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Abstract. We consider problems where a solution is evaluated with
a couple. Each coordinate of this couple represents an agent’s utility.
Due to the possible conflicts, it is unlikely that one feasible solution
is optimal for both agents. Then, a natural aim is to find tradeoffs.
We investigate tradeoff solutions with guarantees for the agents.The
focus is on discrete problems having a matroid structure. We pro-
vide polynomial-time deterministic algorithms which achieve sev-
eral guarantees and we prove that some guarantees are not possible
to reach.

1 Introduction

This paper deals with the existence and computation of a solution s
which is common to two agents. The interest of agent i ∈ {1, 2} over
the set of possible solutions is captured by a utility function ui. When
these functions are conflicting, it is unlikely that a feasible solution
s, such that u1(s) and u2(s) are both nearly optimal, exists. So, one
has to make a tradeoff.
A natural way to cope with several functions is to aggregate them

in a weighted sum. For example, which solution smaximizes the util-
itarian function fλ(s) := λu1(s)+(1−λ)u2(s) for some λ ∈ [0, 1]?
Unfortunately, this approach has two issues. The first issue is about
computation: finding a solution which optimizes fλ may be puzzling
when u1 and u2, though separately solvable, require completely dif-
ferent algorithms. The second issue is that an optimum to fλ may
lead to unbalanced solutions. If s∗i denotes the solution that max-
imizes ui(s

∗
i ) then it is possible that a solution s, though optimal

for fλ(s), satisfies u1(s)/u1(s
∗
1) ≈ 1 and u2(s)/u2(s

∗
2) ≈ 0 (or

conversely u1(s)/u1(s
∗
1) ≈ 0 and u2(s)/u2(s

∗
2) ≈ 1). This patho-

logical case indicates that s can be unfair, i.e., close to optimality for
one agent, and very far from optimality for the other agent.
Then we address the following questions: For which lower bounds

on u1(s)/u1(s
∗
1) and u2(s)/u2(s

∗
2) a solution s is guaranteed to

exists? Which algorithm can cope with a possibly different nature of
the agent’s utility functions and such that non trivial a priori lower
bounds on u1(s)/u1(s

∗
1) and u2(s)/u2(s

∗
2) can be derived?

In this article, we seek for (α, β)-approximate algorithms, i.e., al-
gorithms returning a solution s such that u1(s)/u1(s

∗
1) ≥ α and

u2(s)/u2(s
∗
2) ≥ β for every instance. Of particular interest are the

vectors (α, β) which are optimal in the sense of Pareto. There are
several papers that deal with (α, β)-approximate algorithms, includ-
ing [11, 24, 19, 22, 10, 9].
The article is devoted to problems having a matroid structure (de-

fined in Section 3). There is a rich literature on matroids [21, 18, 13].
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They model many practical situations (e.g. schedules, forests of a
graph), possess many remarkable structural properties and admit ele-
gant polynomial-time algorithms. These are motivations for studying
tradeoffs on matroids.
Throughout the paper, we assume that the utility of the first agent

is additive while the utility of the second agent is more complex; it
is a particular submodular function which captures more elaborate
preferences.
A typical example of the instances covered in this article is the

following:

Example 1 A group of tourists is visiting Montpellier for n days and
they ask a local travel agency to arrange the stay with (at most) one
activity per day. There are m activities available: a1, · · · , am. Each
ai has

• a label L(ai) which characterizes the activity (e.g. visiting a mon-
ument, attending a show, eating at a gastronomic restaurant, etc);
there are typically several activities with the same label. The la-
bels constitute a partition of the activity set,

• a list of days T (ai) during which ai can be scheduled,
• a non negative weight w(ai) indicating what the travel agency

earns when the activity is scheduled.

Each label � has a non negative gain, denoted by g(�), which cap-
tures a tourist’s interest for any activity ai such that L(ai) = �.

If A denotes the subset of activities actually scheduled, then
the travel agency would like to maximize its profit

∑
a∈A

w(a).
On the other hand, the tourists’s viewpoint is different since they
want

∑
�∈{L(a):a∈A} g(�) to be maximized. Here, we assume that

a tourist’s utility increases when he does an activity of a new kind
(no activity with the same label was done before).

The tourist/travel agency problem has a matroid structure usually
called tranversal and is explained below.

2 Related work and contribution

In this article, we study bicriteria approximation of labeled matroid
where the utility of the two agents are in conflict. Hence, it is un-
likely that the best strategy for the first agent is also the best one for
the second agent, as illustrated by the tourist/travel-agency problem.
One way of tackling this problem is to approximate the Pareto set ie.,
the set of non-dominated solutions (any improvement on one objec-
tive induces a deterioration on another objective). This point of view
has been studied in the literature in several papers [22, 20, 19, 3].
When we produce a unique solution to approximate the problem,
this approach is similar in the spirit to the notion of max-min fair-
ness [2, 4, 12, 14, 10]. Fairness has been initially considered in
economics and social choice theory where fairness notions based
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on some axiomatic characterizations such as proportional fairness,
envy-freeness and max-min fairness [5, 16, 15, 14, 12, 17]. The goal
of the max-min fairness criterion is to maximize the satisfaction of
the least satisfied agent where the individual utilities of each agent
is normalized in order to lie on the same scale [4, 12]. An (α, β)-
approximation gives the satisfaction of the two agents so, the satis-
faction of the least satisfied agent is min{α, β}.

In this article, we first recall definitions on matroids (Section 3).
Section 4 presents the model studied in this paper and Section 5 gives
the main definitions on multicriteria approximation.
Then we extend a result of [9] which deals with two agents hav-

ing additive utility functions and willing to build a common span-
ning tree (a particular matroid problem). In Section 6, we propose a
(1/2, 1/4)-approximation algorithm which simulates a natural pro-
cess where two agents build a common solution. The general com-
putational complexity is mentioned in Section 6 and followed by an
algorithm finding a particular lexicographic optimum. In Section 8,
we study a particular case, called uniform case, and show the follow-
ing results: on the one hand, we produce a ( k−1

k
, 1
k
)-approximation

within polynomial-time in the uniform case, for any positive integer
k given as the input, and on the other hand, we exhibit some instances
without any (α, 1 − α)-approximation in the uniform case, for any
α ∈ (0; 1) with α /∈ {k−1

k
: k is a positive integer }. Some open

questions are indicated in Section 9.

3 Matroids

Matroids play an important role in combinatorial optimization and
graph theory. We briefly mention some basic definitions, properties
and algorithms on matroids and refer the reader to [21, 13, 18] for
deeper expositions.
A matroidM = (X, F) consists of a finite set of n elements X

and a collection F of subsets of X such that:

(i) ∅ ∈ F ,
(ii) if F2 ⊆ F1 and F1 ∈ F then F2 ∈ F ,
(iii) for every couple F1, F2 ∈ F such that |F1| < |F2|, ∃ x ∈ F2\F1

such that F1 ∪ {x} ∈ F .

By induction (iii) is equivalent to

(iii′) for every couple F1, F2 ∈ F where |F1| < |F2|, ∃A ⊆ F2\F1

with |A| = |F2| − |F1| such that F1 ∪ A ∈ F .

The elements of F are called independent, the element of 2X \ F
dependent. Inclusion wise minimal dependent sets are called circuits
and inclusionwise maximal independent sets are called bases. All
bases of a matroidM have the same cardinality r(M), defined as the
rank ofM . Given amatroidM = (X, F) and a subsetX ′ ⊂ X, the
restriction ofM toX ′, denoted byM|X ′, is the structure (X ′, F ′)
where F ′ = {F ∈ F : F ⊆ X ′}. If X ′ ∈ F , the contraction 4

ofM by X ′, denotedM/X ′, is the structure (X \X ′, F ′) where
F ′ = {F ⊆ X \X ′ : F ∪X ′ ∈ F :}. It is well known thatM|X ′

andM/X ′ are matroids.
Typical examples of matroids are the following:

• The forests (set of edges which do not admit a cycle) of a multi-
graph G form a matroid usually called the graphic matroid of G.
A base in this matroid is a spanning tree.

4 Actually, the contraction is defined in the literature for any X′ ⊂ X , and
when X′ ∈ F the definition is similar to the one given in this paper.

• Given k disjoint sets E1, . . . , Ek which form a ground set E =
∪k

i=1Ei and k non negative integers bi (i = 1..k), the sets F ⊆
E satisfying |F ∩ Ei| ≤ bi form a matroid usually called the
partition matroid.

• Given k (not necessarily disjoint) sets E1, . . . , Ek, subsets of a
ground set E, a partial transversal is a set T ⊆ E such that an
injective map Φ : T → [1..k] satisfying t ∈ EΦ(t) exists. Then
(E,T ) where T = {T ∈ 2E : T is a partial transversal of E} is
a matroid usually called the transversal matroid.

Returning to Example 1, letE = {a1, a2, ..., am} a set of activities
and Ei ⊆ E the subset of activities available on day i, i = 1..n. A
set of activities T ⊆ E is feasible if it exists an injective mapping
Φ : T → [1..n] combining at most one activity of Ei per day i, i =
1..n.
A matroid is said simple if no single element, or pair of elements,

is a circuit [18]. For example, the forests of a simple graph define a
simple matroid.
When every element e ∈ X has a weight w(e) ∈ R

+, a typi-
cal optimization problem consists of computing a base B ∈ F that
maximizes

∑
e∈B

w(e). This problem is solved by the following al-
gorithm:

Algorithm 1 GREEDY
Require: M = (X, F), w : X → R

+

1: SortX = {e1, · · · , en} such that w(ei) ≥ w(ei+1),
i = 1..n − 1

2: Set F = ∅
3: for i = 1 to n do
4: if F ∪ {ei} ∈ F then
5: F ← F ∪ {ei}
6: end if
7: end for
8: return F

Note that the execution of GREEDY on a forest matroid coincides
with Kruskal’s algorithm for maximum weight spanning trees.
We always assume that an independence oracle can decide within

polynomial time whether a set F is independent or dependent. Given
two matroids (X, F1) and (X, F2) defined over the same set of
elements X, there are algorithms (more elaborate than GREEDY) to
solve the following problems in polynomial time [13, 21]:

• find an independent F ∈ F1 ∩ F2 of maximum cardinality.
• when every element e ∈ X has a weight w(e) ∈ R

+, find an
independent F ∈ F1 ∩ F2 that maximizes

∑
e∈F

w(e).

4 The model: two agents on a matroid

LetM = (X,F) be a matroid and consider the following functions:

• w : X → R
+, where w(x) is called the weight of x ∈ X,

• L : X → {�1, . . . , �p}, where {�1, . . . , �p} is the set of labels
and L(e) is called the label of e,

• g : L → R
+, where g(�) is the gain of label �.

Note that w is additive while g has a more general form (it is a
particular submodular function).
For the ease of presentation we often write g(x) instead of

g(L(x)) for x ∈ X. The labels of a set X ′ ⊆ X is a set denoted
by L(X ′) and defined as

⋃
x∈X′{L(x)}. In the tourist/travel-agency

problem, the labels {�1, . . . , �p} are the activity types.
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We study a model whereF is the set of feasible solutions. The first
and second agent’s utilities are w and g, respectively. A set F ∈ F is
then evaluated with two objective functions: w(F ) =

∑
x∈F

w(x)
and g(F ) =

∑
l∈L(F ) g(l)which should be maximized. An instance

is then a tuple 〈M, w,L, g〉.
As previously mentioned, GREEDY finds a base F1 that maximizes

w(F1). Finding F2 that maximizes g(F2) can be done in polynomial
time by searching a maximum cost intersection of two matroids. The
first matroid isM = (X,F). The second matroidM′ = (X,F ′)
is a partition matroid defined by the labels of X: F ′ := {S ⊂ X :
|L(S)| = |S|}. Every element x ∈ X has a cost c(x) defined as
g(L(x)). Use any appropriate algorithm to compute a maximum cost
independent inF∩F ′ (see [13, 21]) and complete it into a base F2 if
necessary. It is not difficult to show that the resulting base maximizes
g.

5 Non trivial approximation

When focusing on a particular agent i, we say that an algorithm A is
ρ-approximate if, for every instance,A returns a solution s satisfying
ui(s)/ui(s

∗
i ) ≥ ρ. Here, s∗i is a solution which maximizes ui(s

∗
i )

and ρ ∈ [0, 1] is called the approximation ratio or performance guar-
antee [23].
When dealing with k ≥ 2 agents, we say that an algorithm A is

(ρ1, . . . , ρk)-approximate if, for every instance, A returns a solution
s satisfying ui(s)/ui(s

∗
i ) ≥ ρi for i = 1..k. Actually the vector

(u1(s
∗
1), . . . , uk(s

∗
k)) is often called the ideal point [8] since it is the

image of an unlikely feasible solution where optimality is reached for
all agents. In this paper, we propose algorithms which approximate
this point.
Obviously, returning a solution that maximizes w (resp. g) gives

a (1, 0)−approximation (resp. (0, 1)−approximation) but we expect
α and β to be positive so that the solution constitutes a non trivial
tradeoff. Next examples show that, for the general model considered
in this article (described in Section 4), there is no hope for a non
trivial (α, β)-approximate tradeoff (such that α > 0 and β > 0) if
we consider the whole class of matroids.

Example 2 Consider the matroid (X = {a, b},F = {∅, {a}, {b}},
where w(a) = 1, w(b) = 0, �(a) = l, �(b) = l′, g(l) = 0 and
g(l′) = 1. The rank is 1.

Example 3 Consider the matroid (X = {a, b, c},F =
{∅, {a}, {b}, {c}, {a, c}, {b, c}}, where w(a) = 1, w(b) = w(c) =
0, �(a) = �(c) = l, �(b) = l′, g(l) = 0 and g(l′) = 1.

In both examples, for every independent F ,min{w(F ), g(F )} =
0 whilemaxF∈F{w(F )} = maxF∈F{g(F )} = 1. This means that
either α = 0 or β = 0 for every feasible solution. However, one can
overcome this issue by considering a notion which generalizes the
notion of simple matroid.

Definition 1 A matroid M = (X,F) is said labeled-simple if
L(x1) = L(x2) for every circuit C = {x1, x2} of size two.

Note that the matroids of Examples 2 and 3 are not labeled-simple.
More generally, a simple matroid is labeled-simple and when every
label appears once, these two notions coincide.
As shown in the next section, excluding matroids which are not

labeled-simple makes the existence of non trivial approximation pos-
sible.

6 A general greedy algorithm

We propose to analyze a simple extension of GREEDY which builds
a tradeoff solution. This extension, called ALT-GREEDY, simulates a
simple and natural process for the construction of a tradeoff.
At the beginning, F = ∅ and the agents alternatively add an el-

ement e to F such that F + e ∈ F until F becomes a base. If it
is the first agent’s turn, then we assume that he selects e that max-
imizes w(F + e). In a symmetric way, the second agent chooses e
that maximizes g(F + e) during his turn.
We suppose that the first agent (the one who tries to maximize

w(F )) plays first.

Theorem 1 ALT-GREEDY is (1/2, 1/4)-approximate for labeled-
simple matroids.

Proof. Let B = {e1, . . . , er} be the base returned by ALT-GREEDY.
Let us first focus on the ratio 1/2 for the first agent. Let B∗ =
{e∗1, . . . , e

∗
r} be a base with maximum weight satisfying w(e∗1) ≥

. . . ≥ w(e∗r). Each element of B with odd index is inserted by
the first agent who wants to maximize the total weight. Let i odd.
When i = 1 the current solution F is ∅ (just before ei is inserted).
Otherwise F = {e1, . . . , ei−1}. Set F ′ = {e∗1} if i = 1, oth-
erwise F ′ = {e∗1, . . . , e

∗
i }. By property (iii) of a matroid, and

because |F ′| > |F |, there exists an element ê ∈ F ′ \ F such
that F + ê ∈ F . Using w(e∗1) ≥ . . . ≥ w(e∗r), we know that
w(ê) ≥ w(e∗i ). Since the first agent selects the element ei that max-
imizes w(F + ei) and because this agent is additive, we deduce that
w(ei) ≥ w(ê) ≥ w(e∗i ), for every odd i. We get that

w(
r⋃

i=1

ei) ≥ w(
r⋃

i=1, odd

ei) ≥ w(
r⋃

i=1, odd

e∗i ), (1)

where the non negativity of an element’s weight is used. Now observe
that w(e∗i ) ≥

1
2
(w(e∗i ) + w(e∗i+1)) because w(e∗i ) ≥ w(e∗i+1). It

follows that

w(B) = w(
r⋃

i=1

ei) ≥
1

2
w(

r⋃
i=1

e∗i ) = w(B∗)/2.

Thus, ALT-GREEDY is (1/2, ·)-approximate. Now, consider the sec-
ond agent. Let Bg be a base with maximum gain. Let E be the el-
ements of Bg whose label does not appear in the solution returned
by ALT-GREEDY: E := {e ∈ Bg : L(e) /∈ L(B)}. We suppose
that the first ν = |L(E)| elements of E have distinct labels and they
are sorted by non increasing gain: g(eg1) ≥ g(eg2) ≥ . . . ≥ g(egν)
where E = {eg1, . . . , e

g
ν , . . . , e

g

|E|}. E is in F because E ⊆ Bg and
Bg ∈ F . Note that g(E) = g({eg1, . . . , e

g
ν}) =

∑ν

i=1 g(e
g
i ).

Suppose that during an even step of ALT-GREEDY, the second
agent can not add an element with a new label to the current so-
lution F . We know that F ∈ F because F ⊆ B. If |F | < |E|
then, by property (iii) of matroids, one can add an element with a
new label to F , contradiction. We deduce that |F | ≥ |E|. Hence
F has at least ν elements. Let F ′ = {e1, . . . , eν} be the first ν
elements of F (following the order by which they are inserted dur-
ing the algorithm). Every element with an even index, within F ′,
was inserted by the second agent. By property (iii) of a matroid,
we know that g(ei) ≥ g(egi ) holds for every even i between 2 and
ν. It follows that

∑ν

i=2, even g(ei) ≥
∑ν

i=2, even g(egi ). The first ν
elements of E being sorted by non increasing gain, we know that
2
∑ν

i=2, even g(egi ) ≥
(∑ν

i=1 g(e
g
i )
)
− g(eg1) where

∑ν

i=1 g(e
g
i ) =
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g(E). We deduce that

2g(F ′) ≥ 2

ν∑
i=2, even

g(ei) ≥
ν∑

i=1

g(egi )− g(eg1) = g(E)− g(eg1). (2)

If L(e1) = L(eg1) then g(B) ≥ g(eg1), otherwise {e1, e
g
1} ∈ F

because the matroid is labeled-simple (see Definition 1) and g(e2) ≥
g(eg1) by property (iii)

5, In any case, we get that

g(B) ≥ g(eg1). (3)

Use F ′ ⊆ B and Inequalities (2) and (3) to derive

3g(B) ≥ 2g(F ′) + g(B) ≥ g(E). (4)

By definition, L(Bg)\L(E) are the labels appearing inB. It follows
that g(B) ≥ g(Bg)− g(E) that we add to Inequality (4) to get that

4g(B) ≥ g(Bg).

Thus, ALT-GREEDY is (·, 1/4)-approximate if, during an even step
of ALT-GREEDY, the second agent could not add an element with
a new label to the current solution F . Now, suppose that for every
turn of the second agent, it was possible to add an element with
a new label. Rename the ξ = |L(Bg)| first elements of Bg such
that L({eg1, . . . , e

g
ξ}) = L(Bg) and g(eg1) ≥ g(eg2) ≥ . . . ≥

g(egξ). Note that
∑ξ

i=1 g(e
g
i ) = g(Bg). By property (iii) we have

g(ei) ≥ g(egi ) for i ≤ ξ and even. We deduce that g(B) ≥∑ξ

i=2, even g(ei) ≥
∑ξ

i=2, even g(e
g
i ). Since the first ξ elements ofB

g

are sorted by non increasing gain, we know that 2
∑ξ

i=2, even g(e
g
i ) ≥(∑ξ

i=1 g(e
g
i )
)
−g(e1g). Hence 2g(B) ≥

(∑ξ

i=1 g(e
g
i )
)
−g(e1g) =

g(Bg)− g(e1g). Since inequality (3) holds, we deduce that 3g(B) ≥
g(Bg) which is better than 4g(B) ≥ g(Bg).
In conclusion, ALT-GREEDY is (1/2, 1/4)-approximate. �

Note that if we apply ALT-GREEDY by inverting the role of the
agents (even steps are for the weight and odd steps are for the labels),
then we can prove that ALT-GREEDY is (1/3, 1/3)-approximate for
labeled-simple matroids.
Next example shows that the analysis of ALT-GREEDY is tight.

Example 4 Consider the graphic matroid of the following graph.
v1

v2

v3v4

v5

(0
, �

5
)

(0, �1)

(0, �1)

(1, �1)

(1, �2)

(1, �1)

(0,
�4)

(1, �3)

Each edge e has a pair (w(e),L(e)). We suppose that
g(�2) = 0 and g(�i) = 1 for any i �= 2. The tree
{(v1, v5), (v2, v5), (v3, v4), (v4, v5)} has weight 4 while the tree
{(v1, v4), (v2, v3), (v2, v4), (v2, v5)} uses the labels {�1, �3, �4, �5}
so its gain is 4. ALT-GREEDYmay output a tree containing (v4, v5),
(v1, v2), (v1, v5) and (v2, v3) (edges are listed by the order they en-
ter the solution). This tree has weight 2 and its gain is 1.

5 Note that the rank is at least 2 by assumption.

7 General computational complexity and a
particular solution

Theorem 1 is a constructive proof that every instance of the model
admits a (1/2, 1/4)-approximate solution. More generally, given an
instance 〈(X,F), w,L, g〉 and two bounds kw and kg , what is the
computational complexity of the following decision problem?

Π: Is there any F ∈ F such that w(F ) ≥ kw and g(F ) ≥ kg?

Π generalizes the minimal spanning tree problem with a side con-
straint which was shown NP-complete [1], see also [7] for matroids.
Actually, by considering the graphic matroid where each edge e has
a distinct label e, the problem dealt with in the paper is exactly the
minimal spanning tree problem with a side constraint.
Though NP-complete in general, next result states that a particular

Pareto optimal solution can be computed in polynomial time. Within
the set of optimal solutions for the weight, let F ∗

w,g be the one which
maximizes g. F ∗

w,g is a lexicographic Pareto optimal solution.

Theorem 2 F ∗
w,g can be computed in polynomial time.

Before giving a proof of Theorem 2, we give an intermediate result.

Lemma 1 Let M = (X,F) be a matroid, B its set of bases and
w : X → R

+ a weight function. Let Bw ⊆ B be the set of all bases
which are optimal for w. ThenMw = (X,Fw) where Fw := {F ⊆
B : B ∈ Bw} is a matroid.

Due to space limitation, the proof of Lemma 1 is skipped. The proof
relies on the next property which follows from results of [6, 21].

Property 1 Let B1, B2 ∈ Bw with B1 �= B2. Then, ∀e1 ∈ B1 \B2,
∃e2 ∈ B2 \B1 such that (B1 \{e1})∪{e2} and (B2 \{e2})∪{e1}
are in Bw.

Now, we are ready to give a proof of Theorem 2.
Proof. Start withM = (X,F) and defineMw = (X,Fw) as in
Lemma 1. LetM′ = (X,F ′) be a partition matroid where F ∈ F ′

iff F ∈ Fw and |L(F )| = |F |. Find F̂ ∈ Fw ∩ F
′ with maximizes

g(F̂ ). SinceMw andM′ are two matroids (cf Lemma 1), this can
be done in polynomial time [13, 21]. Complete F̂ into a base B̂ in a
greedy manner with elements of X sorted by non increasing weight
(like in GREEDY). We claim that B̂ = F ∗

w,g .
F̂ ∈ Fw so its completion leads to a base of maximum weight:

B̂ ∈ Bw. Observe that g(F̂ ) = g(B̂) since otherwise F̂ does not
maximize g(F̂ ). Now suppose, by contradiction, that a base B̃ ∈ Bw

is such that g(B̃) > g(F̂ ). Retain exactly one element per label of B̃
to get an independent F̃ . Since F̃ ⊆ B̃ we have F̃ ∈ Fw. Moreover,
g(F̃ ) = g(B̃) because every label of B̃ appears in F̃ . It follows that
g(F̃ ) > g(F̂ ), contradicting the optimality of F̂ . �

Note that the complexity of the algorithm that finds F ∗
w,g depends

on Edmonds’ Matroid Intersection Algorithm runs in O(|X|4 + Y ∗
|X|3) time where Y is the complexity of the independence oracle
[13]. Y is not given explicitly, it depends on the matroid under con-
sideration. In our study, we suppose that Y is a polynomial (see Sec-
tion 3).

8 The uniform subcase

In this section, we consider a particular case, called uniform, where
g(l) = 1 for all l ∈ L. In fact, g(F ) = |L(F )| holds in this case
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so the second agent’s goal is to maximize the number of distinct la-
bels. As previously mentioned, finding a base BL that maximizes
|L(BL| can be done in polynomial time [13, 21]. In the following, L
denotes |L(BL)|. In this section, we do not assume that the matroid
is labeled-simple.
One can analyze ALT-GREEDY and show that it is (1/2, 1/3 +

1/r(X))-approximate for any matroidM = (X,M) in the uniform
subcase. It is noteworthy that we do not need to restrict ourselves to
labeled-simple matroids anymore. The proof is skipped because it
follows the line of Theorem 1’s proof and we are able to propose
another algorithm, called 3-PHASES, with better guarantees.
Indeed, we will prove that 3-PHASES is ( k−1

k
, 1
k
)-approximate for

every positive integer k taken as the input. Therefore, k = 2 gives
a (1/2, 1/2)-approximation which improves the guarantees of ALT-
GREEDY.
3-PHASES starts with an empty solution F and agent 1 adds

� k−1
k

L� elements in a greedy manner (trying to maximize the
weight). Afterwards, agent 2 adds to F a set of at most �L

k
� new el-

ements so that the number of new labels (ie. labels not present in the
first phase) is maximized. During the last phase, agent 1 completes F
in a greedy way by adding elements according to their weight. In the
following, Bj denotes the elements inserted during phase j. Hence,
3-PHASES returns the independent set B1 ∪ B2 ∪B3.
The first and third phase of the algorithm are both greedy and

clearly polynomial. Only the second phase of the algorithm is not
greedy. It consists of finding an independent of limited cardinality
(at most �L/k� elements) in the intersection of two matroids.
The first matroid isM′ = (X ′,F ′) where X ′ := X \ {x ∈ X :

L(x) /∈ L(B1)} and F ′ := {F ⊂ X ′ : B1 ∪ F ∈ F}. Actually,
M′ can be obtained by applying first the contraction ofM by B1,
M/B1 and then, the restriction ofM/B1 to X ′ = X \ {x ∈ X :
L(x) /∈ L(B1)} (note that X ′ ⊆ X \ B1). Because, the contrac-
tion and the restriction of matroids are matroids,M′ is a matroid.
The second matroidM2 = (X ′,F2) is the partition matroid of X ′

induced by the labels, ie., assume that L(X) = {�1, . . . , �p} and if
Xi = {x ∈ X : L(x) = �i} for i = 1..p denotes the elements with
label �i, then F2 = {F ⊆ X ′ : ∀i = 1..p, |Xi ∩ F | ≤ 1}.
Find a set S of maximum cardinality in F ∩ F ′ (this can be done

in polynomial time [13, 21]) and if |S| > �L/k�, retain a subset
of only �L/k� elements. By property (ii) of a matroid, the result-
ing set is independent. Thus, the second phase of 3-PHASES runs in
polynomial time.

Theorem 3 Let k be a positive integer taken as the input, 3-PHASES
is ( k−1

k
, 1
k
)-approximate in the uniform case.

Proof. The algorithm is clearly (0, 1)-approximate when k = 1 be-
cause no element is picked during the first phase and during the sec-
ond phase one can insert �L� = L elements with distinct labels.
From now on, we suppose that k ≥ 2. Let B = {e1, . . . , er} be

the base returned by 3-PHASES. The elements of B are numbered to
the order which they are inserted in the solution. Let us first focus
on the ratio k−1

k
for the first agent. Let B∗ = {e∗1, . . . , e

∗
r} be a

base with maximum weight satisfying w(e∗1) ≥ . . . ≥ w(e∗r). By
the third property of a matroid, we know that w(ei) ≥ w(e∗i ) for
i = 1..|B1| and |B1| = � k−1

k
L�. The elements of B∗ being sorted

by non increasing weight, we also have

w(ei) ≥ w(e∗j ) (5)

for any pair (i, j) ∈ {1, . . . , |B1|} × {|B1|+ 1, . . . , |B1|+ |B2|}.
Note that B2 is the set of elements added during the second phase

by the second agent and |B2| ≤ �L/k�. Since |B1| = � k−1
k

L� ≥
(k − 1)�L

k
� ≥ (k − 1)|B2|, one can split B1 in k − 1 disjoints

setsB1
1 , . . . , B

k−1
1 so that every one contains at least |B2| elements.

Using Inequality (5) we get that

w(Bp
1 ) ≥

|B1|+|B2|∑
j=|B1|+1

w(e∗j ) for p = 1..k − 1.

Summing up these inequalities gives

w(B1) =

k−1∑
p=1

w(Bp
1 ) ≥ (k − 1)

|B1|+|B2|∑
j=|B1|+1

w(e∗j ).

Thus,
1

k − 1
w(B1) ≥

|B1|+|B2|∑
j=|B1|+1

w(e∗j ). (6)

Using again (5) gives

w(B1) ≥

|B1|∑
j=1

w(e∗j ). (7)

Adding (6) and (7), we get that

k

k − 1
w(B1) ≥

|B1|+|B2|∑
j=+1

w(e∗j ). (8)

Concerning the third phase, Property (iii) implies w(ei) ≥ w(e∗i )
for r ≥ i ≥ |B1| + |B2| + 1. Summing up these inequalities gives
w(B3) =

∑r

i=|B1|+|B2|+1 w(ei) ≥
∑r

i=|B1|+|B2|+1 w(e∗i ) that
we plug in the previous inequality to get that

k

k − 1
w(B1) +w(B3) ≥

|B1|+|B2|∑
i=1

w(e∗i ) +
r∑

i=|B1|+|B2|+1

w(e∗i ),

k

k − 1
w(B) ≥ w(B∗).

Then, 3-PHASES is ( k−1
k

, ·)-approximate. Now, consider the sec-
ond agent and let BL be a base of M with L labels (the maxi-
mum number). Let EL be a subset of BL containing one element
per label in BL, ie. |EL| = |L(EL)| = |L(BL)| = L. The
second phase of the algorithm consists of adding to B1, at most
�L/k� elements with labels which do not appear in L(B1). Let
E = {e ∈ EL : L(e) /∈ L(B1)}. Denote by p the number of labels
that B1 and EL share. We have |L(B1)| ≥ p and |E| = L− p.
Suppose |E| ≤ |B1|. We get that L− p = |E| ≤ |B1| = �L/k�.

Then p ≥ L−�L/k� = �L/k� ≥ L/k. Use |L(B1)| ≥ p to observe
that B1, and a fortiori B, contains at least L/k labels.
Now, suppose that |E| > |B1|. At least |E| − |B1| = L − p −

� k−1
k

L� = �L/k� − p elements with new labels are added during
the second phase, since on the one hand, by Property (iii′) ∃A ⊆
E \ B1 with |A| = |E| − |B1| such that A ∪ B1 ∈ F (i.e., A
is an independent set ofM′ = (X ′,F ′) where we recall that X ′ =
X\{x ∈ X : L(x) /∈ L(B1)} andF ′ := {F ⊂ X ′ : B1∪F ∈ F})
and on the other hand,A is an independent set of the partition matroid
M2 = (X ′,F2) because |L(A)| = |A|.
Thus, A is a feasible solution of the intersection of matroidsM′

and M2. So, |L(B2)| ≥ |L(A)|. Now, because |L(B1)| ≥ p, at
least |L(B1 ∪ B2)| = |L(B1)| + |L(B2)| ≥ |L(B1)| + |L(A)| =
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�L/k� ≥ L/k labels appear at the end of the second phase. The
elements added during the last phase can only increase the num-
ber of labels so we know that in every case 3-PHASES is (·, 1/k)-
approximate.
In conclusion, 3-PHASES is ( k−1

k
, 1
k
)-approximate. �

Next example shows that the guarantees of 3-PHASES are essen-
tially Pareto optimal.

Lemma 2 Let α ∈ (0; 1) and β ∈ (0; 1). There are instances with-
out any (α, β)-approximation in the uniform case in the following
cases:

(a) α+ β ≥ 1 and α �= k−1
k

for every positive integer k.
(b) α > 0 and β > 1/2.

Proof. We prove these results for a particular matroid, the graphic
matroid. Let α > 0 and β > 0.
(a)We prove that the result holds for α+ β = 1, and then a fortiori
for α+β ≥ 1. So, assume α+β = 1 and α �= k−1

k
for every positive

integer k. Thus, there is a unique integer L ≥ 2 such that L−2
L−1

<

α < L−1
L
. Therefore, we have αL > L(L−2)

L−1
and (1 − α)L > 1.

Consider the following multigraph GL, instance of the uniform case
for the graphic matroid.

The ideal point of GL is xL = (L, L) by considering the trees
given by the bottom edges for the weight and the top edges for the
labels.
By contradiction, assume that T is a spanning tree of GL with

weight w(T ) ≥ αL and number of labels |L(T )| ≥ (1− α)L. If T
contains at least L− 1 edges of weight L/(L− 1), then T contains
one label. Hence, 1 = |L(T )| ≥ (1 − α)L > 1, contradiction.
Thus, T contains at most L − 2 edges of weight L/(L − 1) and
then L(L − 2)/(L − 1) ≥ w(T ) ≥ αL > L(L − 2)/(L − 1),
contradiction.
(b) Consider the multigraph G2, ie., L = 2 described previously. If
β > 1/2, then |L(T )| ≥ 2β > 1. So, |L(T )| = 2 and T is given by
the top edges of G2. In this case, w(T ) = 0. �

Lemma 2.b shows that β = 1/2 is a tradeoff on the number of
labels that we can reach if some positive guarantee on the weight is
achieved. Hence, Theorem 3 gives the best results that we can hope.

9 Conclusion and future directions

For the general case, we have proposed a polynomial-time
(1/2, 1/4)-approximation for labeled-simple matroids (a
(1/3, 1/3)-approximation exists also by inverting the agents’
role). An important question consists of improving these approxi-
mations. We believe that a (1/2, 1/3)-approximation exists and that
it offers Pareto optimal guarantees, i.e., there are small instances
without any (α, β)-approximation with α ≥ 1/2 and β ≥ 1/3.
For the uniform subcase, we proposed polynomial-time determin-

istic algorithms which achieve several tradeoffs and we prove that
some tradeoffs are not possible. Note that the complexity result of
Section 7 does not hold for the uniform case so the exact complexity
of the uniform case is open. A first step in this direction would be
to consider the open problem of computing F ∗

g,w (a Pareto optimal

solution with maximum weight among solutions of maximum gain).
Another open question is the case where both agents’ utility func-
tions are of type ”g” (not only the second agent’s utility function).
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