is
found. At this point, a default policy commences and is used to take
the game into a terminal state, thus completing the episode.

From this episode, one or more new nodes can be added to the tree.
In Go programs it is usual to only add the first non-visited state (e.g.
[6]), whereas some authors add states from the full episode [8, 5].

The final backpropagation step is straightforward. Denote the set
of all nodes in the current tree as S. When an episode e termi-
nates, all state-action pairs in the episode that are also in the tree,
all (s, a) ∈ e ∩ S are updated. Let R(e) be the final result of the
game episode, with R(e) = 1 if the episode ended in a win, and
R(e) = 0 otherwise. Then, the updates are:

N(z, a) ← N(z, a) + 1 (8)

Q(z, a) ← Q(z, a) +
1

N(z, a)
[R(e) − Q(z, a)]. (9)

The update for Q(z, a) is an incremental implementation of the av-
erage operator.

Considering reinforcement learning formalism, this is equivalent
to an undiscounted MDP where all states have zero rewards except
terminal states that result in a win, which are assigned value 1. UCT
qualifies as a on-policy Monte-Carlo algorithm since Q(z, a) is the
expected reward of taking action a in node z directly obtained from
following the UCT policy. The UCT policy is, in essence, a union of
two policies: a policy based on UCB, valid for states in the search
tree; and a default policy for states outside the tree. As episodes are
fed to UCT, the search tree grows and the default policy becomes
less important.

Many of the applications of UCT deal with minimax trees and
deterministic games. For minimax game trees, UCT can be applied
directly using the negamax convention for MIN decision nodes.
An example of this is UCT in computer Go (see e.g. [7, 6, 11]),
where professional level of play was achieved for 9x9 boards. Other
game AI implementations include computer Hex [2], Settlers of
Catan2 [13] and Poker [12], the last involving the earlier discussed
UCB-Tuned algorithm. Additionally, UCT was applied in RTS
games with moderate success [9].

2.5 Trans-UCT

For connected graphs, UCT may store multiple nodes for the same
state, resulting in the exploration of a considerably larger search
space, possibly exponential in regards to average branching factor.

2 Settlers of Catan is a modern multi-player board game. An interesting differ-
ence compared to classical games (such as Chess) is an initial randomized
board state.

Childs et al. [5] detect state transpositions in computer-Go and store
the statistics Q(s, a) and N(s, a) for each {s, a}, as opposed to
storing them for each tree node. This helps UCT obtain reliable
estimates quicker. However, a tree structure is still mantained whose
size keeps increasing even if all {s, a} pairs are already represented
in the tree. The authors also assume that the game is a directed
acyclic graph (DAG). To help differentiate the several UCT variants
we denote this approach as Trans-UCT.

2.6 Limitations of UCT and Trans-UCT

An important issue that has not seen enough attention in the UCT
literature is the fact that, in most games, states can be revisited. Thus,
a game should be represented as a connected graph (a MDP), not as
a tree nor as a DAG.

In MDPs the value of a state-action pair independent of the path
that originated it, due to the Markov property. Optimal behavior can
be achieved by determining the optimal action values Q(s, a) for
all states and actions. Therefore statistics only need to be stored for
each state-action pair, and need not consider the episode history. We
can conclude that for MDPs the tree-based formalism of UCT has an
immense degree of redundancy, storing values for each node of the
tree, nodes that can represent the same states. Consequently, UCT
requires more episodes to get accurate estimates of action values.

An additional drawback of the tree formalism is that it heightens
the reliance of UCT on the random policy. UCT takes the random
policy every time a new node is discovered and this happens very
often since every possible path taken results in additional nodes of
the tree. To alleviate this issue, in the realm of computer Go, Gelly
et al. [6] combine online learning via UCT with offline learning of a
default policy using TD(0) and linear function approximation. When-
ever UCT visits a new state, both Q(z, a) and N(z, a) are initialized
with prior values Qprior(z, a) and Nprior(z, a), where the former is
the offline-learned value function and the latter is a designer-selected
integer value which corresponds to the equivalent experience con-
tained in Qprior(z, a).

The use of tree data structures is not devoid of reason. Recall that
UCT is composed of two policies, the UCB policy and a random
policy. The UCB policy enforces exploration but only across differ-
ent episodes, as it is a deterministic policy which will repeatedly
pick the same action given the same action value and visit counts.
Hence, an agent that constantly chooses actions according to UCB
may get stuck in loops if the value function has (local) maxima at
non-terminal states. UCT avoids such loops by switching from UCB
to a random policy based on the history of the executing episode. The
following section introduces alternative approaches to avoid loops
that do not require tree data structures.

3 Proposed Improvements for UCT in MDPs

To understand how to make better use of the statistics collected in
each episode, first we examine the approach taken by Childs et al. [5],
Trans-UCT, which stores values Q(s, a) and N(s, a) but maintains
an explicit tree representation. Although the values Q(s, a) and
N(s, a) are not duplicated in different nodes of the tree, the tree
structure is not purposeless as it determines whether the policy taken
is the UCB policy or the random policy. However, storing a full tree
is infeasible in all but the most simple environments3. Similarly to

3 The reader may be reminded that UCT had success in the realm of
computer-Go, which is certainly not a small-scale environment. However,

A. Gusmão and T. Raiko / Towards Generalizing the Success of Monte-Carlo Tree Search Beyond the Game of Go386

Childs et al., we ideally wish to store unique Q(s, a) and N(s, a)
values for each state-action pair. Unfortunately, as discussed previ-
ously, UCT must not rely on UCB alone as its deterministic nature
results in infinite loops if the algorithm does not switch to a pol-
icy which enforces exploration within an episode. In other words,
any proposed policy must be soft, i.e. it must guarantee that any ac-
tion a at any state s has a non-zero probability of being taken, at
any episode. Note that if we exclude the random policy and consider
only the UCB part of UCT, then UCT is not a soft policy. It always
picks the action with highest value and it only updates the exploration
biases at the end of each episode. We propose several alternative im-
provements to the UCT algorithm.

3.1 Revisit-UCT

Revisit-UCT stores N(s, a, u) and Q(s, a, u), where u is the number
of times action a was taken in state s in the current episode.

Similar to traditional tree-based UCT, separate values for the same
state-action pair are stored. However, Revisit-UCT makes better
use of collected experience and reduces the amount of redundancy
in the information stored. First, whereas the trees built by UCT
are only meaningful for a fixed starting state, Revisit-UCT is valid
whichever state the environment starts in. Second, the values stored
are considerably less dependent on the paths taken, making better
use of collected experience and resulting in faster learning. Finally,
Revisit-UCT is able to execute the UCB policy in any state where
the current number of visits to any available action is smaller than u.
In contrast, as soon as UCT reaches a leaf state, the random policy
is executed until the episode terminates, independently of what
states happen to be visited. Thus, one should expect Revisit-UCT
to clearly outperform classic UCT, particularly in highly connected
environments where exploratory behavior leads to numerous visits
to the same states, within an episode. To limit memory requirements,
we bound the maximum depth to u = 10, i.e. Revisit-UCT considers
N(s, a, u) = 0 for u > 10.

3.2 Revisit-UCT-V

Revisit-UCT-V is identical to Revisit-UCT except that actions are
picked according to UCB-V instead of UCB. A variance estimate is
required for each (s, a, u) triplet and is stored in variable V (s, a, u).
The action-value function becomes

QUCT (s, a, u) = Q(s, a, u) (10)

+ c

 s
2
V (s, a, u)ξ(s, u)

N(s, a, u)
+ 3

ξ(s, u)

N(s, a, u)

!

(11)

with

ξ(s, u) = ln

 X
a

N(s, a, u)

!
.

Variance estimates are computed using an incremental algorithm to
avoid storing the whole history of value updates.

UCT when applied to computer-Go does not construct full search trees. At
each decision step, it builds a limited-depth search tree relying on the ran-
dom policy to estimate the values of leaf nodes. Thus, UCT in computer-
Go does not learn a permanent value function, limiting itself to learning an
ephemeral value function which is discarded after each move.

3.3 Stochastic UCT

Stochastic UCT (SUCT) imposes within-episode exploration
through the use of a stochastic policy. In regular UCT, UCB al-
ways picks the action with the highest QUCB(s, a) value. In con-
trast, SUCT relies on a stochastic policy to do that selection. Thus,
the purely random policy is never required, resulting in an algorithm
that explores considerably less when few episodes have been experi-
enced. The disadvantage comes from having to select an appropriate
stochastic policy. The within-episode exploration depends on the ran-
domness of the stochastic policy, but we must require that the policy
converges to the greedy policy to guarantee that SUCT converges to
the greedy policy as well. The exploratory behavior across different
episodes can be controlled independently from within-episode explo-
ration by selecting the constant c in Equation (7).

For SUCT we chose a dynamic ε-greedy policy where the value of
epsilon is:

ε =
wnεn + wrεr

wn + wr
(12)

with

wn =
X
a′

T (s, a′), wr = e
P

a′ M(s,a′) − 1

εr = 1/|As| and εn =
ε0pP

a′ T (s, a′)
.

Thus, the value of ε is a weighted average of εr and εn. The former
value represents a uniform policy whereas the latter is an epsilon-
greedy policy which converges to the greedy policy. The weight wn

increases with the experience collected in state s whereas wr in-
creases with the number of visits to a state within the same episode.
Intuitively, the purpose of these weights is to quickly shift to a ran-
dom policy when a state is visited several times in the same episode.
Thus, SUCT assumes that an optimal policy should not visit the same
state repeatedly. This is a valid assumption for many problem in-
stances such as games and navigation tasks. Finally, ε0 ∈ [0, 1[is a
free parameter that determines the amount of experience required to
reduce the randomness of the policy.

3.4 Online UCT

In online UCT (OUCT), exploration within an episode is enforced
directly by the UCB algorithm. This is achieved by considering an
exploration bias which accounts for the visits to a state-action pair
during execution of an episode, in an online manner. Let M(s, a)
represent the number of times action a was taken in state s during
the current executing episode. Let T (s, a) be the number of episodes
where {s, a} was visited. Then, the value for a state-action pair is

QOUCT (s, a) = Q(s, a) + c

s
ln(
P

a′ M(s, a′) + T (s, a′))
M(s, a) + T (s, a)

.

(13)
With the exploration enforced by the modified value function, the

necessity for a random policy is greatly reduced. In OUCT, the ran-
dom policy is only triggered when no statistical information is avail-
able for a state-action pair. The policy becomes

IOUCT (s) =

j
arg maxa′ QOUCT (s, a′) if all T (s, a′) > 0
∼ Uniform(unexplored(s)) otherwise

(14)
where unexplored(s) represents the set of all actions available at
state s for which there is no statistical information, i.e. all a′ ∈ As

for which T (s, a′) = 0.

A. Gusmão and T. Raiko / Towards Generalizing the Success of Monte-Carlo Tree Search Beyond the Game of Go 387

4 Experiments

4.1 Testing Environment

The environment is a discounted-MDP that mimics some of the char-
acteristics found in adversarial games. There is a unique starting state
and two types of terminal states, winning states and losing states. The
rewards given to the agent are zero at all states except winning states,
for which the reward is 1. The rewards are discounted with discount
factor γ = 0.99.

At each state there are at most four actions available, the moves
to adjacent cells (North, South, East, West) that are not walls. Moves
are not deterministic; they will not always move to their intended
target states because terminal loss states of the environment act as
attractors that, with some probability, force the agent to move in the
direction of the closest losing state. Let s′ be the state resulting from
taking action a at state s. In addition, let sc represent the losing state
which is closest to state s, measured by euclidean distance. Then, the
model of each action has the following form:

s′ =

j
target state with probability p(s)
state closer to sc with probability 1 − p(s)

(15)

Notice that both sc and p(s) are determined regarding the origin of
the action, s, thus being independent of the action taken by the agent.
The value of p(s) is

p(s) = e−‖s−sc‖2/σ,

where σ is a map-dependent constant used to design and tune map
environments. Thus, p(s) is higher the closer s is to a losing state.

The environment possesses three fundamental differences when
compared to Go: (1) the actions are stochastic; (2) the reward is dis-
counted; and (3) there is a high probability of revisiting states when
exploring the state space.

Three maps, shown in Figure 1, were used to test the algorithms
in distinct situations. Each grid cell is a state of the environment and
the color represents its optimal value computed by dynamic program-
ming. Note that the 9x9 map is a deterministic environment since it
has no losing states. The maps picked are particularly small-scale
problems in order to illustrate the difficulties the algorithms show
even when learning in such simple environments.

4.2 Results

Revisit-UCT is compared with UCT and Trans-UCT, both in which
the random policy is executed after the first non-UCB action selec-
tion. The first (leftmost) column in Figure 2 presents results for three
different maps, averaged over 10 independent runs. The value of c
for all three algorithms was empirically hand-picked. Results show
that Revisit-UCT achieves higher rewards than both UCT and Trans-
UCT in all maps. We confirmed that our implementation of UCT
and Trans-UCT were able to solve the small map by re-running the
experiment with 100 000 episodes (not shown).

Not only was Revisit-UCT the only algorithm able to obtain a
reasonably accurate estimate of the optimal value function, it did
so without a significant impact on earned rewards. At first glance
it might appear that UCT and Trans-UCT did not explore the full ac-
tion space. However, this is not true. Both algorithms explored the
action space (confirmed by looking at the visit counter), but their
exploration was not effective as they switch to a uniform random
policy which is completely unguided and is likely to result in small

Figure 1. Legend: Black-colored cells are walls; S - start; L - losing state;
W - winning state. The grey-scale values on the floor show the value of the

state assuming optimal policy.

rewards due to discounting. Revisit-UCT makes better use of its ex-
isting knowledge which allows it to obtain higher rewards given the
same experience.

The second column in Figure 2 compares the rewards for the three
proposed methods, Revisit-UCT, Stochastic UCT (SUCT), and On-
line UCT (OUCT). SUCT lacks an effective mechanism to escape
local maxima. OUCT does a better job at that since it is not ran-
dom and its exploration bias is updated during the execution of an
episode, forcing it to explore a larger region of state-action space.
Revisit-UCT is clearly superior in all maps, fact which is not easily
justified. We suspect that storing different action-values at each depth
improves the capacity of the algorithm to deal with the non-stationary
policy, since estimates at higher depths will be based on experience
collected from a better performing policy. In addition, (local) max-
ima of the action-value function have to appear at several different
depths to pose a significant problem to Revisit-UCT.

The third column in Figure 2 compares Revisit-UCT to estabil-
ished reinforcement learning algorithms, namely Q-learning and on-
policy MC. While Q-learning works very well in the smallest prob-
lem, it seems that Revisit-UCT is competitive in the large ones.

Finally, the addition of a variance estimate to the bias factor of
Revisit-UCT proved to have minimal impact in the algorithm as the
last column in Figure 2 shows. It is unclear whether Revisit-UCT-V
has any advantage when compared to Revisit-UCT. Revisit-UCT-V
seems to have a negative effect of increasing the variance of rewards
obtained, but the algorithm appears to be stable nonetheless.

Table 1 presents a summary of the main characteristics of the UCT
algorithms analyzed. All the proposed variants of UCT surpass the
original algorithm and Revisit-UCT achieves the highest rewards.
OUCT and SUCT have trouble leaving (local) maxima of the action-
value function which is the main reason for their low performance in
the 15x15 and 30x15 maps.

A. Gusmão and T. Raiko / Towards Generalizing the Success of Monte-Carlo Tree Search Beyond the Game of Go388

0 2000 4000 6000 8000
0

0.5

1
9x9

0 2000 4000 6000 8000
0

0.5

1
15x15

0 2000 4000 6000 8000
0

0.5

1
30x15

Revisit−UCT

UCT

Trans−UCT

0 2000 4000 6000 8000
0

0.5

1
9x9

0 2000 4000 6000 8000
0

0.5

1
15x15

0 2000 4000 6000 8000
0

0.5

1
30x15

Revisit−UCT

SUCT

OUCT

0 2000 4000 6000 8000
0

0.5

1
9x9

0 2000 4000 6000 8000
0

0.5

1
15x15

0 2000 4000 6000 8000
0

0.5

1
30x15

Revisit−UCT

QLEARNING

ONPOLICYMC

0 2000 4000 6000 8000
0

0.5

1
9x9

0 2000 4000 6000 8000
0

0.5

1
15x15

0 2000 4000 6000 8000
0

0.5

1
30x15

Revisit−UCT

Revisit−UCTV

Figure 2. Obtained rewards as a function of the episode count for diffent problems and methods. See text for explanation.

Algorithm Learned Function Exploitation Stage(UCB) Rank
UCT Q(s, a, TreeNode) if TreeNode ∈ tree 4
Trans-UCT Q(s, a) if TreeNode ∈ tree 3
Revisit-UCT Q(s, a, u) if N(s, ā, Msā) > 0 1

Revisit-UCT-V Q(s, a, u)
W (s, a, u)

Revisit-UCT with UCB-V 1

SUCT Q(s, a) always (stochastic) 2
OUCT Q(s, a) if N(s, ā) > 0 2

Table 1. Summary of the main characteristics of UCT algorithms.
Classical UCT has two stages: exploitation with UCB; and exploration with
a uniform random policy. Rank is a subjective order (smaller is better) based

on the experimental results presented. Legend: Msa: number of visits to
(s, a) in episode; d: depth of (s, a); Note:
N(s, ā) > 0 ⇔ N(s, a′) > 0, ∀a′ ∈ As.

5 Discussion

Traditional variants of the UCT algorithm do not perform well in
general Markov decision process problems despite their huge suc-
cess in computer Go. We proposed three variants of UCT that are
all much better in the studied problem. Revisit-UCT performed the
best, but still, it has two drawbacks. First, it requires storage of the
value function at different revisit numbers u, which might corre-
spond to a prohibitive amount of memory. More importantly, repre-
senting Q(s, a, u) through function approximation is a considerably
harder problem than representing Q(s, a). Also the other new vari-
ants, SUCT and OUCT, introduce interesting concepts which can be
transferred to the continuous case with little additional effort. As a
conclusion, we have provided tools that make UCT a strong alterna-
tive for solving MDP problems.

One of the main benefits of using UCB is its asymptotically op-
timal regret bound. In future, it would be important to show similar
results for our variants. For instance, in SUCT, we assumed that an
optimal policy for the map environment should not visit the same
state repeatedly, which of course limits its optimality in the general
case.

REFERENCES

[1] Bruce Abramson, ‘Expected-outcome: A general model of static eval-
uation’, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12(2), 182–193, (1990).

[2] Broderick Arneson, Ryan Hayward, and Philip Henderson. MoHex
wins Hex tournament, 2009.

[3] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári, ‘Tuning ban-
dit algorithms in stochastic environments’, in Algorithmic Learning
Theory, eds., Marcus Hutter, Rocco Servedio, and Eiji Takimoto, vol-
ume 4754 of Lecture Notes in Computer Science, 150–165, Springer
Berlin / Heidelberg, (2007). 10.1007/978-3-540-75225-7 15.

[4] Peter Auer and Jyrki Kivinen, ‘Finite-time analysis of the multiarmed
bandit problem’, in Machine Learning, pp. 235–256, (2002).

[5] Benjamin E. Childs, James H. Brodeur, and Levente Kocsis, ‘Transpo-
sitions and Move Groups in Monte Carlo Tree Search’, in IEEE Sympo-
sium on Computational Intelligence and Games, eds., Philip Hingston
and Luigi Barone, pp. 389–395. IEEE, (December 2008).

[6] Sylvain Gelly and David Silver, ‘Combining online and offline knowl-
edge in UCT’, in Proceedings of the 24th international conference
on Machine learning, ICML ’07, pp. 273–280, New York, NY, USA,
(2007). ACM.

[7] Sylvain Gelly and Yizao Wang. Exploration exploitation in Go: UCT
for Monte-Carlo Go, December 2006.

[8] Levente Kocsis and Csaba Szepesvári, ‘Bandit based Monte-Carlo
planning’, in In: ECML-06. Number 4212 in LNCS, pp. 282–293.
Springer, (2006).

[9] Radha krishna Balla and Alan Fern, ‘UCT for tactical assault planning
in real-time strategy games’, (2009).

[10] T.L. Lai and H. Robbins, ‘Asymptotically efficient adaptive allocation
rules’, Advances in Applied Mathematics, 4–22, (1985).

[11] Chang-Shing Lee, Mei-Hui Wang, G. Chaslot, J.-B. Hoock, A. Rimmel,
O. Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong,
‘The computational intelligence of MoGo revealed in Taiwan’s com-
puter Go tournaments’, Computational Intelligence and AI in Games,
IEEE Transactions on, 1(1), 73–89, (2009).

[12] Raphaël Maı̂trepierre, Jérémie Mary, and Rémi Munos, ‘Adaptive play
in Texas Hold’em Poker’, in Proceeding of the 2008 conference on
ECAI 2008: 18th European Conference on Artificial Intelligence, pp.
458–462, Amsterdam, The Netherlands, The Netherlands, (2008). IOS
Press.

[13] István Szita, Guillaume Chaslot, and Pieter Spronck, ‘Monte-Carlo tree
search in Settlers of Catan’, in Proceedings of Advances in Computer
Games, (2009).

[14] Lin Wu and Pierre Baldi, ‘A scalable machine learning approach to go’,
in in Advances in Neural Information Processing Systems 19, pp. 1521–
1528. MIT Press, (2007).

A. Gusmão and T. Raiko / Towards Generalizing the Success of Monte-Carlo Tree Search Beyond the Game of Go 389

