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Abstract. Many AI problems arising in a wide variety of fields
such as machine learning, semantic web, network communication,
computer vision, and robotics can elegantly be encoded and solved
using probabilistic graphical models. Often, however, we are facing
inference problems with symmetries and redundancies only implic-
itly captured in the graph structure and, hence, not exploitable by ef-
ficient inference approaches. A prominent example are probabilistic
logical models that tackle a long standing goal of AI, namely uni-
fying first-order logic — capturing regularities and symmetries —
and probability — capturing uncertainty. Although they often encode
large, complex models using few rules only and, hence, symmetries
and redundancies abound, inference in them was originally still at
the propositional representation level and did not exploit symmetries.
This paper is intended to give a (not necessarily complete) overview
and invitation to the emerging field of lifted probabilistic inference,
inference techniques that exploit these symmetries in graphical mod-
els in order to speed up inference, ultimately orders of magnitude.

1 Introduction

In the first paragraph of his book, Symmetry, Hermann Weyl
writes ”... symmetric means something like well-proportioned, well-
balanced, and symmetry denotes that sort of concordance of several
parts by which they integrate into a whole” [69]. Symmetries can
be found almost everywhere, in arabesques and French gardens as,
in the rose windows and vaults in Gothic cathedrals, in the meter,
rhythm, and melody of music, in the metrical and rhyme schemes of
poetry as well as in the patterns of steps when dancing. Symmetric
faces are even said to be more beautiful to humans. So, symmetry
is both a conceptual and a perceptual notion often associated with
beauty-related judgments [71]. Or, to quote Hermann Weyl again
”Beauty is bound up with symmetry”.

This link between symmetry and beauty is often made by scien-
tists. Why is this link so prominent in science? In physics, for in-
stance, symmetry is linked to beauty in that symmetry describes the
invariants of nature, which, if discerned could reveal the fundamen-
tal, true physical reality [71]. In fact2, ”at the heart of relativity the-
ory, quantum mechanics, string theory, and much of modern cosmol-
ogy lies one concept: symmetry.” In mathematics, as Herr and Bödi
note, ”we expect objects with many symmetries to be uniform and
regular, thus not too complicated” [27]. Therefore, it is not surpris-
ing that symmetries have also been explored in many AI tasks such
as (mixed–)integer programming [37, 4], SAT and CSP [54, 64] as
well as MDPs [17, 50].

Surprisingly, symmetries have not been the subject of interest
within probabilistic inference. Only recently the first efforts were
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Figure 1. Symmetries in a graphical model can be exploited to speed up
inference. (Left) A graphical model with thousands of nodes and factors for

a social network inference problem. (Middle) When running e.g. (loopy)
belief propagation (BP), many nodes and factors could be indistinguishable
(as indicated by the colors) in terms of the BP computations due to shared
parameters. (Right) By grouping indistinguishable nodes together, a lifted

factor graph exploits these regularities using just four nodes and three
factors, producing the same single node marginals but in a fraction of time.

(Best viewed in color)

made to employ symmetries within probabilistic inference. In 2003,
Poole presented in his seminal paper on ”First-Order Probabilistic
Inference” an algorithm to reason about multiple individuals, where
we may know particular facts about some of them, but want to treat
the others as a group [47]. This was the starting point of the very ac-
tive research field called ”lifted probabilistic inference”. Since then,
several inference approaches that exploit symmetries have been pro-
posed, see e.g. [14, 40, 55, 8, 68, 24] among others, and proven
successful in many AI tasks and applications such as information
retrieval, satisfiability, boolean model counting, semantic role label-
ing, Kalman filtering, Page Rank, Label Propagation, citation match-
ing, entity resolution, link prediction in social networks, informa-
tion broadcasting, market analysis, tracking of objects in videos, and
biomolecular event prediction. The lifted approaches are often faster,
more compact and provide more structure for optimization.

Lifted probabilistic inference is mainly triggered by the recent
success of statistical relational learning, see e.g. [21, 13, 12] for
overviews, which tackles a long standing goal of AI — namely uni-
fying first-order logic (capturing regularities and symmetries) and
and probability (capturing uncertainty) — that can be traced back
to Nils Nilsson’s seminal paper on ”Probabilistic Logic” [45]. Prob-
abilistic logical languages provide powerful formalisms for knowl-
edge representation and inference. They allow one to compactly rep-
resent complex relational and uncertain knowledge. For instance,
in the friends-and-smokers Markov logic network (MLN) [51], the
weighted formula 1.1 : fr(X, Y) ⇒ (sm(X) ⇔ sm(Y)) encodes that
friends in a social network tend to have similar smoking habits.
Yet performing inference in these languages is extremely costly,
especially if it is done at the propositional level. Instantiating all
atoms from the formulas in a such a model induces a standard
graphical model with symmetric, repeated potential structures for all
grounding combinations, see Fig. 1(Left). Lifted probabilistic infer-
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ence approaches have rendered many of these large, previously in-
tractable problems quickly solvable by exploiting the induced redun-
dancies. As a sneak preview, lifted (loopy) belief propagation (BP)
approaches [58, 30, 16, 31, 25, 3] intuitively automatically group
variables and factors of a graphical model together if they have iden-
tical computation trees (i.e., the tree-structured “unrolling” of the
graphical model computations rooted at the nodes) as indicated by
the colors in Fig. 1(Middle,Right). Then, they run a modified BP on
this lifted, often orders of magnitude smaller network.

This paper is intended to give a (not necessarily complete)
overview and invitation to the emerging field of lifted probabilistic
inference. Laying bare the ideas will hopefully inspire others to join
us in exploring the frontiers and the yet unexplored areas.

We proceed as follows. First, we illustrate symmetries in graphical
models without referring to any specific inference algorithm. Then,
we showcase several lifted inference approaches. When concluding,
we touch upon the main challenge lying ahead, asymmetry.

2 Symmetries in Graphical Models

Let X = {X1, X2, . . . , Xn} be a set of n discrete-valued random
variables and let xi represent the possible realizations of random
variable Xi. A graphical models compactly represents a joint dis-
tribution over X as a product of factors [46], i.e., P (X = x) =
Z−1 ∏

k fk(xk) where each factor fk is a non-negative function of
a subset of the variables xk, and Z is a normalization constant. They
can elegantly be represented using factor graphs. A factor graph, as
shown in Fig. 2(Left), is a bipartite graph that expresses the factor-
ization. It has a variable node (denoted as a circle) for each variable
Xi, a factor node (denoted as a square) for each fk, with an edge
connecting variable node i to factor node k if and only if Xi is an
argument of fk.

As an example, consider the joint distribution P (A,B,C) that
has the factor graph given in Fig. 2(Right). For instance, we might
be interested in distributing data to a network. Imagine that Anna,
Bob and Charles participate in a peer-to-peer network where a file
is divided into parts. Not all of them have all parts, and the nodes
exchange these parts until they can re-assemble back to the complete
file. Intuitively, there are three regions, namely {A,B}, {B,C}, and
{B}, where region {B} separates {A,B} and {B,C}. That is, when
conditioning on B, A and C are independent. Because of this, one
can break down the full joint distribution as follows:

P (A,B,C) = P (C|A,B)P (A|B)P (B) (chain rule)

=P (C|B)P (A,B) (C independent of A given B)

=P (C|B)
P (B)

P (B)
P (A,B) (multiplication by 1)

=P (A,B)P (B,C)P (B)−1
(chain rule)

Following Yedidia et al. [70], we visualize these regions of nodes
in terms of a region graph as shown in Fig. 2(Middle). The number
cR associated with each region R is the so-called counting number
and coincides in our example with the exponent of the correspond-
ing term in the last equation. Thus, P (X = x) =

∏
R PR(xR)

cR

where PR is the joint distribution of a region R, in our case P (A,B),
P (B,C), and P (B).

Imagine now that the model obeys to some additional symmetry,
say, P (a, b) = P (b, c) holds for a particular joint state a, b, c. For in-
stance, Bob requires a file part that both Anna and Bob can provide.
Then, the joint distribution simplifies to

P (a,B, c) = P (a,B)2P (B)−1
(symmetry)
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Figure 2. An example for symmetries in a graphical model. (Left) A factor
graph encoding a joint distribtion P (A,B,C). (Middle) The corresponding

region graph where each region is encoded as a red box. (Right) Lifted
region graph assuming P (a,B) ≡ P (B, c). (Best viewed in color)

where we have used the upper-case B do stress that this holds for
any state of B. This reflects our intuition. Bob can get the missing
file part from both Anna and Charles; they are indistinguishable for
Bob. Thus, the original model is ”over-sized” in the sense that there
are several joint states where only two instead of three terms are re-
quired. In these cases, we can compute the joint probability more
efficiently: we compute P (a,B) once and raise it to the power of 2,
since it coincides with P (B, c).

This can also be reflected in the region graph. As shown in
Fig. 2(Right), since P (a,B) = P (B, c), we group together both
regions and associated the sum of the original counting numbers as
counting number with the resulting superregion3. Since A and C take
on the same state, the region graph and its lifted counterpart encode
the same joint probability but using different regions and counting
numbers, namely c = (1, 1,−1) (ground) and c = (2,−1) (lifted)

where c is the corresponding vector of counting numbers. The differ-
ent counting numbers directly translates to less computations in the
lifted case.

It is important to note, however, that this only holds for the sym-
metric case. If A and C take on different states, we cannot group
P (a,B) and P (B, c) together since P (a,B) �= P (B, c) in general.
For instance, if Anna and Charles provide different parts, and Bob
requires only one of them. In this asymmetric case, we still have to
evaluate all three terms:

P (a,B, c) = P (a,B)P (B, c)P (B)−1 . (asymmetry)

This simple insight is important. It illustrates that lifting is not always
beneficial. There are simply asymmetric situations. In fact, Erdös and
Rényi showed that almost all large graphs are asymmetric [18], but it
is readily observed that many graphs representing structures of real
interest contain symmetry. Generally, it is difficult to preserve the full
joint distribution by lifting. Consequently, lifting approaches do not
(yet) lift the model but rather specific inference tasks and algorithms.

In the following, we review4 some lifted inference approaches. We
distinguish between two classes: bottom-up approaches start from a
given propositional model whereas top-down approaches start from
a specification of a probabilistic model in first-order logical format.

3 Note that the lifted region graph does not qualify as region graph anymore
since it validates the region graph condition, see [70] for more details. The
important point here is that the probability of joint states that conform to
the symmetry is still correct since we start from a valid region graph.

4 We would like to note that we do not touch upon methods for pre-
processing [57, 38, 63] and lazy inference [49, 52] that can also reduce
the running time of inference drastically, upon theoretical results on lifted
inference [34, 29, 65], nor upon the use of lifted inference for relational
probabilistic conditional logic [62] and for solving relational MDPs, see
e.g. [53, 32]. We also do not touch upon graphical models with symmetries
outside the SRL/StarAI context such as [5, 36, 19, 20].
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Figure 3. From left to right, the steps of lifting the factor graph in
Fig. 1(Left). The colored small circles and squares denote the groups and

signatures produced running color passing.

Note, however, that in many cases a bottom-up approach can be
turned into a top-down approach and vice versa. A good example is
lifted (loopy) belief propagation (that we will discuss next) for which
both top-down [58] and bottom-up [30] variants exist.

3 Bottom-up Lifting: Lifted Inference for
Propositional Models

An important inference task is to compute the conditional probability
of each variable given the values of some others, the evidence, by
summing out the remaining variables. The belief propagation (BP)
algorithm [46] is an efficient way to solve this problem that is exact
when the factor graph is a tree, but only approximate when the factor
graph has cycles. One should note that the problem of computing
marginal probability functions is in general hard (#P-complete).

The BP algorithm5 sends messages between variable nodes and
their neighboring factors (and vice versa) until convergence. Specif-
ically, the message from a variable X to a factor f is

μX→f (x) =
∏

h∈nb(X)\{f}
μh→X(x)

where nb(X) is the set of factors X appears in. The message from a
factor to a variable is

μf→X(x) =
∑

¬{X}

(
f(x)

∏
Y ∈nb(f)\{X}

μY→f (y)

)

where nb(f) are the arguments of f , and the sum is over all of these
except X , denoted as ¬{X}. Initially, the messages are set to 1. Af-
ter convergence or predefined number of iterations, the unnormal-
ized belief of each variable Xi can be computed from the equation
bi(xi) =

∏
f∈nb(Xi)

μf→Xi(xi) .
Although already highly efficient, BP does not make use of sym-

metries. Reconsider our example shown Fig. 2. To exploit the sym-
metries present in the graph structure, lifted BP variants [58, 30],
(that build upon [28]) essentially perform two steps: Given a factor
graph, they first compute a lifted factor graph and then run a modi-
fied BP on it. In the first step, we simulate BP keeping track of which
nodes and factors send the same messages, and group nodes and fac-
tors together correspondingly. In the first step, initially, all variable
nodes and all identical factors fall into corresponding groups as in-
dicated by the colors in Fig. 3. Now, each variable node sends its
color to its neighboring factor nodes. A factor node collects the in-
coming colors, puts its own color at the end, cf. Fig. 3, and sends this
color signature back to the neighboring variables nodes. The vari-
able nodes stack the incoming signatures together and, hence, form

5 We assume that any evidence is incorporated into the model by setting
f(x) = 0 for states x that are incompatible with it.

unique signatures of their one-step message history. We group to-
gether variable nodes with the same message history and assign new
colors to each group. The factors are grouped in a similar way. This
color-passing process is iterated until no new colors are created any-
more. At convergence, all variables nodes with the same color form
a supernode and all factors with the same color a superfactor. In our
case, variable nodes A, C and factor nodes f1, f2 are grouped together
as shown in Fig. 3.

Since supernodes and -factors are sets of nodes and factors that
send and receive the same messages at each step of carrying out
BP, we can now simulate BP on the lifted factor graph. An edge in
the lifted graph essentially represents multiple edges in the original
factor graph. Let c(f,Xi) be the number of identical messages that
would be sent from the factors in the superfactor f to each node in
the supernode Xi if BP was carried out on original factor graph. The
message from a supernode X to a superfactor f is

μX→f(x) = μf→X(x)
c(f,X)−1 ·

∏
h∈nb(X)\{f}

μh→X(x)
c(h,X)

where nb(X) now denotes the neighbor relation of supernode X
in the lifted graph. The c(f,X) − 1 exponent reflects the fact that
a supernode’s message to a superfactor excludes the correspond-
ing factor’s message to the variable if BP was carried out on the
original factor graph. Likewise, the unnormalized belief of any
random variable X in Xi can be computed as follows bi(xi) =∏

f∈nb(Xi)
μf→Xi(xi)

c(f,X) .
However, as the original BP algorithm, lifted BP also does not

prescribe a way to solve more complex inference tasks such as com-
puting joint marginals for k-tuples of distant random variables or
satisfying assignments of CNFs. A popular solution in these cases
is the idea of turning the complex inference task into a sequence of
simpler ones by selecting and clamping variables one at a time and
running lifted message passing again after each selection. This naive
solution, however, recomputes the lifted network in each step from
scratch, therefore often canceling the benefits of lifted inference. On-
line lifting approaches avoid this by reusing already known liftings
when computing the lifting of the next inference task [1, 42, 25] and
can also be used to realize lifted sampling.

Lifted BP approaches are also appealing because they are simple,
efficient, and parallelizable. Moreover, they have paved the way for
lifted solutions of many important AI tasks. For instance, one can lift
variants of BP for solving satisfiability problems such as survey prop-
agation [26] or when the underlying distributions are Gaussian [3]. In
turn, one can realize lifted variants of Kalman filters, PageRank, La-
bel Propagation, and Clustering-on-demand [3, 43]. Even linear pro-
gramming solvers can be lifted. Intuitively, given a linear program,
we employ a lifted variant of Gaussian BP to solve the systems of lin-
ear equations arising when running an interior-point method to solve
the linear program. However, this naive solution cannot make use of
standard solvers for linear equations and is doomed to construct lifted
networks in each iteration of the interior-point method again, an oper-
ation that can itself be quite costly. Mladenov et al. [41] showed that
we can read off an equivalent linear program from the lifted Gaus-
sian BP computations that can be solved using any off-the-shelf lin-
ear program solver. More importantly, this connects lifted inference
and linear program relaxations for the MAP inference problem, see
e.g. [22].

In a distinct yet related work, Sen et al. [55] proposed the idea of
bisimulated variable elimination (VE). In a nutshell, VE [73] works
as follows. To compute a single node marginal, we iterate the fol-
lowing steps: we select a random variable X , multiply all factors
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Figure 4. An example for lifted first-order variable elimination. (1) A
parfactor consists of two atoms a and b(X). (2) When summing out a, all

ground instances of b(X) can be grouped together. (3) The case when
eliminating b(X). All ground instances of b(X) are now connected. (Best

viewed in color)

together in which X appears, sum out X from the product, and store
the result. To lift VE, Sen et al. used the resulting computation trees
(i.e., the tree-structured ”unrolling” of the graphical model computa-
tions rooted at the nodes) when running VE to group together in-
dividuals indistinguishable. To identify these indistinguishable in-
dividuals, they employ bisimulation. In general, given a graph and
some desired property, bisimulation algorithms partition the set of
vertices into disjoint sets such that every pair of vertices in each set
satisfies the property. The property that Sen et al. identify is whether
two factors have the same input and output values when running VE.
This idea was later extended by the same group to approximate in-
ference [56]. Essentially, they trade off inference accuracy for com-
putational efficiency, i.e., lifting by e.g. grouping nodes and factors
together that are within a user-specified ε-distance of each other. Sim-
ilar ideas have been explored within lifted BP [31, 59].

4 Top-Down Lifting: Lifted Inference for
Relational Models

Although bottom-up lifting can be applied to models for which a re-
lational representation does not exist or is not the most intuitive way
of encoding, the more natural case for lifted inference are relational
models. If a relational model is given, we can seek inspiration from
logical inference, where lifted inference such as resolution is com-
monly performed.

That is, we also start with the model and refine it (also called shat-
tering) until indistinguishable nodes and factors form groups. Essen-
tially, we start with a set of parameterized factors or parfactors [47].
A parfactor is a triple 〈C, V, t〉 where C is a set of inequality con-
straints on logical variables, V is a set of parameterized random vari-
ables and t is a factor on V . Note that t will be the factor that is
used for all assignments of individuals to logical variables (place-
holders) in V . If the factor represents a clause, the table specifies just
a single number, and then V is written as a first-order clause as for
example done in MLNs. As an example, also illustrated in Fig. 4(1),
consider a parfactor on 〈{}, {a, b(X)}, t〉 where the population of X ,
i.e., the possible assignments of individuals to the logical variables X
has size n. Intuitively, in our data distribution task, this corresponds
to the case that all b(X) can provide file parts to a. Our first task is
to compute P (a), i.e., we want to know from whom a is going to
request a missing file part. To do so, we have to sum out all instances
of b(X). When summing out all instances of b(X), see also Fig. 4(2),
we can note that all of the factors in the grounding have the same
value (since all instance of b(X) provide the same file parts) and so
can be taken to the power of n, which can be done in time loga-
rithmic in n, whereas the grounding is linear in n. This operation,

invented by David Poole [47], has been called inversion elimination
by [14]. However, if we were to sum out a instead, see Fig. 4(3),
in the resulting grounding all instances of b(X) are connected, and
so there would be a factor that is of size exponential in n. de Salvo
Braz et al. [14] showed how, rather than representing the resulting
factor, we only need to count the number of instances of b(X), which
have a certain value, and so the subsequent elimination of b(X) can
be done in time polynomial in n. This is called counting elimination
and is linear in n if b(X) is binary, and if b(X) has k values, the time
is O(nk−1). Both elimination operations are restricted in different
ways. Inversion elimination operates in time independent from do-
main size, but can eliminate an atom only if it contains all logical
variables in its parfactor, and its grounding is disjoint from any other
atoms in that parfactor. Counting elimination can deal with atoms
whose grounding is the same as some other atom in the parfactor,
but logical variables in one atom cannot be constrained by those of
others. In any case, we can now lift variable elimination (VE) by re-
peating the following steps: (1) Pick a parameterized variable X. (2) If
applicable, apply inversion respectively counting elimination to sum
out the whole group of random variables represented by X. Store the
resulting new parfactors. (3) If neither of them is applicable, shatter
two parfactors X is involved. This splits each parfactor into a part that
is shared with the other parfactor, and a part that is disjoint, hopefully
making one of them applicable in the next round.

For propositional models, lifted VE essentially coincides with VE.
However, by avoiding many redundant computations, lifted VE can
achieve an exponential speedup compared to VE for relational mod-
els, moving essentially from O(2n) to O(n); ultimately being inde-
pendent of the domain size. Of course, in a similar way, one can lift
MAP and MPE inference approaches based on VE [15]. Even more
efficiency can be gained if we not only employ sharing of potentials
across interchangeable random variables but also to exploit inter-
changeability within individual potentials. To do so, Milch et al. [40]
proposed counting formulas as a representation of the intermediate
lifted formulas. They indicate how many of the random variables in
a set have each possible value. Because counting formulas capture
additional symmetries among large numbers of variables compactly,
this can result in asymptotic speed improvements compared to de
Salvo Braz et al.’s approach. Kisyński and Poole [35] have shown
how to perform lifted inference within directed first-order models
that require an aggregation operator when a parent random variable
is parameterized by logical variables that are not present in a child
random variable. Recently, Choi et al. [9] have shown how to per-
form lifted VE in the presence of aggregate factors such as SUM,
AVERAGE, and AND in probabilistic relational models. Taghipour
et al. [61] have lifted the restriction of having inequality constraints
only towards arbitrary constraints and report even more speed ups.
Choi et al. [8] addressed lifted VE when the underlying distribu-
tions are Gaussian. Their approach assumes that the model consists
of Gaussian potentials. Their algorithm marginalizes variables by in-
tegrating out random variables using inversion elimination operation.
If the elimination is not possible, they consider elimination of pair-
wise potentials and the marginals that are not in pairwise form are
converted to pairwise form and then eliminated. Recently, the same
group has shown how to realize a lifted Kalman filter based on lifted
VE [10]. Recently, Van den Broeck et al. [66] built a bridge between
lifted VE and lifted BP by lifting the ”relax, compensate and then
recover” [7].

An alternative to variable elimination is to use search-based meth-
ods based on recursive conditioning. That is, we decompose by con-
ditioning on parameterized variables a lifted network into smaller
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networks that can be solved independently. Each of these sub-
networks is then solved recursively using the same method, until
we reach a simple enough network that can be solved [11]. Re-
cently, several top-down lifted search-based methods have been pro-
posed [23, 24, 68, 48]. Gogate and Domingos [24] reduced the prob-
lem of lifted probabilistic inference to weighted model counting in a
lifted graph. Van den Broeck et al. [68] employ circuits in first-order
deterministic decomposable negation normal form to do the same,
also for higher order marginals [67]. Both these approaches were de-
veloped in parallel and have promising potential to lifted inference.

Finally, there are also sampling methods that employ ideas of lift-
ing. Milch and Russell developed an MCMC approach where states
are only partial descriptions of possible worlds [39]. Zettlemoyer
et al. [72] extended particle filters to a logical setting. Gogate and
Domingos introduced a lifted importance sampling [24]. Recently,
Niepert proposed permutation groups and group theoretical algo-
rithms to represent and manipulate symmetries in probabilistic mod-
els, which can be used for MCMC [44].

5 An ”Asymmetric” Conclusion

We have seen several lifted inference approaches. However, already
in 1848, Louis Pasteur recognized ”Life as manifested to us is a
function of the asymmetry of the universe”. This remark character-
izes somehow one of the main challenges for lifted probabilistic in-
ference: Not only are almost all large graphs asymmetric [18], but
even if there are symmetries within a probabilistic model, they easily
break when it comes to inference since variables become correlated
by virtue of depending asymmetrically on evidence. This, however,
does not mean that lifted inference is hopeless. Indeed, in many cases
lifting will produce a new model that is not far from propositional-
ized, therefore canceling the benefits of lifted inference. However,
in many asymmetric cases we can do considerably better. de Salvo
Braz et al. [16] presented anytime lifted BP. It performs shattering
during BP inference, on an as-needed basis, starting on the most rel-
evant parts of a model first. The trade-off is having an (exact) bound
(an interval) on the query’s belief rather than an exact belief. Or, we
may use existing approximate lifting such as [56, 31, 59]. We may
also use sequences of increasingly fine approximations to control the
trade-off between lifting and accuracy [33]. Another appealing idea,
in particular when learning the parameters of relational models, is
to break the global model in to local ones and then to train and re-
combine the local models. This breaks long-range dependencies and
allows to exploit lifting within and across the local training tasks [2].
Recently, Bui et al. [6] have shown that for MAP inference we can
exploit the symmetries of the model before evidence is obtained.

To conclude, one of the key challenges in building intelligent
agents is closing the gap between logical and statistical AI, so that we
can have rich representations including objects, relations and uncer-
tainty, that we can effectively learn and carry out inference with. Real
agents need to deal with their uncertainty and reason about individu-
als and relations. They need to learn how the world works before they
have encountered all the individuals they need to reason about. Over
the last 25 years there has been a considerable body of research into
combinations of predicate logic and probability forming what has
become known as statistical relational artificial intelligence (StarAI).
However, if we accept the premises of StarAI, then we need to get
serious about lifted probabilistic inference and learning. While there
have been considerable advances already, there are more than enough
problems, in particular asymmetric ones, to go around to really es-
tablish what has come to be called statistical relational AI.
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[18] P. Erdös and A. Rényi, ‘Asymmetric graphs’, Acta Math. Acad. Sci.
Hungar., 14, 295–315, (1963).

[19] H. Gehrmann, ‘Lattices of graphical gaussian models with symmetries’,
Symmetry, 3(3), 653–679, (2011).

[20] H. Gehrmann and S.L. Lauritzen, ‘Estimation of means in graphical
gaussian models with symmetries’, CoRR, abs/1101.3709, (2011).

[21] An Introduction to Statistical Relational Learning, eds., L. Getoor and
B. Taskar, MIT Press, 2007.

[22] A. Globerson and T. Jaakkola, ‘Fixing max-product: Convergent mes-
sage passing algorithms for map LP-relaxations’, in Proc. of the 21st
Annual Conf. on Neural Inf. Processing Systems (NIPS), (2007).

K. Kersting / Lifted Probabilistic Inference 37



[23] V. Gogate and P. Domingos, ‘Exploiting logical structure in lifted prob-
abilistic inference’, in Working Note of the AAAI-10 Workshop on Sta-
tistical Relational Artificial Intelligence, (2010).

[24] V. Gogate and P. Domingos, ‘Probabilistic theorem proving’, in Proc.
ot the 27th Conf. on Uncertainty in Artificial Intelligence (UAI), (2011).

[25] F. Hadiji, B. Ahmadi, and K. Kersting, ‘Efficient sequential clamping
for lifted message passing’, in Proc. of the 34th Annual German Conf.
on Artificial Intelligence (K–11), pp. 122–133, (2011).

[26] F. Hadiji, K. Kersting, and B. Ahmadi, ‘Lifted message passing for sat-
isfiability’, in Working Notes of the AAAI10 Workshop on Statistical
Relational AI (StarAI). AAAI Press, (2010).
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