378

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).

This article is published online with Open Access by I0S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-378

Partial Cooperation in Multi-agent Local Search

Alon Grubshtein ! and Roie Zivan 2 and Amnon Meisels

Abstract. Multi-agent systems usually address one of two forms
of interaction. One has completely competitive agents that act self-
ishly, each maximizing its own gain from the interaction. Auctions
and voting scenarios usually assume such agents and follow game
theoretic results. The other form of interaction has multiple agents
that cooperatively search for some global goal, such as an optimal
time slot allocation for all landing aircrafts in an airport.

The present paper proposes a paradigm for multiple agents solv-
ing a distributed problem using local search algorithms and acting
in a partially cooperative manner. That is, agents with different pref-
erences search for a minimal cost solution to an Asymmetric Dis-
tributed Constraints Optimization Problem (ADCOP), while keeping
a limited form of self interest.

Two approaches for using local search in the partial cooperative
paradigm are proposed. The first, modifies the anytime mechanism
introduced by Zivan [19] so that agents can eliminate solutions which
do not satisfy their cooperation thresholds. The second proposes a
new local search algorithm that explores only valid solutions.

The performance of two innovative algorithms implementing these
two approaches, are compared with state of the art local search al-
gorithms on three different setups. When personal constraints are
strict, the proposed algorithms have a large advantage over existing
algorithms. We provide insights to the success of existing algorithms
within the anytime framework when constraints are loose.

1 Introduction

Most studies investigating multi agent systems consider either fully
cooperative agents which are willing to exchange information and
take different roles in the process of achieving a common global goal
(cf. [17, 11, 2]), or self interested agents which are considered to
be rational when they take actions that will increase their personal
gains (cf. [3]). A notable exception to this two class division includes
cooperative game theory which considers cases where self interested
agents will join or form coalitions in which they will fully cooperate.

When one considers the standard working environment in which
employees perform tasks for the benefit of the organization they work
for and get a pay check in return, it seems that this most common sit-
uation is not covered by any of the two models described above. The
agents in any working environment are naturally self interested and
often have the option to increase their own benefit within the organi-
zation, even when benefits are non monetary. However, the success
of the organization, and ultimately of the agents themselves, requires
that the agents act loyally to increase the organizational profits (e.g.,
optimize some global goal).

Consider for example a factory, in which employees work in shifts.
Workers are assigned to shifts according to the constraints they sub-
mit to their manager. It is natural to assume that some shifts are more
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desirable than others. Workers may be willing to take the less desired
shift for the benefit of the organization as long as some threshold on
their own gain is satisfied. This threshold can be related to the amount
of decrease in their own utility, to fairness (uniform distribution of
the load among workers), or to different forms of compensation.

Another example naturally arises when agents need to schedule
meetings in a working environment. The agents are assumed to be
working for the same organization, and need to schedule their meet-
ings to fulfill their own tasks. If agents are asked to postpone or can-
cel meetings for the benefit of the organization they would probably
be willing to do so as long as some level of quality on their meeting
schedule is maintained.

In real world situations such as those described above, agents need
to collaborate in finding the best (or a good) global solution to the
problem, despite having personal goals which may be in conflict.

Combinatorial optimization problems similar to the examples de-
scribed above, e.g., generating employee timetables that incorporate
gains from all constraints among agents, can naturally be represented
as Asymmetric Distributed Constraint Optimization Problems (AD-
COPs) [4]. ADCOPs incorporate personal gains (or costs) of agents
within distributed combinatorial problems. Like the Distributed Con-
straint Optimization Problem (DCOP) [11, 10, 14], they incorporate a
cost or utility for every combination of assignments (aka constraints).
However, ADCOP constraints may include a different cost for every
agent involved in a joint assignment, representing the personal valu-
ation of the assignment combination by the agent.

Previous studies of ADCOPs considered full cooperation of the
agents, and assumed that the main reason for maintaining the asym-
metric structure of the problem relates to privacy [1, 4]. In contrast,
the scenarios described above have agents that are cooperative only
when some conditions are satisfied. This generic situation of multi-
agent complex interactions raises the need to investigate modes of
collaboration for self-interested agents solving combinatorial prob-
lems.

The present paper focuses on two new and fundamental questions
regarding asymmetric multi agent optimization:

e What are the basic modes of collaboration one can define for AD-
COP agents?

e What are the relevant local search methods for exploiting such
modes of collaboration?

The following contributions to the investigation of the questions
above are presented:

1. A model for representing agents’ intentions for cooperation is pro-
posed. Levels of cooperation are defined as a function of the per-
sonal outcomes that agents can expect of the process with respect
to the expected result of a non-cooperative interaction, of the level
of trust they have in others and of their willingness to sacrifice for
the common good (the quality of the organizational, global goal).

2. A mechanism that allows agents to reject solutions which do not

satisfy their threshold for cooperation is proposed. The mecha-
nism is based on the anytime mechanism of [19]. It keeps track of



A. Grubshtein et al. / Partial Cooperation in Multi-Agent Local Search 379

the best solution found in terms of global utility, which satisfies
all agents’ conditions for cooperation. This mechanism allows the
agents to use any local search method, even if it traverses states
which are not acceptable by some of the agents.

3. Two innovative local search algorithms are proposed and com-
pared with state of the art local search algorithms. The proposed
algorithms attempt to traverse high quality states which satisfy the
thresholds on personal gain that agents have. That is, we show that
these algorithms provide globally good solutions while maintain-
ing a predefined guarantee on the maximal cost incurred on each
agent. All algorithms are evaluated on graphs with different struc-
tures and the comparison reveals the advantages and trade offs
against state of the art local search.

2 Related Work

Local search algorithms for ADCOPs were investigated in [4]. The
investigation revealed that standard local search algorithms which
perform well on DCOPs do not converge when solving ADCOPs.
Algorithms that guarantee convergence were proposed and shown to
find solutions with higher quality than standard DCOP algorithms.
The algorithms proposed in the present paper are compared to both
DCOP and ADCOP algorithms.

Numerous studies in the field of game theory define various types
of equilibria states which address the personal goals of agents in a
broader scope (cf. [13]). Strong equilibria notions are most appeal-
ing to multi agent systems, but most combinatorial problems do not
posses such stable states and require a mediator to address this issue
[15, 12]. Moreover, these equilbria do not guarantee efficiency and
may often be improved when cooperation is introduced.

An attempt to propose a trust based, game theoretic model for
decision making was made by [16]. Their model defines risk and
trust in normal form games where a Nash equilibrium serving as a
non-cooperative baseline exists. Although this paper is not concerned
with distributed search and does not address algorithmic challenges,
it inspired our work. An additional challenge which we address in
our work and was not addressed in [16] is the the level of coopera-
tion that is required in order to consider solutions which do not Pareto
improve the baseline state.

Another study which proposed partial cooperation with respect to
a non-cooperative baseline was [20]. This study considered resource
allocation problems (cake division) and the baseline allocation used
was the non-cooperative proportional division. Our work can be con-
sidered as a generalization of this preliminary work to complex multi
agent interactions.

Finally, a recent study proposes an optimization scheme for solv-
ing a specific network based game [5]. Focusing on cooperative
agents interacting in this game, authors propose a solution which is
proven to secure a minimal game theoretic based gain to each agent.
The present study is able to generalize upon this approach, and pro-
poses different modes of (partial) cooperation, regardless of the un-
derlying problem addressed.

3 Asymmetric DCOPs

An ADCOP is a tuple (A4, X,D,R). A is a finite set of agents
A1, Ag, ..., Ay, X is a finite set of variables X1, Xo, ..., X;,. Each
variable is held by a single agent but an agent may hold more than
one variable. D is a set of domains D1, D2, ..., D,. Each domain D;
contains a finite set of values which can be assigned to the variable
X;. R is a set of relations (constraints).

Each constraint C' € R of an asymmetric DCOP is defined over a
subset of the variables X ¢, and maps any value assignment combi-
nation for these variables to a vector of non-negative costs:

C:Diy, X Diy x - D;,, — RE (1)

This vector includes the cost for each agent whose variables are in-
cluded in X¢.

A binary constraint refers to a partial assignment with two vari-
ables, i.e., k = 2. An optimal solution is a complete assignment of
aggregated minimal cost. In maximization problems, each constraint
has utilities instead of costs and an optimal solution is a complete
assignment of maximal aggregated utility. In the remainder of this
paper, the problems we discuss are binary minimization problems in
which each agent holds exactly one variable.

4 Partial Cooperation Model

Previous studies of ADCOPs assumed full cooperation by the agents
and that the main reason for the asymmetric structure of the prob-
lem relates to privacy [1, 4]. The collaboration model for ADCOPs
proposed below (A-cooperation), enables representations of partial
intentions for cooperation of agents.

The level of cooperation (which will be represented by \) affects
the possible outcome of an Interaction Process among agents in an
ADCOP. The interaction process is defined as follows:

Definition 1. Given an ADCOP, an Interaction Process IP of n
agents is a predefined sequence of events that upon termination has
each agent select an assignment for its variables.

An interaction process defines a sequence of actions to be per-
formed by agents prior to the assignment selection, for example:

1. Agents select an assignment without any interaction among them.
This scenario is similar to simultaneous one shot games which are
intensively studied by game theoreticians [9].

2. Agents perform k synchronous message exchange iterations in

which each agent sends a message to each of its neighbors and
receives a message from each of them. This is usually known as a
local ADCOP search algorithm. [4, 6]

3. Agents send messages that initiate a bounded sequence of asyn-

chronous message exchanges. In this process an agent reacts to
messages it receives. This IP can be thought of as an asynchronous
search algorithm [11, 2, 1].

Following the definition of the interaction process let us examine

expected outcomes of an IP for different degrees of cooperation.
Non-Cooperative (NC) - In the non-cooperative setting agents in-
teract with one another based on their local knowledge of the system
and driven by their own goals and interest. Typically, local knowl-
edge of agents includes their constraining agents (i.e., their neigh-
bors) and their view of the gains and costs of their constraints with
their neighbors. Agents perform rationally, i.e., they perform actions
that would increase their own utility (or minimize their costs). The
outcome of the interaction process depends on the details of the in-
teraction. For a multi-step interaction one can expect the end result
to be some form of equilibrium if the problem includes such a state
and the interaction process allows convergence to it.
Guaranteed Personal Benefit collaboration (GPB) - Collaborat-
ing agents can be expected to reach an agreement. Collaboration in
the framework of an ADCOP may require the agents to perform a
sequence of actions, as part of the interaction process, that are not
necessarily rational. However, the outcome of a sequence of actions
in the GPB cooperation model must be a state which is weakly supe-
rior for each agent, i.e., the outcome state reached Pareto improves
the outcome of the NC process. Such an agreement can be reached
via some mediation process and requires that each agent is aware of
its expected gain in the NC baseline.

3 For mediating models that transfer non stable states to stable states in nor-
mal form games see [18].
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It is important to note that in some multi agent interactions there
can be more than a single Pareto improvement state with respect to
the initial, baseline state. This provides some freedom for the sys-
tem’s designer in selecting the global most desirable GPB state.

The relevance of a GPB agreement depends on the ability to en-
force the binding collaboration agreement. This enforcement can be
direct or indirect (active or passive). By direct enforcement, one usu-
ally refers to punishment methods to the offending agent, e.g., if the
agent does not follow the agreement it needs to pay some tax which
reduces the attractiveness of the non-cooperative strategy. Alterna-
tively, an agent can follow the agreement because of its frust in its
peers or in the system’s ability to enforce the binding agreement.
A-cooperation - In order to allow the agents to consider solutions
with high global quality, which are not a Pareto improvement of an
initial baseline state, we define a parametrized family of high level
cooperation schemes. These are characterized by the requirement
that the benefit of some of the agents decreases in order to increase
the global quality of the outcome.

The A-cooperation model is based on the amount of risk, in the
form of personal losses, that agents are willing to undertake in or-
der to satisfy the global objective of the organization. The following
definitions are used in the proposed A-cooperation model (as before,
and to avoid confusion, we assume minimization problems in the fol-
lowing definitions, i.e., constraints specify costs and not utilities).

Definition 2. Let 1; be the non-cooperative (NC) cost of agent i (i.e.,
the cost for agent 1 in the baseline solution). The risk level of agent
i is a value \; > 0 which defines the maximal increase in the value
of wi which is acceptable by agent 1.

Risk bounds can significantly decrease the number of feasible out-
comes, as can be seen in the next definition.

Definition 3. Let p; be the NC cost of agent i and let \; be its ac-
ceptable risk level. A Feasible outcome is defined to be any outcome
(solution) o in the set of all possible outcomes O, that satisfies the
following condition.

ofewsle — 1o c O Vi€ A, ci(0) < pi + Ni}
Where ¢; (0) is the cost for agent i in outcome o.
Definition 4. An interaction is A-cooperative if A = max;ca \;.

When \; > maxoco ¢i(0) — p; for every agent 4, agents will be
fully cooperative and direct their joint efforts towards attaining the
designer’s global goals. When A = 0 we revert to the GPB coopera-
tion case described above. Thus, in the rest of this paper we consider
it as a special case of the A-cooperation model. For ease of presen-
tation and without loss of generality to the algorithms’ properties we
use the same A value for all agents in the remainder of this paper.

5 Partial Cooperation Local Search

Two methods towards finding A-cooperative solutions in large dis-
tributed settings are presented below. The first enables unsatisfied
agents (agents whose cost exceeds their baseline cost +)\) to mark
undesired solutions. The best, valid, solution is then maintained with
a modified version of a distributed anytime scheme [19]. With this
modified mechanism agents can safely explore parts of the search
space which would otherwise be considered invalid (outcomes o ¢
Ofeasibley yet still agree on the best valid solution examined at any
instant.

The second approach details an algorithm which guarantees that
the personal cost of an agent does not exceed the predefined coop-
erative value, while constantly seeking globally improving solutions.
Agents executing this algorithm exploit possible improvements until
they converge to some local minima which can’t be further improved
without breaching the baseline bound of any agent.

5.1 Anytime Mechanism for \-Cooperation

The Anytime mechanism for DCOP local search algorithms pre-
sented in [19], uses the messages passed by the agents performing
a local search algorithm, to aggregate the cost of each state traversed
by the agents and determine which was the best among them. The
mechanism generates a BFS spanning tree of the constraint graph
and each agent is responsible to aggregate and calculate the cost of
the state in the subtree it roots and pass it to its parent. After a num-
ber of iterations equal to the height h of the tree, the root agent can
calculate the cost of a state. If this cost is less than the cost of the
best solution found so far, the root propagates down the tree that a
new solution was found. Agents hold their value assignment in the
best solution and the last 2k assignments so that if they are informed
that a new solution was found they still hold the relevant value as-
signment. The overhead required by the algorithm is very small in
runtime, storage and privacy terms [19].

In the proposed partial cooperation paradigm, only solutions
which satisfy the A requirements of all agents should be stored. To
this end we require that each agent, when passing the information
up the tree, includes an indication whether it approves the state in
the relevant iteration. An agent indicates that it approves the state in
some iteration j if:

1. The state in iteration j satisfies its cooperation threshold, i.e., an
agent ¢ approves the state in iteration j if ¢;(0;) < s + As.

2. The agent received an approve signal for step j from all its chil-
dren in the tree.

The root agent propagates that the state held by the agents in it-
eration j is a new solution if the accumulated cost of the state j is
smaller than the cost of the best solution it currently holds and if it
was approved by all agents. In the beginning of the run the base-line
solution is held by the root agent as best. Thus, we are guaranteed
that only solutions which satisfy all agents’ thresholds can be con-
sidered.

5.2 Goods-MGM

The anytime mechanism described in the previous sub-section coor-
dinates an agreeable outcome to general-form distributed local inter-
actions. However, this mechanism provides very little feedback to its
underlying algorithm. As a result, agents combining a local ADCOP
algorithm with the anytime mechanism may end up exploring invalid
parts of the search space without reaching a valid outcome (besides
the initial state) throughout their entire execution. The outcome of
the algorithm as reported by the mechanism, could, in this case, be
the original base line assignment — the input.

Algorithm 1 attempts to overcome this problem by directing out-
comes towards valid solutions. The algorithm uses “Good” and “No-
Good” messages to signal the agents in the neighborhood N (%) of
agent a; which actions, pending the current state, may result in a
breach of its baseline. Algorithm 1 does not guarantee that all the
states it considers are valid.

The algorithm proceeds in five synchronous steps that together
constitute a single cycle. During initialization, each agent initializes
its main data structures:

e localView — The last known state of a;’s neighbors.

e N(G_store — A list of neighboring agents to whom a NoGood!
message was sent, and the context in which this message was sent.

e clim — A list of domain values which were eliminated and the set
of agents requesting their elimination.

The agent then proceeds to notify its neighbors of its current state
and begins its operation (phases 1-5) until a termination condition is
met.
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Algorithm 1 - Goods-MGM
input: baseLineAssignment, baseLineGain and A

Algorithm 2 Asymmetric Gain Coordination (AGC)
input: baseLineAssignment, baseLineGain and A

Init:
value +— baseLineAssignment;
localView /NG _store/elim < null ;
send(value) to N (7);
while stop condition not met do
execute phases 1-5;
Phase 1
Collect all value messages and update localView;
for all a; € NG_store do
ng < NG _store.get(a;);
if ng is inconsistent with localView then
send(Good!) to a;;
Phase 2
for all Good! message collected do
elim.remove(msg.sender());

while cost > baseLineCost + A do
a; <+ first agent in some ordering of localView;
v; < localView.valO f(a;);
localView.remove(a;);
NG _store.add(a;,localView);
send(NoGood!, a; # v;) to a; and update(cost);
Phase 3
Collect NoGood! messages and update elim;
if Domain \ elim == () then
value < baseLineAssignment;
send(BaseLine!) to N(i);
Phase 4
if received BaseLine! message then
value < baseLineAssignment;
else if did not send a BaseLine! message then
(vi, gain;) < best Assignment(Domain \ elim);
send(gain;) to N (2);
canImprove < true;
Phase 5
Collect all gain; messages;
if canImprove && gain; > maz;jenygain; then
value < v;;
send(value) to N ();

Phase 1: The agent collects all new value messages and updates its
local view. It then proceeds to examine its NG _store and validates
that the contexts in which NoGood! messages were sent to different
neighbors are still valid. In case of an inconsistency, a Good! mes-
sage is sent to the relevant agent.

Phase 2: After collecting all Good messages the agent attempts to
remove certain values from its elim set. If the sender of a Good!
message is also the last in the set of agents requesting to remove
some value v;, this value is returned to the current domain. At this
point a; examines its current cost. While this cost is greater than its
base line cost + A (i.e. the agent is “unsatisfied”), an agent a; with
minimal ID is selected and removed from the agent’s localView. A
NoGood! message is sent to a; forbidding its current assignment,
and the remainder of the localV iew is then used as an explanation,
or the context, stored in the NG _store for this request. Finally, the
cost incurred on a; by a;’s assignment is removed.

Phase 3: If, after collecting NoGood! requests from all neighbors,
no values remain in the current domain the agent assigns its base line
assignment and requests its local surrounding to do the same.

Phase 4: Any agent receiving a Baseline! message assign its base
line assignment. If the agent did not receive such a message and did
not initiate one, it iterates over the values in its domain which were
not removed by NoGood! messages and finds the assignment yield-
ing minimal cost. The gain from assigning it instead of the current
assignment is then sent to all neighboring agents.

Phase 5: If, after receiving all maximal gain messages, a;’s improve-

Init:
value +— baseLineAssignment;
localView <+ null ;
send(value) to N (7);
while stop condition not met do
execute phases 1-3;
Phase 1
Collect all value messages and update localView;
(vals, gain;) < improvingAssignment();
send({(val;, gain;)) to N(i);
Phase 2
Collect all (val;, gain;) messages;
aj + agentin N(7) U {a;} with maximal gain s.t.
costFrom(n, val,) < baseLineCost + X;
send(Neg!) to N(3) \ a;;
Phase 3
Collect Neg! messages;
if did not receive Neg! && can improve then
value < val;;
send(value) to N(i);

ment is greater than its neighbors improved gains, the agent assigns
its maximal gain assignment, and notifies its neighbors of this assign-
ment change (as in standard MGM [8]).

It is important to note that unlike most local search algorithms,
Goods-MGM focuses on the personal state of each agent rather than
the standard minimal global cost. To meet these goals the algorithm
introduces both “Good!” and “NoGood!” messages but also allows
for local restarts (Phases 3 and 4).

5.3 Asymmetric Gain Coordination

An alternative approach for Local Partial Cooperative search is to
design an algorithm that explores only valid states. Here, the any-
time mechanism is not required since the validity of the states is
maintained in the algorithmic level. Asymmetric Gain Coordination
(AGC) is an algorithm that preserves this property and is presented
next in Algorithm 2.

An AGC cycle includes three synchronous steps. In the initializa-
tion phase agents instantiate a localV iew data structure, assign their
baseline assignment and notify their neighbors of this assignment.
Agents then proceed to continuously execute phases 1 — 3 until some
stop condition occurs.

Phase 1: Each agent collects all new value messages and updates
its local view. Next, each agent attempts to find an improving value
assignment. Note that this is not necessarily the maximal gain im-
proving assignment (still an improving assignment) and that different
heuristics for selecting an improving value can determine the agents’
level of exploration. This phase ends when the assignment, and the
cost reduction from it are sent to all neighbors.

Phase 2: Receiving proposed value assignment and gain improve-
ment of neighbors, agents find the neighbor a; whose unilateral as-
signment change results in a valid outcome (cost does not breach
baseline + A) of maximal improvement. All other assignment
changes, including a;’s proposed assignment if not of maximal gain,
are then rejected and a Neg! message is sent to the relevant neigh-
bors.

Phase 3: If an agent did not receive a Neg! message and proposed an
improving assignment, it commits to the new assignment and notifies
all its neighbors.

Proposition 1. During the entire execution of AGC, the global state
o isfeasible (le = Ofeaszble)
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Figure 1. The aggregated solution cost when using the anytime
mechanism and A = 0.4 on Erdoés — Rényi graphs

Proof. First, notice that any proposed assignment which results in a
personal cost greater than the baseline + X cost is rejected in phase
2. This is an insufficient condition — the cost change calculation is
made with respect to the current view of the agent. If two of a;’s
neighbors simultaneously change their assignment, the cost incurred
on a; may breach its personal bound. Coordinating a single change
in each local environment is handled with Neg! messages. Only one
neighbor of a; does not receive such a message from a; (last line of
phase 2), guaranteeing that at most one agent in its neighborhood can
commit to a new assignment. O

6 Experimental Evaluation

Three sets of experiments were conducted in order to compare the
proposed algorithms with standard DCOP and ADCOP local search
algorithms combined with the A-cooperation anytime mechanism. In
all experiments, agents first conduct a short non cooperative interac-
tion to find a baseline solution later used by the local search algo-
rithm.

The initial baseline interaction is composed of 100 synchronous
steps in which each agent assigns its best improving value at each
step. The local search algorithms executed after this interaction, op-
erate for another 1900 cycles. At each cycle, the aggregated sum of
costs is calculated (note that when using the anytime mechanism only
feasible outcomes are recorded).

Beside AGC and Goods-MGM, MGM and MGM2 [8], MCS-
MGM and GCA-MGM [4] were evaluated — all sharing the same
baseline (i.e. 100 steps). Three distinctive problem sets were con-
sidered [7]: (1) Uniform random problems where pairs of agents are
connected in an asymmetric constraint with a probability value p:
(Erdos — Rényi graphs). (2) K-regular graphs where all agents share
the same degree. (3) Scale Free problems where the underlying net-
work is a scale free network constructed by using the Barabdsi-Albert
model.

Results are averaged over 50 random instances with 100 agents,
each holding a single variable with 10 values in its domain and
present the aggregated solution quality as a function of cycles®.
Setup 1 - Erdos-Rényi graphs: in this setup, the p; value was set
to 0.1. The cost of a joint assignment by two constrained agents was
set to 0 with a probability of 0.5 or to a randomly selected (uniform)
cost in the range 0..99, otherwise.

Figure 1 and figure 2 present the aggregated costs of the agents
when the anytime mechanism is applied to all algorithms and the
cooperation parameter A is set to 0.4 and 0.8 respectively. In both
settings the Goods-MGM and AGC algorithms produce significantly
better results than all the other local search algorithms. One can see
by these results that despite MGM and MGM2’s greedy pursuit of
improving assignments there are long periods in which no improve-

4 Recall that the number of phases within each cycle may vary between dif-
ferent algorithms
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ment is made. This does not mean that the algorithms are not im-
proving the aggregated total cost but rather that at least one agent
breached its baseline + A gain. Thus, when the A\ value of agents
increases and the problem becomes more relaxed, these algorithms
provide better results (remember that the algorithms are ignorant of
the \ value and visit the same parts of the search space).

The results also demonstrates that the local search procedure pro-

posed for ADCOPs, namely MCS-MGM, GCA-MGM and ACLS
are hardly affected by the length of the execution or the A\ values
used. This can be attributed to their quick convergence that was al-
ready reported in [4]. The anytime mechanism which is required for
the coordination of feasible solutions is not effective for algorithms
which are quick to converge.
Setup 2 - K-reg graphs: this setup included randomly generated
graphs in which all agents shared the same degree deg = 5. The
cost of a joint assignment by two constrained agents was randomly
and uniformly selected in the range 0..99. This setup generates looser
problems than the previous one in two senses:

e The cost of any joint assignment is uniformly sampled in the range
0..99 (instead of just 50% of the joint assignments), and the mean
cost is therefore expected to be higher. This implies that the ini-
tial baseline cost of each agent is higher as well and that in gen-
eral, more states become feasible outcomes. Hence the problem is
looser in this sense.

e The degree of agents in this setup is lower than the (expected)
degree of agents in setup 1 and hence less coordination is required
for finding a feasible outcome.

Figure 3 presents the aggregated cost of agents when A = 0.4.
Although Goods-MGM and AGC still find the best feasible outcome
(this time, it is AGC that finds the best results) one can see that the
performance of MGM2 is significantly better. As more states become
feasible, the benefits of combining the anytime mechanism with an
exploratory algorithm greatly increases. This is also evident in Figure
4, presenting the aggregated cost for even looser problems. In this
setup, the combination of an anytime mechanism with MGM?2 yields
the best results.
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Figure 4. The aggregated solution cost when using the anytime
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Figure 5. The aggregated solution cost using the anytime mechanism and
A = 0.4 on Scale Free networks

10000

Setup 3 - Scale Free networks: in this setup a scale free network
was built using the Barabdsi — Albert (BA) model. An initial set of
20 agents was randomly selected and connected. At each iteration
of the BA procedure an agent was added and connected to 3 other
agents with a probability that is proportional to the number of links
that the existing agents already have. The constraint structure used
was similar to the one used in the regular graphs setup, where the
cost of a joint assignment was randomly selected in the range 0..99.

Although some agents in a scale free network are expected to be
of high degree, most are not. That is, some parts of the network have
local interactions which are expected to be looser and as a result the
advantages of the modified anytime mechanism are more significant,
as seen in Figure 5.

Similar to the previous experiments, increasing the A value further
will mostly benefit MGM and MGM2 but not Goods-MGM. This
is explained by the different algorithmic approaches taken by these
algorithms. While MGM and MGM2 attempt to minimize the total
sum of costs and ignore the feasibility of an outcome, Goods-MGM
focuses on the feasibility of a solution rather than its quality. As more
states become feasible (looser problems) the probability that the low
cost states visited by MGM and MGM2 will be marked by the any-
time mechanism becomes higher.

7 Conclusion

A paradigm and a model for partial cooperation by agents solving a
distributed global combinatorial problem is presented. A broad spec-
trum of cooperation levels can be represented by the use of a cooper-
ation parameter A. The model requires that a baseline global solution
is first computed (e.g. a non cooperative proportional division or a
Bayesian Nash equilibrium). This is followed by a cooperative pro-
cedure which is proven to produce Pareto improving global solutions
over the non cooperative baseline. The proposed model does not rely
on a specific precomputed baseline and uses the parameter A (risk
level) for determining the level of cooperation. The value of A dic-
tates the maximal personal cost that agents are willing to undertake
in order to achieve a better global solution.

Asymmetric DCOPs [4] are used to define the distributed frame-
work of the problem, where asymmetric constraints represent differ-
ent valuations that agents have for various mutual outcomes. Two dif-
ferent methods for finding minimal cost solutions which also satisfy
the personal baseline gain thresholds of agents are presented. The
first method modifies the local search anytime mechanism of [19] to
select the best global outcome among all considered outcomes which
were approved by all agents. Thus, any local search algorithm com-
bined with the mechanism is guaranteed to produce a valid solution.
The second method designs an algorithm which only considers valid
solutions. In the Asymmetric Gain Coordination (AGC) algorithm
presented in Section 5.3 all states held by agents throughout the al-
gorithm’s execution are guaranteed to be feasible.

Our empirical evaluation included three different graph classes
and different setups. It demonstrates that the combination of the any-
time framework with the Goods-MGM algorithm (Section 5.2) on
the one hand and the AGC algorithm on the other hand, produce
globally high quality solutions when compared to other local search
algorithms that use the anytime method. This is especially evident
when the thresholds of agents are tighter ( i.e. the level of coopera-
tion of agents is lower).
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