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Abstract.

Stochastic local search for satisfiability (SAT) has successfully
been applied to solve a wide range of problems. However, it still suf-
fers from a major shortcoming, i.e. being trapped in local minima. In
this study, we explore different heuristics to avoid local minima. The
main idea is to proactively avoid local minima rather than reactively
escape from them. This is worthwhile because it is time consuming
to successfully escape from a local minimum in a deep and wide
valley. In addition, revisiting an encountered local minimum several
times makes it worse. Our new trap avoidance heuristics that operate
in two phases: (i) learning of pseudo-conflict information at each lo-
cal minimum, and (ii) using this information to avoid revisiting the
same local minimum. We present a detailed empirical study of dif-
ferent strategies to collect pseudo-conflict information (using either
static or dynamic heuristics) as well as to forget the outdated infor-
mation (using naive or time window smoothing). We select a bench-
mark suite that includes all random and structured instances used in
the 2011 SAT competition and three sets of hardware and software
verification problems. Our results show that the new heuristics signif-
icantly outperform existing stochastic local search solvers (including
Sparrow2011 - the best local search solver for random instances in
the 2011 SAT competition) on all tested benchmarks.

1 INTRODUCTION

Stochastic local search (SLS) for satisfiability (SAT) has successfully
been applied to solve a wide range of problems, including random,
planning, and hardware and software verification problems. Since the
introduction of GSAT [11], many efficient SLS algorithms for SAT
have been developed, including VW2 [10], PAWS [13], G2WSAT
[5], gNovelty+ [8], TNM [15], and Sparrow [1].

Despite this significant progress, SLS solvers still have many
shortcomings and are unable to compete against systematic algo-
rithms in solving structured SAT problems as demonstrated through
the series of SAT competitions2. One major limitation of SLS solvers
is their poor behaviour on local minima. Because structured problems
have tighter and more connected constraints than random instances,
it is easier for SLS solvers to get trapped and also becomes harder
for them to escape.

Contemporary local search methods predominantly use a random
walk or a Novelty walk to escape from a local minimum [7, 5, 8].
Weighting techniques, such as variable weighting [10] and clause
weighting [13, 8], have also been used to mitigate search stagna-
tion. In addition, a switching heuristic was proposed to alternatively
select candidate moves using either (i) non-weighting, (ii) variable
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or (iii) clause weighting schemes [16]. Variable weight distribution
has also been used in TNM [15] to regulate its two adaptive noise
heuristics. However, TNM does not directly use variable weighting
to select variables. Recently, Sparrow [1], a variant of gNovelty+ [8],
uses a dynamic scoring function instead of the Novelty walk (as in
gNovelty+) to escape from local minima. Sparrow2011 [2], a new
efficient implementation of Sparrow, won the Gold medal for ran-
dom SAT category in the 2011 SAT competition. To the best of our
knowledge, clause weighting and variable weighting have not been
combined into a single scheme for variable selection.

In this study, we explore different heuristics to avoid local min-
ima. The main idea is to proactively avoid local minima rather than
reactively escape from them. This is worthwhile because it is time
consuming to successfully escape from a local minimum in a deep
and wide valley. In addition, revisiting an encountered local mini-
mum several times makes it worse. The rest of this paper is organ-
ised as follows: in Section 2, we briefly discuss the motivation for
this study. We assume that some most recently flipped variable prior
to the occurence of a trap is the pseudo-conflict causing that trap.
We then present in detail how to collect pseudo-conflict information
as well as how to utilise this knowledge to avoid local minima. We
also discuss various smoothing heuristics to discard outdated infor-
mation. We then show how all these heuristics can be employed to
improve the performance of gNovelty+. In Section 3, we present a
detailed empirical study of the impact of different combinations of
our heuristics on gNovelty+’s performance. Our benchmark suite in-
cludes all random, crafted and application instances used in the 2011
SAT competition as well as three sets of hardware and software ver-
ification problems. The results show that our approach significantly
outperforms existing SLS solvers (including Sparrow2011 - the best
SLS solver for random SAT instances in the 2011 SAT competition)
on all tested benchmarks. Finally, we summarise our conclusions and
outline our plan for future work in Section 4.

2 TRAP PREVENTION STRATEGY

2.1 Motivation

Complex structured problems often contain many highly connected
dependent variables and hence present many traps (or local minima)
to a SLS solver. These traps are normally large plateaus in a deep val-
ley, making it difficult for a SLS solver to escape from them. There-
fore, it is highly desirable to adopt intelligent heuristics that can pre-
dict potential traps. Such smart heuristics could help SLS solvers
tremendously in avoiding local minima.

There are many techniques in the literature for handling local
minima. Examples include the variants of random walks and clause
weighting. The random walk strategy from the WalkSAT family [7]
has been the most popular treatment for search stagnation. However,

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-300

300



they are reactively treatments once stagnation occurs. Clause weight-
ing algorithms (e.g. PAWS [13], gNovelty+ [8], Sparrow [1]) add
weights to unsatisfied clauses and subsequently change the search
landscape to escape from local minima. In contrast, the variable
weighting scheme (e.g. VW2 [10]) favors the least flipped vari-
able when breaking ties amongst variables with the same WalkSAT
scores. An alternative method to weighting techniques is the Tabu
heuristic [12]. This method prevents the search from returning back
to recently visited areas by abstaining from selecting a predefined
number of recently flipped variables.

Despite being quite successful in handling traps, existing ap-
proaches do not utilise an effective learning scheme to proactively
help the search avoid future local minima. The random walk strategy
simply relies on randomisation to get out of traps. Recently, modern
state-of-the-art SLS solvers implement a (Adaptive)Novelty-based
walk instead of a random walk to escape from local minima. By al-
ternating between the best and second best scored variables based on
a noise probability, this method makes a compromise between greed-
iness and exploration. However, neither of these strategies is able to
learn from the current or previous encountered traps. Amongst exist-
ing approaches, clause weighting schemes can be seen to learn about
visited local minima. In particular, a clause with a high frequency of
being unsatisfied at local minima is preferred to be solved in the next
search steps. Inspired by that scheme, we aim to develop a move se-
lection mechanism that gives priority to variables that regularly cause
stagnations.

2.2 Trap prevention strategy

The purpose of our trap prevention approach is to intelligently assist
local search algorithms in avoiding potential traps by exploiting in-
formation gathered from previous encountered local minima. In gen-
eral, our trap prevention strategy operates in two phases: a learning
phase and a prevention phase.

The first phase is invoked every time the search encounters a lo-
cal minimum. Here, it will try to derive and learn as much useful
information as possible from the cause of this stagnation. We as-
sume that a local minimum is the result of some recent conflicted
variable assignments made immediately before that local minimum.
As opposed to conflict-driven clause-learning systematic search, it is
challenging to derive the exact conflict that leads to this trap. Hence,
we approximate the cause-of-stagnation (or pseudo-conflict) being
responsible for that local minimum. In detail, we define the cause-
of-stagnation as the sequence of k most recently flipped variables
leading to that stagnation. The tenure k is used to impose the maxi-
mum size of this pseudo-conflict. It is worthy to note that the value
of k should not be set too large to prevent learning incorrect infor-
mation. We adopt the variable weighting approach [10] as a simple
way to store and exploit the learnt cause-of-stagnation. We associate
a stagnation weight to each variable to represent the frequency
that variable is involved in a cause-of-stagnation. Intuitively, flipping
a variable with a high stagnation weight value is more likely to lead
a local minimum. Thus in the second phase, we use this intuition to
proactively prevent the search from falling into old traps. In partic-
ular, we alter the move selection to give higher priority to variables
with lower stagnation weight values.

Algorithm 1 outlines our pseudo-conflict learning (PCL) approach
to learn and update the stagnation weight of each variable. Lines 2-9
illustrate how a cause-of-stagnation can be derived and learnt. Once
the cause-of-stagnation has been derived, the stagnation weight of
each variable involved in that cause-of-stagnation is increased by 1

Algorithm 1: PCL(k, s, T, tp,H, it,Q)

Input : the PCL tenure k, the learning strategy s, the time window size T , the
naive smoothing probability tp, the history H of flipped variables, the
current iteration it, and the queue Q of recent causes-of-stagnation.

1 cause of stagnation = ∅;
2 if s is ‘static’ then

3 for i = 0; i < k; i++ do cause of stagnation += {H[it − i]};
4 else /* s is ‘dynamic’ */
5 most recently flipped var = H[it];
6 cause of stagnation += {most recently flipped var};
7 for i = 1; i < k; i++ do
8 if H[it − i] == most recently flipped var then break;
9 cause of stagnation += {H[it − i]};

10 foreach var ∈ cause of stagnation do stagnation weight[var]++;
11 if T > 0 then /* use time window smoothing */
12 if Q.size() == T then
13 oldest cause of stagnation = Q.pop();
14 foreach var ∈ oldest cause of stagnation do

stagnation weight[var]- -;
15 Q.push(cause of stagnation);
16 if tp > 0 then /* use naive smoothing */
17 if within the probability tp then
18 foreach var having its stagnation weight[var] > 1 do
19 stagnation weight[var]- -;

(line 10). Finally, Lines 11-19 demonstrate how to reduce the stag-
nation weight of certain variables in order to appropriately discard
outdated information.

2.3 Learning the cause-of-stagnation

In Algorithm 1, we propose two different strategies to derive a cause-
of-stagnation when encountering a local minimum: “static” or “dy-
namic”. The first strategy (lines 2-3) presumes that all causes-of-
stagnation have the same static fixed size which is the tenure k. As a
result, deriving a static cause-of-stagnation simply requires keeping
track of the last k flipped variables.

In contrast, our second strategy (lines 4-9) dynamically determines
the size of a cause-of-stagnation according to search history. In detail,
let lv be the latest flipped variable. A dynamic cause-of-stagnation is
defined as a reversed sequence of the current search history up to
the first re-occurrence of lv. Note that the size of a dynamic cause-
of-stagnation is capped at k if no duplication of lv has been found.
Notice that the use of the tenure k is inspired by Tabu search [12].
However, a Tabu search completely forbids tabooed variables from
being selected. On the other hand, our approach allows a recently
flipped variable (even the most recently flipped variable) to be se-
lected as the next move if it has the lowest stagnation weight.

2.4 Forgetting outdated causes-of-stagnation

As the search progresses and encounters several local minima, the
collection of variable stagnation weights may not correctly reflect
the causes of stagnation. In other words, the stagnation weights of
many variables may contain information gathered from the derived
causes of now obsolete traps. Thus, it is necessary to forget such
outdated causes-of-stagnation by selectively reducing the stagna-
tion weights of certain variables. In Algorithm 1, we outline two dif-
ferent smoothing heuristics that can be used together or individually.

Our first smoothing heuristic is inspired by gNovelty+ [8]. This
naive smoothing heuristic reduces the stagnation weights of all
weighted variables (i.e. their stagnation weights are greater than 1)
by 1 (lines 16-19). In contrast, the second smoothing heuristic (lines
11-15) mimics a mechanism in which a window is shifted alongside
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the search. This time window smoothing method aims to restrict the
effect of the learnt information to within a short-term period. In other
words, the derived information within the time window is accumu-
lated and saved in the stagnation weights while information gath-
ered outside that time window is discarded. The time window size
is specified by a parameter T . As outlined in Algorithm 1, we main-
tain a queue of T recent causes-of-stagnation. As the time window
shifts, once a cause-of-stagnation is out of the specified window, in-
formation learnt from that cause-of-stagnation is discarded. Indeed,
the stagnation weights of variables involved in the recent obsolete
cause-of-stagnation are decreased by 1 (line 14).

Algorithm 2: gNovelty+PCL(k, s, T, tp, sp)

Input : A formula Θ, a random walk probability wp, a clause weight
smoothing probability sp, the PCL tenure k, the learning strategy s, the
time window size T , and the naive smoothing probability tp.

Output: Solution α (if found) or TIMEOUT

1 randomly generate a candidate solution α;
2 clear the queue Q of recent causes-of-stagnation;
3 clear the history H of flipped variables;
4 initialise stagnation weight of all variables to 0;
5 set the iteration counter it = 0;
6 while not timeout do
7 if α satisfied the formula Θ then return α ;
8 if within the random walk probability wp then
9 randomly pick a variable v in an unsatisfied clause;

10 else
11 if there exist promising variables then
12 select the most promising variable v, break tie by selecting one

with the least stagnation weight, break further tie randomly;
13 else /* encounter a local minimum */
14 update (and smooth within probability sp) all clause weights;
15 PCL (k, s, T, tp,H, it, Q);
16 perform an AdaptiveNovelty walk to select a variable v in an

unsatisfied clause, break tie by selecting one with the least
stagnation weight, break further tie randomly;

17 update the candidate solution α with the flipped variable v;
18 update the search trajectory H[it] = v;
19 it++;
20 return TIMEOUT;

2.5 The new gNovelty+PCL variants

In this section, we describe how our approach can be com-
bined with gNovelty+, a clause weighting SLS solver. The new
gNovelty+PCL algorithm is illustrated in Algorithm 2. Initially, all
stagnation weights are set to 0; and the search history H of flipped
variables and the queue Q of recent causes-of-stagnation are emp-
tied. At the beginning of the search, gNovelty+PCL operates in the
same manner as gNovelty+, relying mainly on the clause weights of
variables to select the next move. Conceptually, a promising vari-
able is one with an improving clause weighted score (i.e. if it is
flipped the total weights of all unsatisfied clauses is reduced). For
a detailed description of promising variables, please see [8]. When-
ever a local minimum is encountered (i.e. there is no promising vari-
able), clause weights are updated and smoothed if required. Our
pseudo-conflict learning mechanism (Algorithm 1) is called to de-
rive and learn the approximate cause-of-stagnation (line 15). Subse-
quently, gNovelty+PCL utilises the learnt knowledge saved in stag-
nation weights to select its moves. In detail, ties are broken by se-
lecting the variables with the lowest stagnation weight rather than
choosing the least recently flipped variable. Further ties are broken
by randomly selecting a variable. This change is reflected in lines 12
and 16 in Algorithm 2. Once the chosen variable is flipped, the search

history H is also updated to keep track of the k recently flipped vari-
ables (line 18).

As illustrated in Algorithm 2, eight different variants
gNovelty+PCL can be implemented by varying the combina-
tion of learning strategies and smoothing heuristics. Note that either
static or dynamic learning strategy can be specified by parameter s.
The time window smoothing can be turned off by setting the window
size T = 0 whilst the naive smoothing can be turned off by setting
the probability tp = 0. The list of these variants together with their
enabled options are described in Table 1.

Table 1. Eight different PCL variants

Learning Smoothing heuristic
strategy none naive time window time window + naive

static Tp Tps Tw Tws
dynamic Tpc Tpcs Twc Twcs

3 EXPERIMENTS

We firstly compare gNovelty+PCL with other SLS solvers on the
ternary chain problem [9]. This problem has a unique solution and
has been proven to be very hard for SLS solvers (as it contains many
traps) [9, 17, 10]. This experiment enables us to evaluate how ef-
fective our approach is in avoiding traps. We then present a detailed
study of 8 different variants of gNovelty+PCL on all the benchmark
instances used in the 2011 SAT competition. In addition, we also
added three other benchmark problems from hardware and software
verification applications.

3.1 Experiments on ternary chains

The ternary chain problem with n variables is defined as follows:

(x1) ∧ (x2) ∧ (x1 ∧ x2 → x3) ∧ . . . ∧ (xn−2 ∧ xn−1 → xn)

This artificial problem deliberately simulates chains of variable
dependency found in structured problems. It is employed to study
the diversification capability of local search algorithms in [9], due to
the fact that this problem has only one solution where all variables
are assigned to true. In other words, flipping any variable from true
to false moves further away from the solution. This property makes it
easy for local search algorithms to become trapped. For this reason,
this problem has been highly recommended to evaluate the perfor-
mance of SLS solvers [9, 17, 10].

In this experiment, we compared the performance of
gNovelty+PCL on ternary chain instances against that of ex-
isting popular SLS solvers: RoTS (Tabu search) [12], PAWS [13],
VW2 [10], AdaptG2WSAT0 [6], TNM [15], gNovelty+ [8], and
Sparrow2011 [2]. Figure 1 plots the performance of these solvers
on ternary chain instances with size ranging from 10 to 100 in steps
of 5. Each solver was run 100 times on each instance and each run
was limited to 20 seconds. Default settings were used for all solvers.
The gNovelty+PCL version tested here is the Tp variant with static
learning strategy (k = 20) and no smoothing. The experiment was
conducted on the NICTA HPC cluster of quad-core Intel Xeon CPUs
@2.0GHz.

As shown on Figure 1, VW2, gNovelty+ and gNovelty+PCL dra-
matically outperform other solvers. They are the only three solvers
that can successfully solve all instances within the time limit. This
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Figure 1. Experiments on ternary chain instances. The pairs of solvers
and line markers used in this figure are as follows: RoTS - �,

AdaptG2WSAT0 - �, TNM - ♦, VW2 - ×, PAWS - �, gNovelty+ - �,
Sparrow2011 - ◦, and gNovelty+PCL - •.

again confirmed the observation from [10] that weighting schemes
have the advantage of reducing stagnation. Amongst those three
solvers, VW2 is the worst performer in terms of CPU times used,
the number of flips performed and the number of local minima en-
countered. This is because VW2 relies only on its variable weighting
scheme whilst gNovelty+ (the second best) uses both clause weights
and AdaptiveNovelty walks to handle traps. Nevertheless, our results
clearly show the superiority of our PCL approach in avoiding traps.
Indeed, the performance of gNovelty+PCL is at least two times bet-
ter than gNovelty+ on all the evaluation criteria except the success
rate where both achieved 100%.

3.2 Experiments on random and structured
instances

In this study, we ran the eight different variants of gNovelty+PCL
(listed in Table 1) on a large benchmark suite comprised of random
and structured instances. This aims to thoroughly examine the ef-
fectiveness of our PCL approach as well as evaluate the effects of
different PCL options on gNovelty+ across a wide range of differ-
ent problem types. For this purpose, our benchmark suite comprises
of three different real-world verification problems as well as all the
random, crafted and application instances used in the 2011 SAT com-
petition.

The parameter configuration for each gNovelty+PCL variant was
optimised by ParamILS [4], a local search optimisation tool for pa-
rameterised algorithms. For each variant, six independent training
sections within {0.5; 1; 1.5; 2; 2.5; 3} days were performed. The re-
sultant configurations were then validated to obtain the best settings
reported in Table 2. Other settings for gNovelty+PCL that were not
listed here are kept the same as in gNovelty+. The training and val-
idation were conducted on the Griffith University’s Gowonda HPC
cluster equipped with Intel(R) Xeon(R) CPUs X5650 2.67GHz. For
other solvers included in the following experiments, their best pa-
rameter settings (found in their submission to SAT competitions) are
used unless otherwise stated.

Table 2. Parameters settings for gNovelty+PCL variants

Benchmark Learning Tp/Tpc Tw/Twc Tps/Tpcs Tw/Twc

set strategy k sp k T sp k tp sp k T tp sp

cbmc static 30 0.4 10 300 0.4 15 0.1 0.4 20 200 0.2 0.4

dynamic 15 0.4 15 300 0.35 20 0.2 0.4 15 100 0.4 0.35

swv static 10 0.05 15 250 0.05 20 0.3 0.2 30 300 0.4 0.05

dynamic 30 0.05 10 300 0.05 30 0.15 0.1 30 150 0.1 0.05

sss-sat-1.0 static 10 0.05 20 100 0.5 30 0.25 0.05 15 300 0.05 0.05

dynamic 15 0.05 10 100 0.05 10 0.05 0.05 10 150 0.05 0.05

SAT 2011 static 25 0 15 150 0 15 0.4 0 25 200 0.35 0

dynamic 25 0 15 250 0 25 0.3 0 25 100 0.3 0.05

3.2.1 Experimental results: verification benchmarks

Our verification benchmark set consists of three real-world prob-
lem: cbmc, swv, and sss-sat-1.0. The first two problem sets are
software verification instances comprised of (i) 39 cbmc instances
generated by a bounded model checking tool, and (ii) 75 swv in-
stances generated by the CALYSTO checker.3 The third one con-
tains 100 instances that encodes the verification of super-scalar mi-
croprocessors.4 Note that even though these instances can be easily
solved by systematic solver such as PicoSAT [3], they remain a re-
markable challenge for SLS solvers. In addition to eight different
gNovelty+PCL variants, we also included in this experiment the fol-
lowing solvers: gNovelty+ and VW2 (that can solve all ternary chain
instances in the previous experiment); and TNM and Sparrow2011
(the respective winner of the 2009 and 2011 SAT competitions). For
each instance, we ran each solver 50 times with a time limit of 600
seconds for each run. All experiments were conducted on the Griffith
University’s Gowonda HPC cluster equipped with Intel(R) Xeon(R)
CPUs X5650 2.67GHz. The results are reported in Table 3.

In general, all gNovelty+PCL variants performed consistently bet-
ter than other solvers on these three problem sets. In particular,
all variants achieved 100% success rate on the cbmc and sss-sat-
1.0 problem sets. This is a significant achievement as other solvers
were unable to solve all these instances. Indeed, their best results
on these two problem set are 92% (by TNM) on cbmc and 50%
(by gNovelty+) on sss-sat-1.0. Furthermore, the success rate of each
gNovelty+PCL variant is about two times those of other solvers on
the swv data set. In fact, it was discovered that 50% of swv instances
cannot be solved consistently by SLS solvers [14]. In comparison
amongst gNovelty+PCL variants, those without naive smoothing
generally gave better results. Moreover, gNovelty+Tpc performed
the best on the cbmc and swv sets; while gNovelty+Tw performed
the best on sss-sat-1.0.5

3.2.2 Experimental results: SAT-2011 benchmarks

In this study, we compared the performance of gNovelty+PCL vari-
ants against its original gNovelty+ on the random, crafted and appli-
cation instances from the SAT-2011 benchmarks. We also included
Sparrow2011, the best SLS solver for random SAT instances in the
SAT-2011 competition.6 For each instance, we ran each solver 10
times with a time limit of 600 seconds for each run. All experiments

3 These instances are available at
http://www.cs.uwaterloo.ca/∼dtompkin/papers/sat10-dave-instances.zip

4 Available at http://www.miroslav-velev.com/sat benchmarks.html
5 We used the success rate as the main evaluation criterion, breaking ties by

using the CPU times.
6 No SLS solver was ranked in the Top-3 for the crafted and application

categories in the SAT-2011 competition
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Table 3. Experimental results on verification benchmarks. For each problem set, the first row reports the success rate and the other rows report the average
of the min, median, and max CPU times (in seconds) to solve an instance in that set. Here, an instance is considered consistently solvable by a solver if its

successful rate is greater than or equal to 50%. gNovelty+ was ran with its best settings for structured instances [8].

Problems TNM VW2 Sparrow2011 gNovelty+ gNovelty+Tp gNovelty+Tpc gNovelty+Tw gNovelty+Twc gNovelty+Tps gNovelty+Tpcs gNovelty+Tws gNovelty+Twcs

cbmc (39) 92% 31% 51% 85% 100% 100% 100% 100% 100% 100% 100% 100%

13.399 362.911 119.692 54.573 0.059 0.046 0.062 0.095 0.094 0.047 0.047 0.094

76.599 439.128 384.359 247.997 1.453 1.351 1.842 2.258 1.954 1.782 1.393 2.724

164.602 498.058 499.474 382.512 6.797 6.457 7.729 14.295 8.077 7.384 8.730 30.471

swv (75) 23% 23% 21% 25% 48% 49% 48% 48% 47% 47% 45% 48%

464.005 464.133 413.379 409.451 304.693 304.618 303.952 304.774 292.073 292.919 299.504 299.995

464.013 466.002 486.949 459.097 334.323 335.663 326.953 326.605 351.524 338.161 341.782 333.747

464.037 474.762 519.651 464.131 360.534 365.093 360.447 357.854 373.035 367.581 371.332 361.988

sss-sat-1.0 (100) 18% 24% 7% 50% 100% 100% 100% 100% 100% 100% 100% 100%

350.904 318.728 484.792 162.757 0.195 0.200 0.179 0.159 0.185 0.170 0.161 0.186

517.709 481.357 572.993 348.512 2.721 2.755 2.095 2.266 2.733 2.227 2.365 2.449

546.742 523.310 588.703 427.622 20.285 19.037 18.216 15.516 17.498 13.664 17.408 16.327

were conducted on the Griffith University’s Gowonda HPC cluster
equipped with Intel(R) Xeon(R) CPUs X5650 2.67GHz. The results
were summarised in Table 4 and depicted graphically in Figure 2.
Here, we reported the results for instances that can be solved by all
solvers in at least one run. Thus, the number of instances in Table 4
may not reflect the original number of instances from the SAT-2011
benchmark suite. In addition, because of the big difference in terms
of size and difficulty amongst random instances, we divided the re-
sults of these instances into two groups: medium and large sized in-
stances.

As illustrated in Figure 2, gNovelty+ performed better than Spar-
row2011 on application and crafted instances. However, it lost to
Sparrow2011 on random instances. The detailed results in Table 4
confirmed our observations but also revealed that gNovelty+ won
only on crafted instances. In fact, its success rate was only half of that
of Sparrow2011 on application instances. Nevertheless, our PCL ap-
proach significantly improved the performance of gNovelty+ across
the whole benchmark suite. Figure 2 showed that all gNovelty+PCL
variants greatly outperformed Sparrow2011 on all three problem
categories. Indeed, gNovelty+Tp achieved 88% and 85% success
rates respectively on the application and crafted instances; whereas
gNovelty+ could only solve 12% and 62%, and Sparrow2011 only
solved 25% and 56%. Table 4 also showed that gNovelty+Tw solved
medium sized random instances at least two times faster than Spar-
row20117. Although there was not much difference in the CPU
time measures between the two solvers on large random instances,
gNovelty+Tw achieved a better success rate than Sparrow2011 on
these instances. Note that gNovelty+ was not able to consistently
solve a single large random instance. Overall, there were always
at least three variants of gNovelty+PCL that performed better than
Sparrow2011 in terms of success rate. In terms of CPU times, the
majority of gNovelty+PCL variants were much faster than Spar-
row2011.

Comparing amongst eight gNovelty+PCL variants, gNovelty+Tp
performed the best on structured instances (combining both appli-
cation and crafted sets). However, gNovelty+Tw was the best per-
former on crafted as well as both medium and large random instances
according to Table 4. With regard to smoothing effects, our results
do not support the use of naive smoothing together with static learn-
ing on structured problems. When combined with dynamic learning
naive smoothing variants were slightly faster on structured problems
than their corresponding variants without naive smoothing (although

7 Both solvers solved all the medium sized random instances.
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Figure 2. A CPU time comparison of gNovelty+PCL variants and
gNovelty+ against Sparrow2011 on the SAT-2011 benchmarks.

each pair of variants achieved a similar success rate). On random in-
stances, Table 4 supported the use of either naive or time window
smoothing heuristics. In fact, the best results on random instances
were achieved with time window smoothing. However combining
naive with time window smoothing on random instances makes
it worse (e.g. gNovelty+Tws and gNovelty+Twcs both performed
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Table 4. Experimental results on the SAT-2011 benchmarks. For each problem set, we report the success rate and the average of the min, median, and max
CPU times (in seconds) to solve an instance in that set. Here, an instance is considered consistently solvable by a solver if its successful rate is greater than or

equal to 50%. gNovelty+ was ran with its best settings for structured instances [8].

Problems Sparrow2011 gNovelty+ gNovelty+Tp gNovelty+Tpc gNovelty+Tw gNovelty+Twc gNovelty+Tps gNovelty+Tpcs gNovelty+Tws gNovelty+Twcs

Application 461.824 464.149 46.671 44.099 262.256 229.016 149.478 125.454 170.588 310.411

(8) 25% 515.799 12% 527.431 88% 186.717 75% 236.130 50% 385.124 50% 373.847 38% 409.214 50% 392.688 50% 367.528 50% 324.933

543.695 527.503 435.348 403.632 481.179 479.386 465.744 468.523 474.327 456.077

Crafted 237.720 202.872 62.826 72.894 51.703 67.631 58.480 63.692 51.286 87.756

(82) 56% 285.159 62% 251.332 85% 113.645 84% 123.203 85% 109.709 84% 114.586 83% 123.859 84% 120.483 84% 122.356 73% 174.103

338.434 285.784 156.681 157.404 150.945 156.552 161.427 165.790 155.360 199.108

Random 5.049 130.371 4.970 3.397 1.512 3.851 3.999 2.234 1.407 1.376

Medium 100% 40.671 75% 184.698 96% 38.726 97% 35.386 100% 14.864 100% 13.487 100% 14.934 100% 17.717 98% 24.391 100% 13.893

(201) 99.540 241.121 100.166 100.289 40.142 46.103 46.929 53.706 71.666 54.821

Random 437.202 576.600 439.747 439.215 325.823 313.537 330.508 332.950 382.080 401.903

Large 20% 509.487 0% 600.000 9% 560.437 12% 560.193 28% 504.191 25% 515.067 27% 509.195 20% 528.470 17% 540.270 16% 545.306

(64) 555.076 600.000 594.281 591.126 584.112 581.770 583.585 580.986 591.395 593.068

poorly than to gNovelty+Tw and gNovelty+Twc). With regard to
learning strategies, there was a winner for each smoothing option on
a particular problem set. However, there was no overall clear winner
between the two learning strategies.

4 CONCLUSION AND FUTURE WORK

In conclusion, our experiments showed that across all benchmark in-
stances proactively avoiding local minima was substantially better
than reactively escaping from them. Indeed, gNovelty+PCL solved
more than twice the number of instances that could be solved by its
original, gNovelty+. In addition, gNovelty+PCL was usually more
than an order of magnitude faster than gNovelty+. Similar conclu-
sions also hold when comparing the performance of gNovelty+PCL
variants against other SLS solvers, including Sparrow2011 - the best
solver for random SAT instances in the 2011 SAT competition.

Our experiments revealed that there was not much difference in the
performance using either the static or dynamic learning strategies.
This observation was true for all variants of smoothing heuristics
on both the structured and random instances. Therefore, we recom-
mend the use of static pseudo-conflict learning strategy to avoid un-
necessary overheads. With respect to retaining the learnt knowledge,
our results showed that gNovelty+PCL variants (that kept a long-
term memory of pseudo-conflicts) outperformed other variants (that
performed smoothing and only memorised recent pseudo-conflicts)
on structured SAT-2011 instances. However, the observation was re-
versed for random instances. One reason for this reverse effect is that
random instances are less constrained than structured instances, and
hence there is virtually no connection between two pseudo-conflicts
that are far apart. Therefore, it is better to maintain that knowledge
for a short time when solving random instances.

Encouraged by these results, we plan to explore alternative ways
to learn different information during a local search in order to pre-
dict and prevent SLS SAT solvers from local minima. In addition,
we intend to investigate the potential of automatically adjusting our
parameters during the search. In the near future, we plan to thor-
oughly evaluate the impact of our heuristics over a wider range of
SLS solvers.
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