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Abstract. Coalitional games model scenarios where rational agents

can form coalitions so as to obtain higher worths than by acting in

isolation. Once a coalition forms and obtains its worth, the problem

of how this worth can be fairly distributed has to be faced. Desir-

able worth distributions are usually referred to as solution concepts.

Recent research pointed out that, while reasoning problems involv-

ing such solution concepts are hard in general for games specified

in compact form (e.g., graph games), some of them, in particular

the core, become tractable when agents come partitioned into a fixed

number k of types, i.e., of classes of strategically equivalent players.

The paper continues along this line of research, by firstly showing

that two other relevant solution concepts, the kernel and the nucle-

olus, are tractable in this setting and independently of the specific

game encoding, provided worth functions are given as a polynomial-

time computable oracles. Then, it analyzes a different setting where

games are still k-typed but the actual player partitioning is not a-

priori known. Within this latter setting, the paper addresses the ques-

tion about how efficiently strategic equivalence between pairs of

players can be recognized, and reconsiders the computational com-

plexity of the core, the kernel, and the nucleolus. All such problems

and notions emerged to be intractable, thereby evidencing that the

knowledge of player types marks the boundary of tractability for rea-

soning about k-typed coalitional games.

1 Introduction

Coalitional games have been adopted by the AI community as useful

formal tools to analyze cooperative behavior. Once a coalition forms

and obtains its worth, one has to face the problem of how this worth

can be fairly distributed. Several solution concepts, such as the core,

the kernel, and the nucleolus (see, e.g., [12]), have been introduced

and thoroughly studied through the years with the aim of character-

izing fair worth distributions.

Looking at players’ decision processes about worth distributions,

it is sensible to assume players’ reasoning resources not to come un-

bounded and to use the tools of computational complexity as a viable

mean to model and reason about this bounded rationality principle.

In particular, it is easily noted that computational questions are of

interest whenever the function specifying the worth associated with

each possible coalition is encoded in some succinct way, e.g., when

it is given in terms of polynomially computable functions over some

combinatorial structure. Indeed, all problems trivialize if we explic-

itly represent the entire extent of a worth function, which requires ex-
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Problem C(FP) Ck(FP)∧TBF Ck(FP)∗

IN-CORE co-NP-c [8] in P [15, 1] co-NP-c
CORE-NONEMPT. co-NP-c [8] in P [15, 1] co-NP-c

IN-KERNEL ΔP
2 -c [8] in P co-NP-h

IN-NUCLEOLUS ΔP
2 -c [7] in P co-NP-h

NUCLEOLUS-COMP. FΔP
2 -c [7] in FP NP-h

Figure 1. Summary of results. C(FP): games having polynomial-time
worth functions; Ck(FP): games in C(FP) with k player-types at most; TBF:

type-based form, where types are given. ∗Using randomized reductions.

ponential space in the number of involved players. Coalitional games

whose worth functions are encoded by means of some succinct rep-

resentation mechanism will be hereinafter called compact games.

Unfortunately, large part of the complexity analysis carried out on

compact coalitional games undebatably demonstrated that comput-

ing with most of the aforementioned solution concepts is intractable

in general. This emerges from the first column of the table reported

in Figure 1, where IN-X denotes the problem of deciding member-

ship in the solution concept X, CORE-NONEMPTINESS is the prob-

lem of deciding the non-emptiness of the core, and NUCLEOLUS-

COMPUTATION is the problem of computing the nucleolus. There,

note that hardness results have been shown for specific compact

game settings (in particular, graph games [5] and marginal contri-

bution nets [9]), while membership results hold over the whole class

C(FP) of all those games whose worth functions are computable via

polynomial-time FP oracles (see [8, 7]). As a matter of fact, however,

all these results deal with settings where each player in the game may

have a distinctive behavior.

On the contrary, it is everyday life experience that people (and

agents!), in reasoning within a specific decision context, behave ac-

cording to some (sometimes, few) behavioral schemas, which are of-

ten known in advance to the scenario analyst. For instance, in many

applications agents are naturally clustered according to technological

features (e.g., they model mobile phones sharing data in a wireless

network, and are classified according to bandwidth and energetic fea-

tures). Therefore, it is often the case that we have a large number of

agents, but in fact they belong to a limited number of categories, usu-

ally called types, that determine their behavior in the game at hands.

Being this setting natural to many practical contexts and useful, it is

sensible to ask whether, or to which extent, the complexity of rea-

soning with solution concepts for a given class of coalitional games

is influenced by knowing that the number of players’ types is small,

formally, is bounded by some fixed constant.

This is precisely the perspective introduced by Shrot et al. [14],

who defined the setting and mainly focused on graph games and

games with synergies among coalitions [4], and then put forward

by Ueda et al. [15] and by Aadithya at al. [1], who extended the
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analysis to arbitrary classes of games with FP worth functions: Let

Ck(FP) ⊂ C(FP) be the subclass of C(FP) of all those games whose

players can be partitioned into at most k types, with k being a fixed

natural number, and let us say that a game in Ck(FP) is in type-based

form if the type of each player is known a-priori. Then, our current

knowledge is that IN-CORE and CORE-NONEMPTINESS are feasible

in polynomial time over games in Ck(FP) that are moreover given in

type-based form [15, 1]. In fact, extending the analysis to further so-

lution concepts has been left as an open research issue [15].

In this paper, we start by addressing the above research issue, and

our first contribution is to completely characterize the complexity of

the kernel and the nucleolus. Indeed,

� We show that IN-KERNEL, IN-NUCLEOLUS, and NUCLEOLUS-

COMPUTATION are all feasible in polynomial time over games in

Ck(FP) that are given in type-based form (see the second column

in Figure 1). Note that the nucleolus is always guaranteed to be

non-empty (whenever some imputation exists) and to be a single

point contained in the kernel [12]. Thus, our results immediately

entail that, in the given setting, a point in the kernel can also be

computed efficiently.

Note that the above tractability results assume that player types are

known a-priori. While this is certainly the case in many practical sce-

narios, one might naturally wonder whether tractability results still

hold if we know that players have a limited number of types, but we

do not know how they are actually partitioned, i.e., we do not know

the type of each player. We address these questions too:

� First, we focus on the basic problem of deciding whether two play-

ers have the same type, and we show that it is intractable, formally

co-NP-complete over games in C(FP). Note that we already know

from the literature [14] that the problem is intractable over games

with synergies among coalitions. However, the result is hardly sur-

prising given that such games are unlikely in C(FP), as the asso-

ciated worth function is already NP-hard to compute [4].

� Then, we consider the problem of recognizing whether a game in

C(FP) is actually in Ck(FP), and we show that this is intractable

as well (co-NP-complete).

Motivated by the above bad news, we eventually consider a kind of

“mixed” setting, where games actually belong to Ck(FP), but they are

not given in type-based form. That is, we know the maximum number

k of distinct types in any game of the class, but we do not know

the type of each player. Even under the given promise, intractability

results still emerge, thereby evidencing that the knowledge of player

types marks the boundary of tractability for reasoning about k-typed

coalitional games. In particular:

� We show that deciding whether two players have the same type is

co-NP-complete over games in Ck(FP) (not in type-based form),

where hardness holds under randomized reductions (see [16]). On

this class and under the same complexity model, computing the

number of distinct player types is shown to be intractable too.

� We reconsider all computation problems related to the core, the

kernel, and the nucleolus, and we show that they are intractable

(under randomized reductions) on the class Ck(FP) for games that

are not given in type-based form (see the third column in Figure 1).

Organization. Section 2 introduces the setting and the framework

of k-typed coalitional games. The analysis of games given in type-

based form is reported in Section 3. Computational issues related

to the problem of finding the actual partitioning of the players are

discussed in Section 4, while the setting where games in Ck(FP) are

not given in type-based form is studied in Section 5.

2 Formal Framework

In this section we recall some basic notions about game theory and

introduce the classes of games considered in the following.

2.1 Coalitional Games

A coalitional game G is a pair 〈N, v〉, where N is the set of all the

players and v : 2N �→ R is the worth function. A vector (xi)i∈N

(with xi ∈ R) is an imputation of G if
∑

i∈N
xi = v(N) and

xi ≥ v({i}), for each i ∈ N . In the following, for an imputation x
and a coalition S ⊆ N , we denote by x(S) the value

∑
i∈S

xi. The

set of all the imputations of G is denoted by X(G). Several solution

concepts have been proposed to characterize the most desirable im-

putations of coalitional games. Below, we recall the notions of core,

kernel, and nucleolus (see, e.g., [12]).

Core. The core C (G) of a coalitional game G = 〈N, v〉 is the

set of all imputations x that are “stable”, for there is no coalition

whose members may receive a higher payoff than in x by leaving

the grand-coalition: C (G) = {x ∈ X(G) | �S ⊆ N and (yi)i∈S

such that y(S) = v(S) and yk > xk, ∀k ∈ S}.

Kernel. For any pair of players i and j of G, let Ii,j be the set

of all coalitions containing player i but not player j. The excess

of a coalition S at x ∈ X(G), denoted by e(S, x), is defined as

v(S) − x(S). The surplus si,j(x) of i against j at x is si,j(x) =
maxS∈Ii,j e(S, x). Then, the kernel K (G) of a game G = 〈N, v〉
is the set: K (G) = {x ∈ X(G) | si,j(x) > sj,i(x) ⇒ xj =
v({j}), ∀i, j ∈ N, i = j}.

Nucleolus. For any imputation x of G, we define the vector: θ(x) =
(e(S1, x), e(S2, x), . . . , e(S2n−1, x)), where the various excesses

of all coalitions (but the empty one) are arranged in non-increasing

order. Let θ(x)[i] denote the i-th element of θ(x). For a pair of im-

putations x and y, we say that θ(x) is lexicographically smaller than

θ(y), denoted by θ(x) ≺ θ(y), if there exists a positive integer q
such that θ(x)[i] = θ(y)[i] for all i < q and θ(x)[q] < θ(y)[q].
Then, the nucleolus N (G) of a game G is the set N (G) = {x ∈
X(G) | �y ∈ X(G) s.t. θ(y) ≺ θ(x)}.

Relationships. It is well-known that, for any coalitional game G with

X(G) = ∅, |N (G)| = 1; N (G) ⊆ K (G) (hence, K (G) = ∅); and

if C (G) = ∅, then N (G) ⊆ C (G) (see, e.g., [12]).

2.2 k-Typed Games

Guided by the observation that obstructions to tractability of coali-

tional games often emerge in scenarios where most players are “dif-

ferent”, Shrot et al. [14] recently re-considered several problems for

coalitional games, by studying their computational complexity by

taking the number of distinct player types as a parameter.

Formally, given a coalitional game G = 〈N, v〉, Shrot et al. [14]

define two players i, j ∈ N as strategically equivalent in G (or, sim-

ply, having the same type) if v(S∪{i}) = v(S∪{j}) holds, for each

coalition S ⊆ N such that S ∩ {i, j} = ∅. Then, a coalitional game

is said to be k-typed if its players can be partitioned into k classes of

pairwise strategically equivalent players. The intuition is that a num-

ber of intractable problems related to solution concepts of compact

coalitional games might be efficiently solved on classes of k-typed

games, whenever k is some fixed natural number.

2.3 Computational Setting and Representations

Complexity Classes. The class P (resp., NP) is the set of decision

problems solvable by a deterministic (resp., non-deterministic) Tur-

ing machine in polynomial time, that is, in time ||x||O(1), where ||x||
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denotes the size of the input x. The class of problems whose comple-

mentary problems are in NP is co-NP. Moreover, ΔP
2 is the class of

problems solvable in polynomial time by a deterministic machine us-

ing an NP Turing machine as an oracle. To capture the complexity of

computation problems, we consider instead deterministic transduc-

ers, i.e., deterministic Turing machines T equipped with a write-only

output tape. Then, denote by FP (resp., FΔP
2 ) the class of all func-

tions that can be computed by a deterministic transducer in polyno-

mial time (resp., and by using an NP Turing machine as an oracle).

Game Representation. We assume that the input for any decision

problem consists of a game G = 〈N, v〉, and that the game represen-

tation includes the list of players, so that, for every coalition S ⊆ N ,

||S|| ≤ ||G|| holds. We say that G is an FP-game if the worth function

belongs to FP. The class of all FP-games is denoted by C(FP).
Well-known classes of FP-games are graph and hypergraph

games [5], marginal contribution nets [9], games in multi-issue do-

mains [3], and weighted voting games [2]. For further compact rep-

resentations schemes for coalitional games, we refer the interested

reader to the classification described in [8].

3 Complexity Analysis of k-Typed Games

Recall that on arbitrary FP-games, the core, the kernel, and the nucle-

olus are intractable solution concepts as evidenced in Figure 1. Our

interest here is to re-consider these concepts over FP-games, where

the number of distinct types is bounded by some fixed natural num-

ber k. Formally, for any fixed natural number k, let Ck(FP) be the

class of all FP-games that are furthermore k-typed.

In particular, as commonly done in the literature, a coalitional k-

typed game G is viewed in this section as a tuple 〈(N1, . . . , Nk), v〉,
where N1, . . . , Nk are disjoint sets of players, with all players in Ni

having the same type. In this case, we say that G is given in type-

based form. In fact, note that in this setting, one may always assume

that the worth function is given in the form vt : {1, . . . , |N1|}×· · ·×
{1, . . . , |Nk|} �→ R, which is the kind of worth functions studied in

[15, 1]. Indeed, this trivially follows by the result below.

Proposition 3.1 ([14]). Let 〈(N1, . . . , Nk), v〉 be a k-typed game.

Given any two coalitions S, T ⊆ N1 ∪ · · · ∪ Nk, if |S ∩ Ni| =
|T ∩Ni|, for each i ∈ {1, . . . , k}, then v(S) = v(T ).

In this paper, for notational uniformity, we prefer to use “stan-

dard” worth functions, and to exploit instead a subset of all pos-

sible coalitions spanning v: Assume that an arbitrary ordering of

players in N is fixed, and define the characteristic-coalitions set

DG ⊆ 2N as the set of coalitions {(P1 ∪ P2 ∪ · · · ∪ Pk) ⊆ N |
S ⊆ N, and Pi contains the first |S ∩Ni| players from set Ni, 1 ≤
i ≤ k}. Note that the size of DG is polynomial w.r.t. the size of G, as

it contains at most |N1| × |N2| × · · · × |Nk| coalitions.

On the class Ck(FP), if games are given in type-based form, IN-

CORE and CORE-NONEMPTINESS are in P [15, 1]. In the rest of the

section, we extend the analysis to other relevant solution concepts.

3.1 Nucleolus

We start the analysis with the nucleolus. In this case, it is relevant

to characterize the “structure” of this solution concept over k-typed

coalitional games. The following result shows that the nucleolus is in

fact “symmetric” w.r.t. player types.

Theorem 3.2. Let G = 〈N, v〉 be coalitional game, and let x be the

unique imputation in N (G). Then, xi = xj holds, for each pair of

players i and j in N having the same type.

Proof. Assume by contradiction that there are two players i and j in

N having the same type and such that xi = xj (in particular, w.l.o.g.,

such that xi > xj). We claim that {x} = N (G).
Let x′ be the worth assignment where the values assigned to i and

j are swapped, that is, such that x′
i = xj , x′

j = xi, and x′
p = xp,

for each p ∈ N \ {i, j}. Note that, for any coalition S such that S ∩
{i, j} = ∅ or {i, j} ⊆ S, the total worth does not change, and hence

e(S, x) = s(S, x′). It remains to consider all pairs of symmetric

coalitions T, T ′ such that i ∈ T and j /∈ T , i /∈ T ′ and j ∈ T ′, and

with all other elements being the same, i.e., T \ {i, j} = T ′ \ {i, j}.

Note that for each p ∈ T ∩ T ′, xp = x′
p, and that v(T ) = v(T ′)

as i and j have the same type. It follows that, for every such pair of

coalitions, e(T ′, x′) = e(T, x) and e(T, x′) = e(T ′, x); that is, their

excesses are just swapped. Therefore, the vector of excesses does not

change when considering x′ in place of x, and we get θ(x) = θ(x′),
which is impossible because |N (G)| = 1.

For the sake of completeness, note that the converse of Theo-

rem 3.2 does not hold. For instance, on the game G0 = 〈{a, b, c}, v0〉
such that v0({a}) = v0({b}) = v0({c}) = 1, v0({a, b, c}) = 3,

v0({a, b}) = 1, v0({a, c}) = 2, and v0({b, c}) = 3, the vector x
with xa = xb = xc = 1 is the only imputation and hence belongs to

N (G0), but the three players have different types.

Computation. With the above result in place, let us focus on the

problem of computing the nucleolus. Let G = 〈N, v〉 be a game, and

consider the following linear programming problem LPt, for t > 0:

LPt = {min ε | x(S) = v(S)− εr, ∀S ∈ Λr, ∀1 ≤ r ≤ t− 1

x(S) ≥ v(S)− ε, ∀S ⊆ N

x ∈ Ω},
where Ω is a convex subset of RN ; εr is the optimum value of

the program LPr evaluated at the r-th step; and Λr = {S ⊆
N | x(S) = v(S) − εr, ∀x ∈ Vr} with Vr = {x |
(x, εr) is an optimal solution to LPr} is the set of all coalitions hav-

ing exactly excess εr on all the optimal solutions of the program LPr .

By [11] (see also [6]), it is known that there is an index t∗ such that

LPt∗ has exactly one optimal solution (x∗, εt∗), and θ(x∗) ≺ θ(x)
holds, for any x ∈ Ω. In particular, {x∗} = N (G), whenever Ω
is the set X(G) of all imputations for G. Moreover, it is known that

the approach, with an adjustment discussed in [7], provides a FΔP
2

membership result for computing the nucleolus on games in C(FP).
A corresponding ΔP

2 -hardness result is obtained even for the under-

lying decision problem IN-NUCLEOLUS on graphical games [7]. Be-

low, we show that the problem is no longer intractable on the class

Ck(FP), if player types are known.

Theorem 3.3. On the class Ck(FP), if games are given in type-based

form, then NUCLEOLUS-COMPUTATION is in FP.

Proof Sketch. Let G = 〈(N1, . . . , Nk), v〉 be a k-typed coalitional

game, and consider the convex set X̂(G) = {x ∈ X(G) |
xi = xj , for each pair i,j of players having the same type}. By The-

orem 3.2, N (G) ⊆ X̂(G), and thus N (G) can be computed by the

above sequence of linear programs by setting Ω = X̂(G) ⊆ X(G)
(see Lemma 6.5 in [11]). In fact, having restricted the feasible re-

gions of these programs to X̂(G), it follows that every inequality

associated with some coalition S entails every other inequality ob-

tained by replacing any variable xi (associated with a player) of a

certain type by any other variable xj (associated with a player) of

the same type. As a consequence, it is sufficient to consider only in-

equalities associated with the coalitions in the characteristic set DG ,

in place of all subsets of N .
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Thus, in order to compute the nucleolus of G, instead of using LPt,

we build the following sequence of linear programming problems:

L̂Pt = {min ε | x(S) = v(S)− εr, ∀S ∈ Λr, ∀1 ≤ r ≤ t− 1

x(S) ≥ v(S)− ε, ∀S ∈ DG

x ∈ X̂(G)},

where εr is the optimum value of the program L̂Pr evaluated at the

r-th step, and Λr = {S ∈ DG | x(S) = v(S)− εr, ∀x ∈ Vr} with

Vr = {x | (x, εr) is an optimal solution to L̂Pr}.

Note that any linear program in the above sequence contains just

polynomially many distinct inequalities. We next show that such pro-

grams can be also computed and solved in polynomial time.

Let us start with the first program L̂P1, which consists only of in-

equalities associated with coalitions in DG (there are no equalities).

Because G is in type-based form, all these inequalities may be com-

puted in polynomial time by iterating over all possible combinations

of numbers of players per type. Thus, by standard results in math-

ematical programming [13], the optimum value ε1 of L̂P1 can be

computed in polynomial time.

Then, in order to build L̂P2, we have to build the set Λ1 (the set

of all coalitions from DG having exactly excess ε1 on the optimal

solutions of LP1). Note that a coalition S̄ belongs to Λ1 if and only

if the set {x ∈ X̂(G) | x(S) ≥ v(S) − ε1, ∀S ∈ DG , and x(S̄) >
v(S̄)−ε1} is empty, and this condition can be checked in polynomial

time. Thus, L̂P2 can be built in polynomial time.

Eventually, we can inductively apply the method above to con-

struct L̂Pt, for each t > 0. Concerning the number of iterations, note

that, at each step t, at least one coalition from DG enters in Λt. Thus,

after at most polynomially many steps the process converges to the

nucleolus, as the size of DG is polynomial w.r.t. the size of G.

As the nucleolus is a singleton set, we immediately obtain the fol-

lowing corollary.

Corollary 3.4. On the class Ck(FP), if games are given in type-based

form, then IN-NUCLEOLUS is in P.

3.2 Kernel

Theorem 3.5. On the class Ck(FP), if games are given in type-based

form, then IN-KERNEL is in P.

Proof Sketch. Recall the definition of the kernel. Notice that we have

to verify the condition si,j(x) > sj,i(x) ⇒ xj = v({j}), for all dis-

tinct players i and j of N . Thus, if computing the surplus si,j(x) is

feasible in polynomial time, then the whole procedure can be carried

out in polynomial time. We claim that, in fact, this is the case.

Let G = 〈(N1, . . . , Nk), v〉 be a k-typed game, and recall that

si,j(x) = maxS∈Ii,j e(S, x), where e(S, x) = v(S) − x(S). Let

n1, . . . , nk be the number of players in N1, . . . , Nk, respectively.

So, we can rewrite the surplus as follows:

si,j(x) = max
0≤tp≤np, ∀p:1≤p≤k

s.t. t1+···+tk≥1

max
S∈Ii,j

|S∩Nq |=tq , ∀q:1≤q≤k

v(S)− x(S).

Because of Proposition 3.1, note that v(S) = v(T ) holds, for each

pair of coalitions S and T such that |S ∩ Ni| = |T ∩ Ni| = ti, for

each i ∈ {1, . . . , k}. However, the imputation x might be such that

{(v(S)−x(S)) | S ⊆ N1∪ · · ·∪Nk} contains exponentially many

distinct values, as x is not necessarily a symmetric one. This problem

can be circumvented by exploiting the clustering of the players in

their types. Indeed, for each cluster Ni, we sort its players based on

the ascending values of the worth they receive in x. Hence, we can

compute the term
max
S∈Ii,j

|S∩Nq |=tq , ∀q:1≤q≤k

v(S)− x(S)

by simply evaluating v(S) − x(S) on the specific coalition S con-

taining, for each cluster Ni, the first ti players w.r.t. such order, by

always including i and excluding j. By this, the first maximization

requires iterating over polynomially many elements, and for each of

them the above polynomial-time method can be exploited to compute

the value of the subsequent term. Thus, the whole procedure can be

carried out in polynomial time in the number of players.

3.3 Specific Classes of Compact Games

We conclude the section by noticing that, as a corollary of the above

general results, we can get the tractability of well-known classes of

games whose worth functions are computable in FP, and for which

determining player types is feasible in polynomial time. Recall that,

for any fixed k, a k-typed graph game or game with synergies among

coalitions can be represented in type-based form (i.e., the clustering

of its players can be found) in polynomial time [14]. In fact, given

the type-based form for such kinds of games, IN-CORE and CORE-

NONEMPTINESS can be solved in polynomial time, too [15, 1]. Be-

low, we complete the picture with the other solution concepts.

Corollary 3.6. For any fixed k, on k-typed games given as graph

games or games with synergies among coalitions, IN-KERNEL, IN-

NUCLEOLUS, and NUCLEOLUS-COMPUTATION are in P.

4 On The Hardness of Finding Player Types

In [14], it has been observed that deciding whether two players have

the same type in games with synergies among coalitions [4] is an NP-

hard problem—as discussed above, the problem is instead tractable

if the number of agent types is fixed by a constant k. In fact, this

NP-hardness result is hardly surprising given that such games are un-

likely FP-games, as the associated worth function is NP-hard to com-

pute [4]. Hence, the intrinsic difficulty of the worth function actually

obscures the complexity of the problem defined on top of it. Our first

result is to strengthen this analysis, by showing that the problem re-

mains intractable even on FP-games. In particular, we shall show that

the problem is complete for the class co-NP.

Before stating the result, we fix some definitions that will be used

in the following. For any Boolean formula φ over a set X of vari-

ables, we define the FP-game Gφ = 〈X, vφ〉, whose players coincide

with the variables in φ, and where, for each coalition S ⊆ X ,

vφ(S) =

{
1, if σ(S) |= φ, i.e., σ(S) is a satisfying assignment

0, otherwise,

with σ(S) denoting the truth assignment where a variable xi evalu-

ates true if and only if the corresponding player xi belongs to S.

Moreover, consider the following problem Critical Swap (CS):

Given a tuple 〈φ, xi, xj〉, where φ is a Boolean formula over a set

X of variables and {xi, xj} ⊆ X , decide whether {xi, xj} is a crit-

ical pair (w.r.t. φ), i.e., decide whether there is a satisfying truth as-

signment σ̄ such that: (1) σ̄[xi] = σ̄[xj ] and (2) the assignment σ′,

where σ′[xk] = σ̄[xk], for each xk ∈ X \ {xi, xj}, σ′[xi] = σ̄[xj ],
and σ′[xj ] = σ̄[xi], is not satisfying. It is easy to see that CS is

NP-hard, by a reduction from SAT: For any Boolean formula γ, let

φ = γ ∧ xa ∧ ¬xb be a new Boolean formula where xa and xb

are fresh variables (i.e., not in γ). It is immediate to check that γ is

satisfiable if and only if 〈φ, xa, xb〉 is a “yes” instance of CS.
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Theorem 4.1. On the class C(FP), deciding whether two players

have the same type is co-NP-complete.

Proof Sketch. Consider the complementary problem of deciding

whether two players p and q do not have the same type. We show

that the problem is NP-complete. Membership in NP is easily seen,

as we can guess a coalition S with S ∩ {p, q} = ∅, and then check

in polynomial time that v(S ∪ {p}) = v(S ∪ {q}).
Hardness is next proven via a reduction from problem CS. Let φ

be a Boolean formula over a set X of variables with {xi, xj} ⊆ X ,

and let us build in polynomial time the game Gφ = 〈X, vφ〉.
We show that 〈φ, xi, xj〉 is a “yes” instance of CS ⇔ xi and xj

do not have the same type in Gφ.

(⇒) Let σ̄ be an assignment witnessing that 〈φ, xi, xj〉 is a “yes”

instance. Assume, w.l.o.g., that σ̄[xi] = true and σ̄[xj ] = false .

Let S ⊆ X be the coalition such that σ(S) = σ̄, and note that

xi ∈ S and xj /∈ S. Consider the coalition T = S \ {xi}, hence

such that σ(T ∪ {xi}) |= φ. By definition of a solution to CS,

σ(T ∪{xj}) |= φ. It follows that vφ(T ∪{xi}) = 1 while vφ(T ∪
{xj}) = 0. Thus, xi and xj do not have the same type.

(⇐) Assume that 〈φ, xi, xj〉 is a “no” instance. We consider two

cases. (1) φ is unsatisfiable. In this case, vφ(S) = 0 holds, for

each coalition S ⊆ X , and xi and xj have trivially the same type.

(2) φ is satisfiable. In this case, for each set T ⊆ X \ {xi, xj},

we have that either σ(T ∪ {xi}) |= φ and σ(T ∪ {xj}) |= φ, or

σ(T ∪{xi}) |= φ and σ(T ∪{xj}) |= φ. Hence, vφ(T ∪{xi}) =
vφ(T ∪ {xj}) holds, and xi and xj have the same type.

The above is very bad news, but it does not immediately imply

that determining whether the number of player types is bounded by

some given constant is an intractable problem. Our second result is

to characterize the complexity of this problem.

Theorem 4.2. On the class C(FP), deciding whether a game is k-

typed is a co-NP-complete problem. Hardness holds even for k = 1.

Proof Sketch. We show that deciding whether there are at least k′ =
k + 1 player types is NP-complete. For the membership, it suffices

to guess a set P of k′ players together with k′(k′ − 1)/2 coalitions,

and then check in polynomial time that such coalitions witness that

players in P are pairwise not strategically equivalent.

For the hardness part, consider the problem Exists Critical Swap

(ECS), in which given a Boolean formula φ over a set X of variables,

we have to decide whether there exists a critical pair {xi, xj} w.r.t.

φ. It is easily seen that ECS is NP-hard. Indeed, for any Boolean

formula γ, let φ = γ ∧ xa ∧ ¬xb be a new Boolean formula where

xa and xb are fresh variables. Then, γ is satisfiable if and only if 〈φ〉
is a “yes” instance of ECS.

Our result then follows by showing that: φ is a “yes” instance of

ECS⇔Gφ has at least two players with different type (hence k > 1).

(⇒) Assume that xi and xj are two variables in X such that

〈φ, xi, xj〉 is a “yes” instance of CS. By the same line of rea-

soning as in the proof of Theorem 4.1, we have that xi and xj are

not strategically equivalent, and hence in Gφ there are at least 2
different types of players.

(⇐) Assume now that, for each pair of variables xi and xj of φ,

the tuple 〈φ, xi, xj〉 is a “no” instance of CS. In the case where φ
is unsatisfiable, vφ(S) = 0 holds, for each coalitions S. Hence,

every player in Gφ have the same type. Consider then the case

where φ is satisfiable, but there is no critical pair {xi, xj} w.r.t.

φ. In this latter case, for any chosen pair xi and xj , we can apply

the same line of reasoning as in the proof of Theorem 4.1 (case

(2) of the (⇐)-part), and conclude that xi and xj are strategically

equivalent. As this holds for each pair of players, we have that all

players have the same type.

5 Shedding Lights on The Grey Area

So far, we have shown tractability results for the class Ck(FP) where

games are given in type-based form, and we have pointed out that

deciding whether a game is actually in Ck(FP) is an intractable prob-

lem. Our analysis has thus still a missing piece: What happens if a

game is known to belong to Ck(FP), but it is not given in type-based

form (i.e., with player types being actually unknown)? In this section,

the question will be addressed.

5.1 On the Hardness of Bounded-Types Games

Our first result is to show that identifying player types is likely in-

tractable even on the class Ck(FP) of games that actually have such

a bounded number of types. The proofs of intractability results are

based here on a complexity-theory setting developed to study prob-

lems that are believed to be difficult but could not be classified using

the most common reductions (i.e., Karp or Turing reductions).

Consider the problem SAT1, where we have to decide the satis-

fiability of a Boolean formula φ, under the promise that φ admits

at most one satisfying assignment. This is the prototypical NP-hard

problem under randomized reductions [16]. It is widely believed that

such problems are not feasible in polynomial time. For our aims here,

it is not necessary to expand on the concept of randomized reduc-

tions, and we refer the interested reader, for instance, to [10]. Indeed,

the promise of dealing with a fixed number of player types is next re-

lated to SAT1 via “standard” reductions from this problem, in order

to prove the analogue of Theorem 4.1 and Theorem 4.2 for classes of

games having bounded types.

Theorem 5.1. On the class Ck(FP), deciding whether a game is k′-

typed, for any constant k′ with k′ < k, and whether two players

have the same type are co-NP-complete under randomized reduc-

tions. Hardness holds even for k = 2.

Proof Sketch. Membership results in co-NP follows by Theorem 4.1

and Theorem 4.2. Concerning the hardness part, we exhibit a

polynomial-time reduction from SAT1. Let φ′ be a Boolean formula

over the set X ′ of variables having one satisfying assignment at most,

and define φ = φ′ ∧ xα ∧ ¬xβ as a Boolean formula over the set

X = X ′ ∪ {xα, xβ}. Note that φ has one satisfying assignment

at most, where in particular xα (resp., xβ) evaluates to true (resp.,

false). Consider the associated game Gφ, and observe that if φ is un-

satisfiable, then vφ(S) = 0 holds, for each coalition S ⊆ X . Thus,

in this case, there is only one type of players, and Gφ is 1-typed.

Assume now that σ̃ is the satisfying truth assignment for φ. Let

S̃ be the coalition such that σ(S̃) = σ̃, and let xi and xj be two

arbitrary players. Then, two cases have to be considered:

(1) Assume that xi and xj are two players such that xi ∈ S̃ and

xj /∈ S̃. Consider the coalition T̃ = S̃ \ {xi}, and note that

vφ(T̃ ∪{xi}) = 1 and vφ(T̃ ∪{xj}) = 0. Hence, xi and xj have

two different types.

(2) Assume that either {xi, xj} ⊆ S̃ or {xi, xj} ∩ S̃ = ∅. Let T be

any coalition such that {xi, xj} ∩ T = ∅. We claim that vφ(T ∪
{xi}) = 0 and vφ(T ∪ {xj}) = 0 hold. Indeed, first observe that

T̃ ∪{xi} = S̃ and T̃ ∪{xj} = S̃. Then, the claim follows by just

noticing that S̃ is the one coalition for which vφ(S̃) = 1. Hence,

in this case, xi and xj have the same type.
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By combining the above two cases, we have that players of Gφ can

be partitioned into exactly two different strategic types: Players in S̃,

and players outside S̃. Therefore, Gφ is 2-typed, but it is not 1-typed.

It follows that Gφ is 1-typed if and only if φ (and, hence, the original

formula φ′) is unsatisfiable. This shows that deciding whether a game

is 1-typed is co-NP-complete under randomized reductions.

Finally, in order to show that deciding whether two players have

the same type is co-NP-complete under randomized reductions, it

suffices to observe that xα and xβ have the same type if and only if

φ (and, hence, φ′) is unsatisfiable.

5.2 Complexity of Solution Concepts

Now, we turn to the analysis of the complexity of solution concepts.

Figure 1 reports the intrinsic difficulty of various reasoning problems

involving the core, the kernel, and the nucleolus on the class C(FP).
All results are intractability ones. Here, we complete the picture, by

showing that focusing on the class Ck(FP) does not guarantee their

tractability. We start with problems related to the core.

Theorem 5.2. On the class Ck(FP), the problems IN-CORE and

CORE-NONEMPTINESS are co-NP-complete under randomized re-

ductions. Hardness holds even for k = 2.

Proof Sketch. For both problems membership in co-NP follows by

the results for the larger class C(FP) (see Figure 1). For the hard-

ness of IN-CORE, consider the reduction in the proof of Theorem 5.1

based on the Boolean formulae φ′ over variables in X ′, and φ over

X = X ′ ∪ {xα, xβ}. Let z be a vector mapping each player to 0,

and note that z(X) = vφ(X) = 0 (recall here that in order to have

vφ(S) > 0, it is required that xβ ∈ S). Then, z ∈ C (Gφ) if and only

if for each S ⊆ X , vφ(S) = 0. By definition of the worth function,

this latter holds if and only if φ (hence φ′) is not satisfiable. From this

observation, we easily get the result for CORE-NONEMPTINESS, too.

Indeed, just recall that vφ(X) = 0 holds for the grand-coalition X ,

and hence the above vector z is the only one that might in princi-

ple belong to X(Gφ) (as all worth values are non-negative). Thus,

C (Gφ) = ∅ if and only if z ∈ C (Gφ), which completes the proof.

Note that, in the proof, we can even assume w.l.o.g. that φ′ is such

that vφ(S) = 0, for each S with |S| = 1, thereby showing that

hardness holds even if z is guaranteed to be an imputation.

We now continue with the decision problems related to the nucle-

olus and the kernel. Note that in the results below, the corresponding

membership results are missing.

Theorem 5.3. On the class Ck(FP), IN-KERNEL and IN-

NUCLEOLUS are co-NP-hard under randomized reductions. Hard-

ness holds even for k = 2.

Proof Sketch. Consider again the reduction in the proof of Theo-

rem 5.1 based on the Boolean formulae φ′ over variables in X ′ and φ
over X = X ′ ∪ {xα, xβ}. Define a new game Ḡφ = 〈X, v̄φ〉 where

v̄φ(X) = 1 and v̄φ(S) = vφ(S), for each S ⊂ X . Let z be the

imputation assigning the worth 1/|X| to each player.

First, we claim that z ∈ K (Ḡφ) holds if and only if φ is not satisfi-

able. Indeed, if φ is not satisfiable, then v̄φ(S) = 0, for each S ⊂ X .

Hence, for each pair of players xp and xq , sxp,xq (z) = sxq,xp(z) =
−1/|X|, and hence z is in K (Ḡφ). On the other hand, if φ is satis-

fiable, then there is a coalition S (with xα ∈ S and xβ ∈ S) such

that v̄φ(S) = 1. Thus, we have that sxα,xβ
(z) = 1 − 1/|X| >

sxβ ,xα(z) = −1/|X|. However, v̄φ({xβ}) = 0 = 1/|X|, and

hence z ∈ K (Ḡφ).
We complete the picture by claiming that z ∈ N (Ḡφ) holds if

and only if φ is not satisfiable. Indeed, if φ is not satisfiable, then

v̄φ(S) = 0, for each S ⊂ X , and it can be easily checked that

symmetrically distributing the worth of v̄φ(X) over all players leads

to the nucleolus. Instead, if φ is satisfiable, then there is a coalition

S (with xα ∈ S and xβ ∈ S) such that v̄φ(S) = 1. Consider the

imputation z′ where each player in S (resp., outside S) gets worth

1/|S| (resp., 0). Then, θ(z′) ≺ θ(z), and hence z ∈ N (Ḡφ).

A simple corollary of the complexity of IN-NUCLEOLUS is the

following characterization for the computation problem.

Corollary 5.4. On the class Ck(FP), NUCLEOLUS-COMPUTATION

is NP-hard under randomized reductions, even for k = 2.
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