
Process Discovery via Precedence Constraints

Gianluigi Greco1 and Antonella Guzzo2 and Luigi Pontieri3

Abstract. A key task in process mining consists of building a graph

of causal dependencies over process activities, which can then be

used to derive more expressive models in some high-level modeling

language. An approach to accomplish this task is presented where

the learning process can exploit the background knowledge that, in

many cases, is available to the analysts taking care of the process

(re-)design. The method is based on encoding the information gath-

ered from the log and the (possibly) given background knowledge in

terms of precedence constraints, i.e., constraints over the topology of

the graphs. Learning algorithms are eventually formulated in terms

of reasoning problems over precedence constraints, and the compu-

tational complexity of such problems is thoroughly analyzed by trac-

ing their tractability frontier. The whole approach has been imple-

mented in a prototype system leveraging a solid constraint program-

ming platform, and results of experimental activity are reported.

1 Introduction

By analyzing a set of traces registering the sequence of tasks per-

formed along several enactments of a transactional system, the goal

of process discovery techniques is to derive a model explaining all

the episodes recorded in it [13]. Even though such techniques are re-

ceiving increasing attention in the research literature, they are still

at an early stage of adoption within enterprises. Indeed, analysts

are likely to prefer traditional “top-down” design approaches, where

models are eventually built by refining and formalizing a number of

desiderata and specifications reflecting the prior knowledge they pos-

sess about the process to be automatized. Such prior knowledge is, in

fact, neglected by current “bottom-up” process discovery techniques,

which automatically derive a process model by just focusing on the

statistics hidden in the data at hand. As a result, mined models may

well violate conceptual specifications and domain-constraints, hence

turning out to be useless in real-life applications.

Top-down design methods and bottom-up process discovery tech-

niques have been completely separate worlds, so far. However, the

use of background knowledge to improve the quality of results has

already been considered in a number of traditional data mining tasks

(on relational data and on sequence data), such as pattern mining [9]

and clustering [4]. Unfortunately, such techniques have not found a

systematic counter-part in the process mining setting. In particular,

the issue of studying mechanisms to interface the world of tradi-

tional process design approach and the world of process discovery

algorithms (and which can benefit of the advantages of both perspec-

tives) has been largely unexplored in the literature—see Section 6,

for an overview of existing approaches.
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Figure 1. Dependency graphs in the running example.

Process Discovery. No matter of the specific process-oriented fea-

tures being supported, process discovery algorithms can be abstractly

seen as sequentially carrying out two different sub-tasks: First, they

analyze the log and apply some form of reasoning to learn the causal

dependencies that are likely to hold among the activities of the pro-

cess, which are often presented in form of log-based ordering rela-

tions [14].Then, they exploit the knowledge thereby acquired within

mining algorithms that take into account advanced facets of pro-

cess enactments and return process models formalized in expressive

modeling languages (such as Petri nets [14]). In the following, we

focus on the former of the two tasks, by elaborating techniques to

mine causal dependencies from process logs. Accordingly, the out-

put of such techniques are not (full) process models, but dependency

graphs, i.e., directed graphs whose nodes one-to-one correspond with

the activities and such that an edge from an activity a to an activity b
means that, in some enactment, we expect that an actual flow of in-

formation can occur from a to b. For example, the graphs G1 and G2

in Figure 1 are two possible dependency graphs for the traces abcde
and acbde. Instead, G0 does not properly reflect the flow associated

with the trace acbde, where b actually occurs after c.

Dependency-graph discovery is a challenging problem in the case

of concurrent processes, as traces flatten all the information related

to the execution of “parallel” activities. Indeed, in the period of time

elapsing between the execution of two activities, with one requir-

ing some output produced by the other, the system might register

the interleaved execution of other activities involved over different

branches of the process. Eventually, the fact that an activity always

precedes another over the given traces might be by chance, and it

does not necessarily witness a causal dependency between them. For

example, from the fact that b precedes d in the two traces abcde and

acbde, we cannot infer that b is a pre-requisite for d: In principle, b
can be executed over a different branch and without any causal de-

pendency with d, and hence G2 might be a valid control flow graph.

Contribution. Since several dependency graphs can in principle be

associated with a given log by discovery algorithms, the background

knowledge available to the analyst would naturally play a role here,
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in order to single out, among the graphs modeling the statistics in the

data, the one that best fits process requirements and specifications. In

fact, a ‘hybrid” approach to process discovery is particularly useful

if the log at hand is far from being complete, i.e., when several pos-

sible process behaviors are not registered in it, so that the knowledge

of the analyst can compensate the lack of data available for mining

activities. For instance, in the example discussed above, if it is a pri-

ori known that b and d are parallel activities, then we can discard G1

as a dependency graph, even though no trace is given where d ac-

tually occurred before b. The goal of this paper is precisely to elab-

orate dependency-graph discovery algorithms that can benefit from

the availability of such prior knowledge. In more detail4:

� We propose a formal framework to specify additional properties

on the dependency graphs that can be produced as output by pro-

cess mining algorithms. The framework is based on expressing a

set of precedence constraints over sets of activities. For instance,

one can look for dependency graphs where certain precedences

over activity sets hold or do not hold, directly or transitively, or

where certain activities are parallel.

� As a result of our formulation, process discovery is conceptu-

ally carried out via a learning task (i.e., building all possible de-

pendency graphs for a given input log) followed by a reasoning

task (i.e., to filter out those graphs that do not satisfy the prece-

dence constraints defined by the analyst). In general, exponentially

many dependency graphs might be built in the learning phase,

which would make a literal implementation of such a two-phase

approach unfeasible. In fact, we show that the learning task can

be declaratively formulated in the same language (of precedence

constraints) used for the reasoning task. This addresses the above

drawback, by leading to a common environment where the two

tasks are combined synergically and carried out simultaneously.

� We analyze the computational complexity of the setting, by con-

sidering various qualitative properties on the kinds of constraint

being allowed, and by tracing the tractability frontier w.r.t. them.

� All the techniques discussed in the paper have been implemented

and integrated in a prototype system, where the task of reasoning

about precedence constraints is delegated to a well-known con-

straint solver system available in the literature. Results for the ex-

perimental activity we have conducted in order to validate the ef-

fectiveness of the proposed approach are also reported.

2 Process Logs and Dependency Graphs

In this section, we recall a representation of process logs which is

commonly adopted in process mining (see, e.g., [14, 8]).

Logs of Acyclic Processes. Let A be an alphabet of symbols, univo-

cally identifying the activities of some underlying process. A process

instance I over A is a directed acyclic graph (V,E) with V ⊆ A
and where a distinguished activity a⊥ ∈ V exists from which every

other activity can be reached—intuitively, a⊥ is the starting activ-

ity for the enactment of I. A trace t is a string over A, and hence

has the form t[1]t[2]...t[n], with t[i] ∈ A being an activity for each

i ∈ {1, ..., n}. If t is a topological sort of the process instance I,

then t is called a trace of I, denoted by I � t; in this case, t does not

contain multiple occurrences of the same activity, i.e., t[i] �= t[j], for

each i �= j. A log L is a multi-set of traces. For a log L, A(L) is

the set of all the activities occurring over the traces in L. W.l.o.g., we

hereinafter assume that t[1] = a⊥, for each trace t ∈ L.

4 Due to space constraints, the reader is referred to [7], for full proofs, details
on the encoding, and further experimental activity.

In process mining, the goal is to derive a process model support-

ing the enactments of the traces of a log L. Several algorithms have

been proposed to this end (see [13] and the references therein). One

of their crucial abilities is to discover causal precedences among ac-

tivities in A(L), which we encode via directed graphs as follows.

Definition 1. Let L be a log, where no trace contains multiple occur-

rences of the same activity. Then, a graph G = (V,E) is a support-

graph for L, denoted by G � L, if for each t ∈ L, there is a subgraph

I of G such that I is a process instance over A(L) and I � t. �

Example 2. Consider the trace t0 = abcde over the set of activities

A({t0}) = {a, b, c, d, e}. Then, the graphs G0, G1, and G2 reported

in Figure 1 are such that G0 � {t0}, G1 � {t0}, and G2 � {t0}. �

Arbitrary Logs. A string t containing multiple occurrences of the

same activity cannot be a trace of any process instance I, as I is

acyclic. Thus, if the underlying process involves loops, we need a

mechanism to virtually unfold them: For each trace t, let t̄ denote the

trace obtained from t by substituting, with the fresh (virtual) activity

a〈i〉, the i-th occurrence in t of any activity a. Moreover, for a log L,

let L̄ = {t̄ | t ∈ L}. Then, we say that a graph G = (V,E) is the

folding of a graph Ḡ = (V̄ , Ē) with V̄ = A(L̄) if V = {a | a〈i〉 ∈
V̄ } = A(L) and E = {(a, b) | (a〈i〉, b〈j〉) ∈ Ē}.

Definition 3. Let L be a log. Then, a dependency graph (DG) G for

L is the folding of a graph Ḡ such that Ḡ � L̄. �

Note that acyclic dependency graphs for L exist if, and only if,

L contains no trace with repetitions of activities. Moreover, G is an

acyclic dependency graph for L if, and only if, G � L.

Example 4. G0, G1, and G2 are dependency graphs for {t0}. Instead,

they are not dependency graphs for {t1}, with t1 = abcdcde. Indeed,

these graphs are acyclic while c and d occur twice in t1.

Note that the trace t̄1 is the string a〈1〉b〈1〉c〈1〉d〈1〉c〈2〉d〈2〉e〈1〉,
which is a topological sort of the acyclic graph Ḡ = (V̄ , Ē) with

V̄ = A({t̄1}) and Ē = {(a〈1〉, b〈1〉), (a〈1〉, c〈1〉), (d〈1〉, c〈2〉),
(c〈2〉, d〈2〉), (b〈1〉, d〈2〉), (d〈2〉, e〈1〉)}. Thus, Ḡ � {t̄1}. Eventu-

ally, note that the graph G3 depicted in Figure 1 is the folding of Ḡ.

It follows that G3 is a dependency graph for {t1}. �

3 Precedence Constraints for Process Discovery

Let A be a set of activities. A precedence constraint over A is an as-

sertion aimed at expressing a relationship of precedence among some

of the activities in A. To define the syntax, we distinguish positive

and negative constraints. A positive constraint π is either an expres-

sion of the form S → a (called edge constraint), or an expression

of the form S � a (called path constraint), where S ⊆ A, with

|S| ≥ 1, is a non-empty set of activities and a ∈ A is an activity. For

a positive constraint π, ¬π is a negative precedence constraint.

Precedence constraints are interpreted over directed graphs as fol-

lows. Let G = (V,E) be a directed graph such that V ⊆ A and

E ⊆ A×A. Then,

(1) G satisfies an edge constraint S → a, if there is an activity a0 ∈
S such that (a0, a) ∈ E;

(2) G satisfies a path constraint S � a, if there is a sequence of

activities a0, a1, ..., an = a, with n > 0, such that a0 ∈ S and

(ai, ai+1) ∈ E, for each i with 0 ≤ i < n;

(3) G satisfies a negated constraint ¬π, if G does not satisfy π.

If G satisfies each constraint in a set Π of precedence constraints,

we say that G is model of Π, denoted by G |= Π.
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A foundational task in process mining consists of automatically

building a dependency graph G for some log L given as input. In

this context, precedence constraints can be naturally exploited to for-

malize additional requirements that dependency graphs discovered

from L have to satisfy. This gives rise to the following two problems

(which for Π = ∅ reduce to the standard ones considered in the liter-

ature), where we explicitly distinguish the variant where the desired

dependency graph is required to be acyclic.

DG-MINING: Given a log L and a set Π of precedence constraints

over A(L), compute a dependency graph G for L with G |= Π.

ACYCLIC-DG-MINING: Given a log L and a set Π of precedence

constraints over A(L), compute an acyclic dependency graph G
for L with G |= Π.

Note that, as an acyclic dependency graph can be just viewed as a

partial order over the given set of activities, ACYCLIC-DG-MINING

for Π = ∅ shares some technical similarities with the problem of

discovering a partial order from sequential data (see, e.g., [10]).

Thus, while having a completely different focus, our framework can

be viewed as a generalization of this latter setting to handle user-

specified constraints—when cycles are admitted (in the DG-MINING

problem), the two settings are completely different instead.

Example 5. Consider the set Π0 = { ¬({b}� d),¬({d}� b)} of

precedence constraints, stating that b and d are “parallel” activities.

Then, consider the trace t0 = abcde of Example 2 and the graphs

in Figure 1. Note that G2 is a model of Π0, while G0 and G1 are not

as they violate the constraint ¬({b} → d). Thus, G2 is a solution to

DG-MINING (on input {t0} and Π0). In fact, it is also solution to

ACYCLIC-DG-MINING. �

The problems defined above comprise a learning task (dependency

graph mining) and a reasoning task (to check whether a graph sat-

isfies precedence constraints). In fact, we next show that even the

learning task can be declaratively formulated in terms of reasoning

about precedence constraints, thus defining a common framework

where the two tasks are synergically combined and might be simul-

taneously carried out. The basic idea is to characterize the notion of

support (in Definition 1) in terms of precedence constraints.

Definition 6 (Logs �→Constraints). Let L be a log. For each trace

t[1]...t[n] ∈ L, let π(t) = { {t[1], ..., t[i−1]} → t[i] | 1 < i ≤ n }.

Moreover, let π(L) =
⋃

t∈L
π(t). �

Intuitively, we just state that each activity in the trace t can be di-

rectly reached by at least one of its predecessors in t. This suffices to

precisely characterize the notion of dependency graph, as illustrated

below. We start with the case of processes with no loops.

Proposition 7. Let L be a log where no trace contains multiple

occurrences of the same activity. Let G be a graph (resp., acyclic

graph) over A(L), and Π be a set of precedence constraints over

A(L). Then, (1) G is a solution to DG-MINING (resp., ACYCLIC-

DG-MINING) on input L and Π ⇐⇒ (2) G |= π(L) ∪Π.

Proof Sketch. (1)⇒(2). Assume that (1) holds, i.e., G � L and G |=
Π. In particular, for each trace t[1]...t[n] ∈ L, there is a subgraph

I of G such that I = (V,E) is a process instance over A(L) and

I � t. Let i ∈ {2, ..., n}, and notice that there is a path from t[1]
to t[i], by definition of process instance. It follows that there is an

edge of the form (t[j], t[i]) ∈ E. If j < i, then we conclude that

the constraint π(t) is satisfied by G. Otherwise, it must be the case

that j > i. However, this is impossible as t is a topological sort of I.

Hence, G |= π(t), for each trace t ∈ L. Thus, G is also a model for

π(L), and hence G |= π(L) ∪Π.

Figure 2. A set S ⊆ {→,�, �→, ��} above (resp., below) the frontier
means that the problem is NP-hard (resp., in P) on the class C[S].

(2)⇒(1). To complete the proof, assume that (2) holds. We have

to show that G � L holds. Let G be the graph (V,E). Let t[1]...t[n]
be a trace in L, and let Gt = (Vt, Et) be the graph such that

Vt = A({t}) and Et = {(t[i], t[j]) ∈ E | i < j}. Of course,

Gt is acyclic, and t is actually a topological sort of Gt by construc-

tion. We now claim that each activity in t[i] ∈ Vt \ {t[1]} can be

reached from t[1]. This is shown by induction on the index i > 1.

In the case where i = 2, (t[1], t[2]) must belong to Gt in order to

satisfy the constraint {t[1]} → t[2] in π(t). Then, assume that activ-

ities t[2], ..., t[i − 1] can be reached from t[1]. Then, because of the

constraint {t[1], ..., t[i − 1]} → t[i] in π(t), we again have that t[i]
can be reached from t[1] as well. Hence, Gt is a process instance over

A(L) such that Gt � t, for each trace t ∈ L. That is, G � L.

Example 8. Let Π0 be the set of constraints in Example 5, and let

π(abcde) be the set of constraints associated with the trace abcde
of Example 2. Combining the two sets into the novel set Π′

0 =
π(abcde) ∪ Π0, we have that G2 is a model of Π′

0. Thus, by Propo-

sition 7, G2 is a dependency graph for {abcde} and satisfies Π0. �

In the case of arbitrary logs, the mapping is established via the

concept of folding as a simple extension of the above result. Indeed,

in the light of Definition 3, we need to show that: G is a folding of

Ḡ such that Ḡ � L̄ and G |= L ⇔ G is a folding of Ḡ such that

Ḡ |= π(L̄) and G |= Π. In fact, the result immediately follows by

applying Proposition 7 on the log L̄.

Corollary 9. Let L be a log, G be a graph over A(L), and Π be a

set of precedence constraints over A(L). Then, (1) G is a solution to

DG-MINING on input L and Π⇐⇒ (2) G |= Π and G is the folding

of a graph Ḡ such that Ḡ |= π(L̄).

4 Complexity Analysis

We now turn to study the complexity of the problems DG-MINING

and ACYCLIC-DG-MINING. Let S be a subset of the set of symbols

{→,�, �→, ��}. Let C[S] denote all the possible sets of constraints

that can be built over an underlying set A of activities such that if

→�∈ S (resp., ��∈ S, �→�∈ S, ���∈ S), then no edge (resp., path,

negated edge, negated path) constraint is in C[S]). And, let us denote

by DG-MINING[S] and ACYCLIC-DG-MINING[S] the restrictions

of the two problems over any set of precedence constraints Π such

that Π ⊆ C[S]. Then, we have the following (see also Figure 2).

Theorem 10. The following dichotomies hold:

• If S ⊆ {��}, then ACYCLIC-DG-MINING[S] is feasible in P.

Otherwise, the problem is NP-hard.

• If S ⊆ {→,�, �→}, then DG-MINING[S] is feasible in P. Other-

wise, the problem is NP-hard.
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Note that the decision versions of DG-MINING[S] and ACYCLIC-

DG-MINING[S] are in NP, no matter of S. Indeed, as the size of any

solution is polynomially bounded, we have just to prove that deciding

whether a graph is actually a solution is feasible in polynomial time.

In fact, by Proposition 7 (resp., Corollary 9), this can be reduced to

verify whether G (resp., Ḡ) is a model of a certain set of precedence

constraints, which is of course in P.

Due to space constraints, we next focus on hardness results only.

In particular, we start with the ACYCLIC-DG-MINING problem, and

we establish the following two hardness results even if L = ∅.

Theorem 11. ACYCLIC-DG-MINING[{→}] and ACYCLIC-DG-

MINING[{�}] are NP-hard, even if L = ∅.

Proof Sketch. Deciding whether a CNF formula Φ = c1∧. . .∧cm is

satisfiable is an NP-hard problem, even if each clause cj is assumed

to be of the form tj,1 ∨ tj,2 ∨ tj,3, where tj,i (1 ≤ i ≤ 3) is either a

variable (e.g., Xh) or a negated variable (e.g., ¬Xh), and where tj,1,

tj,2, and tj,3 are not necessarily distinct.

Based on Φ, we build the set A(Φ) consisting of the clauses and

the variables in Φ (viewed as activities), i.e., A(Φ) = {c1, ..., cm, }∪
{tj,1, tj,2, tj,3 | 1 ≤ j ≤ m}. Moreover, we build an associated set

Π(Φ) ⊆ C[{→}] of edge constraints as follows: For each clause

cj , Π(Φ) contains the constraint {tj,1, tj,2, tj,3} → cj ; For each

pair of clauses cj and cj′ such that tj,i = ¬tj′,i′ for any two in-

dices 1 ≤ i, i′ ≤ 3, Π(Φ) contains the constraints {cj} → tj′,i′

and {cj′} → tj,i; No further constraint is in Π(Φ). Now, it can be

checked that Φ is satisfiable ⇔ there is an acyclic graph G such that

G |= Π(Φ). Since the reduction is feasible in polynomial time, it

follows that ACYCLIC-DG-MINING[{→}] is NP-hard, even if the

input log contains no trace. To conclude, we just notice that the

salient properties of the reduction are not altered if we replace each

edge constraint in Π(Φ) with the analogous path constraint. Hence,

ACYCLIC-DG-MINING[{�}] is NP-hard.

For negated edge constraints, hardness can emerge only for non-

empty logs, as a graph without edges is a trivial solution if L = ∅.

Theorem 12. ACYCLIC-DG-MINING[{�→}] is NP-hard.

Proof Sketch. Let Π = {{b1i , ..., b
ki

i } → ai | i ∈ {1, ...,m}} ⊆
C[{→}] be a set of edge constraints over a set A of activities. For

each constraint {b1i , ..., b
ki

i } → ai, let ci �∈ A be a fresh activ-

ity associated with it. Based on Π, we build a log L(Π) with traces

t1, ..., tm such that ti = a⊥cib
1
i , ..., b

ki

i ai, for each i ∈ {1, ...,m}.

Moreover, consider the set Π′ of negated edge constraints including

{a⊥} �→ a, for each activity a �∈ {c1, ..., cm}, and {ci} �→ a, for

each a �∈ {b1i , ..., b
ki

i } and each i ∈ {1, ...,m}. Then, it can be

shown that there is an acyclic graph G such that G |= Π ⇔ there is

an acyclic graph G′ such that G′ � L(Π) and G′ |= Π′. Hence, the

result follows by the NP-hardness of ACYCLIC-DG-MINING[{→}],

which has been pointed out in Theorem 11.

Finally, we turn to the DG-MINING problem, where negated path

constraints can be used to enforce acyclicity.

Theorem 13. DG-MINING[{→, ��}], DG-MINING[{�, ��}], and

DG-MINING[{�→, ��}] are NP-hard.

Proof Sketch. Let Π be in C[{→}] (resp., C[{�}], C[{�→}]), and

consider the problem of deciding whether there is an acyclic graph

G such that G |= Π. Based on Π, we build the set Π′ of constraints

including all the constraints in Π, plus the novel constraint {a} ��
a, for each activity a. Of course, Π′ belongs to C[{→, ��}] (resp.,

C[{�, ��}], C[{�→, ��}]). Moreover, the role of the fresh constraints

is just to enforce the acyclicity of the desired graph. Indeed, G |= Π′

if, and only if, G |= Π and G is acyclic. The result then follows from

Theorem 11 and Theorem 12.

5 Implementation and Experimental Results

The complexity analysis we have conducted evidenced that polyno-

mial time algorithms are unlikely to exist for the problem of comput-

ing models of sets of precedence constraints. This bad news calls for

sophisticated solution approaches that perform well in practice.

Our solution approach is to encode precedence constraints in terms

of “standard” constraints satisfaction problems. The encoding com-

prises three parts—details are in [7]:

Basic Encoding: Edges and paths are associated with the variables.

That is, there are Boolean variables, i.e., with domain {0, 1}, of

the form edgeX,Y and pathX,Y , for each pair of activities X
and Y , and denoting the existence of the corresponding edge

and path. Then, precedence constraints are formulated as stan-

dard constraints over such variables. For instance, the two prece-

dence constraints associated with the trace abc can be encoded

as edgea,b ≥ 1 and edgea,c + edgeb,c ≥ 1. As an other ex-

ample, to look for a graph over {a, b, c} with no path from c to

a, we can use the constraints: pathc,a = 0, pathc,a ≥ edgec,a,

pathc,a ≥ edgec,b + edgeb,a − 1.

Built-in Constraints: A number of built-in constraints are consid-

ered, which reflect some standards in process definition. For in-

stance, for each activity X not occurring at the end of some trace,

it is required that there is at least an outgoing edge.

Optimization: Since several dependency graphs might satisfy a

given set of precedence constraints, we support the definition of

an objective function over the space of all candidate dependency

graphs, as to compute the best one over them. Each edge is asso-

ciated with a weight as follows. For each pair of activities a, a′,

first a “causality” score σ(a, a′) is computed according to the ap-

proach in [1]. Roughly, σ(a, a′) measures the number of traces

where a precedes a′, with a scaling factor being associated with

each trace t, which exponentially decreases at the growing of the

distance from a to a′ within t. If σ(a, a′) happens to be above a

given threshold, then the weight of the edge from a to a′ is fixed

to σ(a, a′); otherwise, the weight is fixed to a negative value pe-

nalizing those graphs where such an edge occurs. The goal is to

compute the dependency graph with maximum overall weight.

By exploiting such encodings, the whole approach has been im-

plemented in a system prototype reusing existing constraint pro-

gramming platforms for computing models for sets of precedence

constraints. In fact, these platforms have been developed to solve

NP-hard problems declaratively specified, and embody sophisticated

solution algorithms allowing them to scale over large datasets, as

their recent application in data mining contexts have demonstrated

(e.g., [9]). Our implementation leverages the Gecode platform.

General test setting. In order to test the prototype on a meaning-

ful application scenario, we considered the product recall process

in [12], featuring some major actions that must be undertaken in re-

sponse to a recall incident (triggered by, e.g., consumer/supplier noti-

fications or quality tests). Investigations on the reported problem and

suitable risk analyses must be performed (macroactivity PROLOGUE

—see [12], for details on specific activities), in order to decide if the

product must be recalled or not. The dependency graph for the activ-

ities occurring in the former case is shown in Figure 3.

G. Greco et al. / Process Discovery via Precedence Constraints 369



Arrange_ disposal

Complete_ recall

EPILOGUE

Complete_ optional_ actions

Consider_ optional_ actions

Prepare_ to_ destory_ or_ modify Stop_ production Identify_ remedies

Keep_ records

Notify_ third_ parties

PROLOGUE

Start_ recall

Stop_ distribution

Figure 3. Dependency graph for the product recall process.

trace% [1] [14] [11] [15] [6] Here

10 0.657 0.731 0.281 0.848 0.667 0.971
20 0.830 0.869 0.432 0.924 0.736 0.995
30 0.893 0.924 0.391 0.914 0.720 1.000
40 0.931 0.943 0.348 0.914 0.730 1.000
50 0.965 0.968 0.354 0.904 0.727 1.000
60 0.979 0.968 0.417 0.903 0.774 1.000
70 0.984 0.990 0.556 0.882 0.763 1.000
80 0.984 0.992 0.500 0.893 0.779 1.000
90 1.000 1.000 0.510 0.882 0.779 1.000
100 1.000 1.000 0.605 0.882 0.782 1.000

Avg 0.911 0.929 0.439 0.897 0.752 0.997

Figure 4. F-measure scores on different log samples, both in absence ([1],
[14], [11]) and in presence ([15],[6],Here) of background knowledge.

In order to valuate results’ quality, the set Dout of dependencies

discovered is contrasted to the set Din of real dependencies, as in the

a-priori known process model, through classical F-measure metrics,

defined as 2×P×R
P+R

, where P(recision) is the fraction of dependencies

in the mined model that appear in the real one and R(ecall) is the

fraction of real dependencies occurring in the mined model, i.e., P =
|Dout ∩Din|/|Dout| and R = |Dout ∩Din|/|Din|.

Results of different empirical analyses, conducted with this appli-

cation scenario, are discussed next in separate subsections.

5.1 Tests with variable amounts of log data

Given the interest in analyzing situations where log completeness

does not hold, we first built, as an ideal input for process mining

algorithms, a fully complete log L for the process above, where

each possible trace is registered once. Experiments were conducted

over logs extracted from L by randomly picking x% of its traces,

for x ∈ {10, ..., 90, 100}. In particular, 10 different logs were

sampled for each x, and tests were performed on them all. More-

over, we assume that the analyst only knows, a priori, that activ-

ity Complete optional actions is parallel with all the activi-

ties Identify remedies, Keep records, Stop distribution,

Notify third parties, Arrange disposal.

In the analysis, we compared the performances of our approach

with some classical process discovery methods [1, 14, 11], and with

two recent ones [15, 6] founding on a constraint-based or declara-

tive specification of the discovery problem, capable of incorporating

a-priori knowledge on activity dependencies (see Section 6). When

testing these competitor methods, we took advantage of their respec-

tive implementations available in the ProM framework [16].

Figure 4 summarizes the results found with different amounts of

log data, possibly accompanied by additional background constraints

(see the rightmost two columns). Precisely, for each percentage value
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Figure 5. F-measure on different log samples, when using various
amounts of (a-priori given) edge constraints and path constraints.
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Figure 6. F-measure on different log samples, when using various
amounts of (a-priori) negative edge constraints and negative path constraints.

x%, it is reported the average F-measure over all the 10 samples with

x% of the traces5. In general, all methods get poor achievements on

small samples, and tend to improve when using more input traces.

This effect is clearer with the classical methods [1, 14]. Surprisingly,

low scores are obtained by the heuristics-based global-search method

of [11] and by the declarative approaches [15, 6], which do not seem

to really take advantage of background knowledge. The converse

happens with our approach, which achieves remarkable outcomes in

presence of a-priori knowledge, even on very small samples. This is

particularly interesting, since this knowledge does not imply causal-

ity links (i.e., positive edge/path constraints), but it just concerns ac-

tivity independence (i.e., negated path constraints).

5.2 Varying the amount of a-priori knowledge

The impact of a-priori knowledge has been further studied, by con-

ducting tests with varying amounts of precedence constraints, in ad-

dition to those derived from the log. As a way to stress the approach

on incomplete data, we considered small portions of the original log,

gathering 5% to 15% of the traces. Background knowledge on activ-

ity relationships was drawn directly from the a-priori known model

of the process, in the form of the four binary relations, encoding

singleton-body precedence constraints: (i) edges and (ii) paths (i.e.,

pairs of activities, where the second depends on the first either di-

rectly or indirectly, resp.), and their associated complementary rela-

tions of (iii) negative edges and (iv) negative paths.

Figures 5 and 6 depict average F-measure scores for different per-

centages of both log traces and of the basic a-priori constraints de-

5 In each test, we have selected the best performing model among those found
with different parameters’ settings of the method in [15], and the highest-
fitness model found with the default configuration of the method in [11].
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Figure 7. Time (seconds) spent to compute a solution (First Sol.) and an
optimal one (Best Sol.).

scribed above. Note that, in the underlying tests, we drew 10 sub-logs

for each traces’ percentage and performed 10 trials on each of them,

for each combination of all constraints’ percentages. In general, in-

creasing the quantity of whichever kind of a-priori constraints leads

to higher accuracy scores—apart slight fluctuations for the case of

5% log samples with variable amounts of positive constraints (see

Figure 5). In particular, a 15% random sample suffices to achieve

nearly optimal recall and precision. Moreover, it is worth noting that

the degree of improvement appears more marked with smaller log

samples (hardly capturing all actual behaviors), and when exploiting

negative constraints (see Figure 6).

5.3 Running times

In the process mining setting, running times for solution approaches

do not usually represent a major issue (as algorithms are applied off-

line, i.e., during the (re-)design phase), so that the focus is mainly

on improving the performances of the approaches in terms of the

quality of the results they produce. For the sake of completeness, we

nonetheless believe here that it is of interest to provide the reader

with a general idea of the computation times needed by our method,

in particular by evidencing that, despite the theoretical intractabil-

ity, quite good scalings can be obtained: Figures 7 reports the times

for computing either an optimal dependency graph, or just the first

one (hence, not necessarily optimal) discovered in the search space,

with respect to the amount of constraints and of traces taken as in-

put. Times are in seconds, and experiments have been conducted on a

dedicated machine, equipped with an Intel dual-core processor, 2GB

(DDR2 1033 MHz) of RAM, and running Windows XP Professional.

Note that times reduce considerably when augmenting the quantity

of background constraints, no matter of the log size—each time mea-

sure was still computed by averaging the results of 10 tests performed

with different random samples, in order to reduce the sampling bias.

6 Discussion and Conclusions

The opportunity to exploit background knowledge in order to deal

with incomplete logs was argued recently by [6], where a novel pro-

cess discovery method is presented. After extracting temporal con-

straints, capturing dependence and parallelism relations between ac-

tivities, negative events are generated artificially for each prefix of

any log trace (each event indicates which activities are not allowed to

appear next in the trace). Using both log traces and artificial negative

events as input, a logic program is induced with algorithm TILDE,

which is eventually converted into a Petri net. Importantly, domain

experts can directly provide an a-priori set of temporal constraints,

possibly stating that (i) two activities are parallel (resp., not parallel),

and (ii) that one precedes/succeeds (resp., does not precede/succeed).

A different kind of “declarative” method has been proposed

by [15], where a Petri-net model is discovered via an integer Lin-

ear Programming (LP) approach. An initial net, having no places,

is refined iteratively by adding a place at a time. Each place is cho-

sen greedily, by solving (via an off-the-shelf LP solver) a system of

linear inequalities, asking for a place with a minimal (resp., maxi-

mal) number of incoming edges (resp., outgoing edges). To curb the

growth of the mined model, the search can be guided by log relations

derived from the same log (as in [14]), concerning direct activity de-

pendencies and parallelism relationships. The user can enforce fine

grain constraints, by manually modifying these relations.

In this paper, we have proposed a constraint-based discovery

framework, where a-priori knowledge is encoded via precedence

constraints, and the search of dependencies is stated as a constraints

satisfaction (optimization) problem. Compared with both the propos-

als above, our setting is more general, in that it allows for specifying

a broader range of constraints, including path constraints and con-

straints over activity sets. In fact, other declarative methods were pro-

posed in [5, 3, 2], for learning a decision model discriminating com-

pliant and non-compliant executions. This substantially differs from

our perspective, where only compliant traces are available and the

aim is to discover control-flow dependencies. Moreover, they have

not explored the idea of exploiting a-priori knowledge.
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