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Abstract. We summarise and provide pointers to recent advances in
inference and identification for specific types of probabilistic graph-
ical models using imprecise probabilities. Robust inferences can be
made in so-called credal networks when the local models attached
to their nodes are imprecisely specified as conditional lower previ-
sions, by using exact algorithms whose complexity is comparable to
that for the precise-probabilistic counterparts.

1 INTRODUCTION

The last twenty years have witnessed a rapid growth of probabilistic
graphical models, and particular Bayesian nets, in AI. These mod-
els combine graphs and probability to address complex multivariate
problems in a various domains. Much has been done also on the front
of imprecise probability: credal nets [3] are the subject of intense re-
search. A credal net creates a global model of a domain by combin-
ing local uncertainty models using some notion of independence, and
then uses this to do inference. The local models represent uncertainty
by closed convex sets of probabilities, also called credal sets.

Strong independence is the independence notion used with credal
nets in the majority of cases. Loosely speaking, two variables X, Y
are strongly independent if the credal set for (X, Y ) can be regarded
as originating from a number of precise-probabilistic models in each
of which X and Y are stochastically independent. For credal nets,
strong independence leads to an equivalence: a credal net is mathe-
matically equivalent to a set of Bayesian nets, with the same graph
but with different values for the parameters. The net’s parameters are
not known precisely, and that is why one considers all Bayesian nets
that are consistent with the partial specification of the parameters.
An important problem here is the complexity of algorithms (usually
exponential in the number of nodes) for making inferences.

Recent developments [5, 7, 6, 1, 4, 2, 13] have shown that there is
another approach, leading to elegant mathematical formulations and
algorithms whose efficiency is much better, and comparable to that
of the corresponding precise-probabilistic ones. It uses another way
of expressing independence: epistemic irrelevance [14]. X is epis-
temically irrelevant to Y if observing X does not affect our beliefs
about Y . When the belief model is a precise probability, both epis-
temic irrelevance and strong independence reduce to the usual inde-
pendence notion—if we ignore issues related to events with proba-
bility zero. But when the model is an imprecise probability model—a
set of probabilities—this is no longer the case. Contrary to strong in-
dependence, epistemic irrelevance is not a symmetrical notion: the
epistemic irrelevance of X to Y need not entail the epistemic irrele-
vance of Y to X . It is also weaker than strong independence, in the
sense that strong independence implies epistemic irrelevance: sets of
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probabilities that correspond to assessments of epistemic irrelevance
include those related to strong independence assessments.

In this paper, we give a brief overview of these developments. Due
to the limited scope of this contribution, we only hint at the most
salient details and provide pointers for further reference. We begin
with a very brief introduction to imprecise probability models in Sec-
tion 2. The main mathematical result is explained in some detail in
Section 3: a recursive formula for the joint in a credal tree under
epistemic irrelevance. Subsequent sections sketch its applications: an
algorithm for inferences in credal trees (Section 4), inference in im-
precise Markov chains (Section 5), identification of imprecise hidden
Markov models (iHMMs, Section 6.1) and an algorithm for state se-
quence estimation in iHMMs (Section 6.3).

2 IMPRECISE PROBABILITIES

We begin with some basic theory of coherent lower previsions; see
[14] for an in-depth study, and [10] for a recent survey. Coherent
lower previsions are a special type of imprecise probability model.
Roughly speaking, whereas classical probability theory assumes that
a subject’s uncertainty can be represented by a single probability
mass function, the theory of imprecise probabilities effectively works
with sets of them, and thereby allows for imprecision as well as in-
decision to be modelled and represented. Looking at it as a way of
robustifying the classical theory is perhaps the easiest way to under-
stand and interpret it; see [14] for different interpretations.

Consider a set M of probability mass functions, defined on a fi-
nite set X of possible states. With each mass function p ∈ M, we
can associate a linear prevision (or expectation operator) Pp, defined
on the set G(X) of all real-valued maps on X. Any f ∈ G(X) is
also called a gamble on X, and Pp(f) =

P

x∈X p(x)f(x) is the
expectation of f , associated with the probability mass function p.
We can now define the lower prevision PM that corresponds with
the set M as the following lower envelope of linear previsions:
PM(f) := inf{Pp(f) : p ∈ M} for all gambles f on X. Similarly,
we define the upper prevision PM as

PM(f) := sup{Pp(f) : p ∈ M} = −PM(−f) (1)

for all gambles f on X. We will mostly talk about lower previsions,
since it follows from the conjugacy relation (1) that the two models
are mathematically equivalent.

An event A is a subset of X: A ⊆ X. With such A, we associate
an indicator IA: the gamble that is 1 on A, and 0 outside A. We
call PM(A) := PM(IA) = inf{

P

x∈A p(x) : p ∈ M} the lower
probability of A, and PM(A) := PM(IA) its upper probability.

The functional PM satisfies the following set of interesting math-
ematical properties, which define a coherent lower prevision [14]:
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C1. PM(f) ≥ inf f for all f ∈ G(X),
C2. PM(λf) = λPM(f) for all f ∈ G(X) and all real λ ≥ 0,
C3. PM(f + g) ≥ PM(f) + PM(g) for all f, g ∈ G(X).

Every set of mass functions M uniquely defines a coherent lower
prevision PM, but in general the converse does not hold. However,
if we limit ourselves to sets of mass functions M that are closed and
convex—which makes them credal sets—they are in a one-to-one
correspondence with coherent lower previsions [14]. This implies
that we can use the theory of coherent lower previsions as a tool
for reasoning with closed convex sets of probability mass functions.
From now on, we will no longer explicitly refer to credal sets M, but
we will simply talk about coherent lower previsions P . It is useful to
keep in mind that there always is a unique credal set that corresponds
to such a coherent lower prevision: P = PM for some unique credal
set M, given by M = {p : (∀f ∈ G(X))Pp(f) ≥ P (f)}.

Conditional lower and upper previsions, which are extensions of
the classical conditional expectation functionals, can be defined in a
similar, intuitively obvious way as lower envelopes associated with
sets of conditional mass functions. Consider a variable X in X and
a variable Y in Y . A conditional lower prevision P (·|X) on the
set G(Y) of all gambles on Y is a two-place real-valued function.
For any gamble g on Y , P (g|X) is a gamble on X, whose value
P (g|x) in x ∈ X is the lower prevision of g, conditional on the event
X = x. If for any x ∈ X, the lower prevision P (·|x) is coherent—
satisfies conditions C1–C3—then we call the conditional lower pre-
vision P (·|X) separately coherent. It is useful to extend the domain
of the conditional lower prevision P (·|x) from G(Y) to G(Y × X)
by letting P (f |x) := P (f(·, x)|x) for all gambles f on Y × X.

If we have a number of conditional lower previsions involving a
number of variables, each of these must be separately coherent, but
they must also satisfy a more stringent joint coherence requirement.
Explaining this in detail would take us too far, but we refer to [14]
for a detailed discussion, with motivation. For our present purposes,
it suffices to say that joint coherence is very closely related to mak-
ing sure that these conditional lower previsions are lower envelopes
associated with conditional mass functions that satisfy Bayes’s Rule.

3 CONSERVATIVE COHERENT INFERENCE
IN IMPRECISE MARKOV TREES

3.1 Basic notions and notation.

Consider a rooted and directed discrete tree with finite width and
depth, with set of nodes T . We denote the root node by �. For any
node s, we denote its mother node by m(s); and use the conven-
tion m(�) = ∅. Also, we denote the set of s’s children by C(s). If
C(s) = ∅, then we call s a leaf. T ♦ := {s ∈ T : C(s) �= ∅} denotes
the set of all non-terminal nodes.

For nodes s and t, we write s � t if s precedes t: there is a directed
segment in the tree from s to t (or s = t). D(s) := {t ∈ T : s � t}
denotes the set of descendants of s, where s � t means that s � t
and s �= t. We also use the notation ↓s := D(s) ∪ {s} for the sub-
tree with root s. Similarly, we let ↓S :=

S

{↓s : s ∈ S} for any
subset S ⊆ T . For any node s, its set of non-parent non-descendants
is given by s := T \ ({m(s)} ∪ ↓s).

With each node s of the tree, there is associated a variable Xs

assuming values in a non-empty finite set Xs. We extend this notation
to more complicated situations as follows. If S is any subset of T ,
then we denote by XS the tuple of variables whose components are
the Xs for all s ∈ S. This new joint variable assumes values in
the finite set XS := ×s∈SXs. Generic elements of Xs are denoted

by xs or zs. Similarly for xS and zS in XS . Also, if we mention
a tuple zS , then for any t ∈ S, the corresponding element in the
tuple will be denoted by zt. We assume all variables in the tree to
be logically independent, meaning that the variable XS may assume
all values in XS , for all ∅ ⊆ S ⊆ T . We use the simplifying device
of identifying a gamble fS on XS with its cylindrical extension to
XU , where S ⊆ U ⊆ T . This is the gamble fU on XU defined by
fU (xU ) := fS(xS) for all xU ∈ XU .

We consider (conditional) lower previsions as models for a sub-
ject’s beliefs about the values that variables in the tree may assume.
Let I, O ⊆ T be disjoint sets of nodes with O �= ∅, then we generi-
cally2 denote by V O(·|XI) a conditional lower prevision, defined on
the set of gambles G(XI∪O). For every gamble f on XI∪O and ev-
ery xI ∈ XI , V O(f |xI) is the lower prevision (or lower expectation)
for/of the gamble f , conditional on the event that XI = xI .

3.2 Epistemic irrelevance

Let us introduce one of the most important concepts for this paper,
that of epistemic irrelevance. We describe the case of conditional ir-
relevance, as the unconditional version of epistemic irrelevance can
easily be recovered as a special case.3

Consider disjoint subsets C, I , and O of T , with I and O non-
empty. When a subject judges XI to be epistemically irrelevant to
XO conditional on XC , he assesses that if he knows the value of
XC , then learning in addition the value of XI will not affect his
beliefs about XO . More formally, assume that a subject has a sep-
arately coherent conditional lower prevision V O(·|XC) on G(XO).
If he assesses XI to be epistemically irrelevant to XO conditional
on XC , this implies that he can infer from his model V O(·|XC) a
conditional model V O(·|XC∪I) on G(XO) given by V O(f |xC∪I) :

= V O(f |xC) for all f ∈ G(XO) and all xC∪I ∈ XC∪I .

3.3 Local and global uncertainty models.

We now add a local uncertainty model to each of the nodes s. If s
is not the root node, i.e. has a mother m(s), then this local model
is a (separately coherent) conditional lower prevision Q

s
(·|Xm(s))

on G(Xs): for each possible value zm(s) of the variable Xm(s) as-
sociated with its mother m(s), we have a coherent lower prevision
Q

s
(·|zm(s)) for the value of Xs, conditional on Xm(s) = zm(s). In

the root, we have an unconditional local uncertainty model Q� for
the value of X� . Q� is a (separately) coherent lower prevision on
G(X�). We use the notation Q

s
(·|Xm(s)) for all these local models.

We intend to show how all these local models Q
s
(·|Xm(s)) can

be combined into global uncertainty models. We generically denote
such global models using the letter P . More specifically, we want to
end up with an unconditional joint lower prevision P := P ↓� = P T

on G(XT ) for all variables in the tree, as well as conditional lower
previsions P ↓S(·|Xs) on G(X↓S) for all non-terminal nodes s and
all non-empty S ⊆ C(s). Ideally, we want these global (condi-
tional) lower previsions (i) to be compatible with the local assess-
ments Q

s
(·|Xm(s)), s ∈ T , (ii) to be coherent with one another, and

(iii) to reflect the conditional irrelevancies (or Markov-type condi-
tions) that we want the graphical structure of the tree to encode. In
addition, we want them (iv) to be as conservative (small) as possible.
In this list, the only item that needs more explanation concerns the
Markov-type conditions that the tree structure encodes.

2 Besides the letter V , we will also use the letters P , Q, R and S.
3 It suffices, in the discussion below, to let C = ∅.
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3.4 The interpretation of the graphical model.

In classical Bayesian nets, the graphical structure is taken to repre-
sent the following assessments: for any node s, conditional on its par-
ent variables, its non-parent non-descendant variables are epistemi-
cally irrelevant to it (and therefore also independent). In the present
context, we assume that the tree structure embodies the following
conditional irrelevance assessment, which turns out to be equivalent
with the conditional independence assessment above in the special
case of a Bayesian tree.

CI. Consider any node s in the tree, any subset S of its set of children
C(s), and the set S :=

T

c∈S c of their common non-parent
non-descendants. Then conditional on the mother variable Xs,
the non-parent non-descendant variables XS are assumed to be
epistemically irrelevant to the variables X↓S associated with the
children in S and their descendants.

This interpretation turns the tree into a credal tree under epistemic
irrelevance. We introduce the term imprecise Markov tree (IMT) for
it. For global models, CI implies that for all s ∈ T ♦ , all non-empty
S ⊆ C(s) and all I ⊆ S, we can infer from P ↓S(·|Xs) a model
P ↓S(·|X{s}∪I), where for all z{s}∪I ∈ X{s}∪I we have:

P ↓S(f |z{s}∪I) := P ↓S(f(·, zI)|zs) for all f in G(X↓S∪I). (2)

3.5 The most conservative global models

Let us show how to construct specific global models for the variables
in the tree, and argue that these are the most conservative coherent
models that extend the local models and express all conditional irrel-
evancies (2), encoded in the imprecise Markov tree. The crucial step
lies in the recognition that any tree can be constructed recursively
from the leaves up to the root, by using basic building blocks of the
following type:

Xm(s)

Xs

X↓c1 X↓c2
. . . X↓cn

Q
s
(·|Xm(s))

P ↓ck
(·|Xs)

The global models are then also constructed recursively, following
the same pattern.

Consider a node s and suppose that, in each of its children
c ∈ C(s), we already have a global conditional lower prevision
P ↓c(·|Xs) on G(X{s}∪↓c). Given that, conditional on Xs, the vari-
ables X↓c, c ∈ C(s) are epistemically independent [see Section 3.4,
condition CI], this leads us to combine the ‘marginals’ P ↓c(·|Xs),
c ∈ C(s) into their point-wise smallest conditionally independent
product, the so-called conditionally independent natural extension
[8, 14] ⊗c∈C(s)P ↓c(·|Xs), which is a conditional lower prevision
P ↓C(s)(·|Xs) on G(X↓s):

Xm(s)

Xs

X↓C(s)

Q
s
(·|Xm(s))

⊗c∈C(s)P ↓c(·|Xs) =: P ↓C(s)(·|Xs)

Next, we need to combine the conditional models Q
s
(·|Xm(s))

and P ↓C(s)(·|Xs) into a global conditional model about X↓s. Given
that, conditional on Xs, the variable Xm(s) is epistemically irrel-
evant to the variable X↓C(s) [see Section 3.4, condition CI], we
expect P ↓C(s)(·|X{m(s),s}) and P ↓C(s)(·|Xs) to coincide [this is
a special instance of Equation (2)]. The most conservative (point-
wise smallest) coherent way of combining the conditional lower
previsions P ↓C(s)(·|X{m(s),s}) and Q

s
(·|Xm(s)) consists in tak-

ing their marginal extension4 Q
s
(P ↓C(s)(·|X{m(s),s})|Xm(s)) =

Q
s
(P ↓C(s)(·|Xs)|Xm(s)); see [11, 14] for details. Graphically:

Xm(s)

X↓s Q
s
(P ↓C(s)(·|Xs)|Xm(s)) =: P ↓s(·|Xm(s))

Summarising, and also accounting for the case s = �, we can con-
struct a global conditional lower prevision P ↓s(·|Xm(s)) on G(X↓s)
by backwards recursion:

P ↓C(s)(·|Xs) := ⊗c∈C(s)P ↓c(·|Xs) (3)

P ↓s(·|Xm(s)) := Q
s
(P ↓C(s)(·|Xs)|Xm(s))

= Q
s
(⊗c∈C(s)P ↓c(·|Xs)|Xm(s)), (4)

for all s ∈ T ♦ . If we start with the ‘boundary conditions’

P ↓t(·|Xm(t)) := Q
t
(·|Xm(t)) for all leaves t, (5)

then the recursion relations (3) and (4) eventually lead to the global
joint model P � = P ↓�(·|Xm(�)), and to the global conditional
models P ↓C(s)(·|Xs) for all non-terminal nodes s. For any sub-
set S ⊆ C(s), the global conditional model P ↓S(·|Xs) can then
be defined simply as the restriction of the model P ↓C(s)(·|Xs) on
G(X↓C(s)) to the set G(X↓S):

P ↓S(g|Xs) := P ↓C(s)(g|Xs) for all gambles g on X↓S . (6)

For easy reference, we will in what follows refer to this collection of
global models as the family of global models T (P ), so

T (P ) := {P } ∪ {P ↓S(·|Xs) : s ∈ T ♦ and non-empty S ⊆ C(s)}.

Suppose we have some family of global models

T (V ) := {V } ∪ {V ↓S(·|Xs) : s ∈ T ♦ and non-empty S ⊆ C(s)}

associated with the tree. How do we express that such a family is
compatible with the assessments encoded in the tree? First of all, our
global models should extend the local models:

T1. For each s ∈ T , Q
s
(·|Xm(s)) is the restriction of V ↓s(·|Xm(s))

to G(Xs).

Secondly, our models should satisfy the rationality requirement of
coherence:

T2. The (conditional) lower previsions in T (V ) are jointly coherent.

Thirdly, our global models should reflect all epistemic irrelevancies
encoded in the graphical structure of the tree:

4 Marginal extension is, in the special case of precise probability models, also
known as the law of total probability, or the law or iterated expectations.
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T3. If we define the conditional lower previsions V ↓S(·|X{s}∪I),
s ∈ T ♦ , S ⊆ C(s) and I ⊆ S through the epistemic irrelevance
requirements V ↓S(f |z{s}∪I) := V ↓S(f(·, zI)|zs) for all f in
G(X↓S∪I), then all these models together should be (jointly)
coherent with all the available models in the family T (V ).

The final requirement guarantees that all inferences we make on the
basis of our global models are as conservative as possible—are based
on no other considerations than what is encoded in the tree:

T4. The models in the family T (V ) are dominated (point-wise) by
the corresponding models in all other families satisfying re-
quirements T1–T3.

It turns out that the family of models T (P ) we have been construct-
ing above satisfies all these requirements. We call a real functional Φ
on G(X) strictly positive if Φ(I{x}) > 0 for all x ∈ X.

Theorem 1 If all local models Qs(·|Xm(s)) on G(Xs), s ∈ T are
strictly positive, then the family of global models T (P ), obtained
through Equations (3)–(6), constitutes the point-wise smallest family
of (conditional) lower previsions that satisfy T1–T3. It is therefore
the unique family to also satisfy T4. Finally, consider any non-empty
set of nodes E ⊆ T and the corresponding conditional lower previ-
sion derived by applying so-called regular extension [14]:

R(f |xE) := max{μ ∈ R : P ↓T (I{xE}[f − μ]) ≥ 0}
for all f ∈ G(XT ) and all xE ∈ XE .

Then the conditional lower prevision R(·|XE) is (jointly) coherent
with the global models in the family T (P ).

The last statement of this theorem guarantees that if we use regular
extension to update the tree given evidence XE = xE , i.e., derive
conditional models R(·|xE) from the joint model P = P ↓T , such
inferences will always be coherent. This is of particular relevance for
the rest of this paper, where we derive efficient algorithms for doing
inferences on such trees using regular extension.

4 THE MEPICTIR ALGORITHM

As a first example of an algorithm capable of making computation-
ally efficient exact inferences in imprecise Markov trees, we intro-
duce the MePiCTIr algorithm [6]. It deals with updating beliefs about
the value of a single variable Xt in some target node t, after observ-
ing the evidence XE = xE in a set of instantiated nodes E. It calcu-
lates the value of R(g|xE) for any given gamble g on Xt, assuming
that P ({xE}) > 0.

The MePiCTIr algorithm solves this problem by cleverly exploit-
ing the tree structure and the recursive nature of the formula for cal-
culating the joint, in a distributed fashion by passing messages up
the tree from leaves to root. It has a complexity that is essentially lin-
ear in the number of nodes in the tree, which is remarkably efficient,
given that it seems that the corresponding inference in credal trees
under strong independence is NP-hard.

We now focus on two special cases, which are easier to study due
to their simplified structure.

5 IMPRECISE MARKOV CHAINS

The simplest special case is that of an imprecise Markov chain:

X1 X2 X3
. . . Xn−1 Xn

with as local models the marginal model Q
1

for X1 and the condi-
tional so-called transition models Q

k
(·|Xk−1) for Xk conditional on

Xk−1, k = 2, . . . , n. All so-called state variables Xk assume val-
ues in the same set of states X. Efficient inference for such models
was studied in detail in [7], and their convergence properties in rela-
tion to the notion of ergodicity were explored in [9]. We mention one
interesting result to illustrate the power of this approach. When all
transition models Q

k
(·|Xk−1) are the same, the imprecise Markov

chain is called stationary, and inferences can be summarised using a
so-called lower transition operator T : G(X) → G(X), defined by

(Th)(x) := Q(h|x) for all h ∈ G(X) and all x ∈ X.

Theorem 1 ensures that the marginal P n for state Xn of the joint
model P is given by the simple recursion equation

P n(h) = Q
1
(Tn−1h) for all h ∈ G(X),

whose computational complexity is linear in n. If we let n → ∞,
there is the following simple convergence result that significantly
generalises the classical Perron–Frobenius Theorem. A more refined
discussion, yielding a necessary and sufficient condition for conver-
gence, can be found in [9].

Theorem 2 (Perron–Frobenius Theorem [7]) Consider a station-
ary imprecise Markov chain with finite state set X that is regular,
meaning that there is some n > 0 such that max T

n(−I{x}) < 0
for all x ∈ X. Then for every marginal model Q

1
, the lower previ-

sion P n = Q
1
◦ T

n−1 for the state at time n converges point-wise
to the same lower prevision P∞:

lim
n→∞

P n(h) = lim
n→∞

Q
1
(Tn−1h) := P∞(h) for all h in G(X).

Moreover, the limit lower prevision P∞ is the only T-invariant lower
prevision G(X), meaning that P∞ = P∞ ◦ T.

6 IMPRECISE HIDDEN MARKOV MODELS

A second, slightly more advanced special case is that of an imprecise
hidden Markov Model (iHMM):

X1 X2 X3 Xn−1 Xn

O1 O2 O3 On−1 On

This is a stationary imprecise Markov chain, as defined in Section 5,
where the state variables Xk are not directly observable (hidden).
What we can observe are the so-called observation variables Ok,
which depend on the corresponding states Xk through the local emis-
sion models Sk(·|Xk) for Ok conditional on Xk, k = 1, . . . , n. We
assume for the sake of simplicity that all these Ok assume values in
the same finite set O, and that, besides all the local transition models,
all the local emission models are the same.

6.1 System identification

One of the main questions in iHMMs is how to learn the local emis-
sion and transition models from a sequence of observations o1:n. We
describe a method [2, 13], based on the Baum–Welch algorithm for
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precise hidden Markov models and the imprecise Dirichlet model
(IDM, [15]).

The IDM yields imprecise estimates for multinomial probabilities.
If n(A) is the number of occurrences of an event A in N experi-
ments, then the lower and upper probability of A according to an
IDM are given by P (A) = n(A)/N+s and P (A) = n(A)+s/N+s,
where s is a non-negative hyperparameter. The larger s, the more im-
precise the inferences. If s = 0, the resulting precise model returns
the relative frequency P (A) = P (A) = n(A)/N.

We rely on the Baum–Welch algorithm to provide us with suit-
able quantities to plug into the IDM formulas. Consider states
x, z ∈ X and observation o ∈ O. The random variable Nx,z :

=
Pn

k=2 I{(x,z)}(Xk−1, Xk) gives the number of transitions from
state x to state z. Similarly, Nx :=

Pn
k=1 I{x}(Xk) gives the num-

ber of times state x is visited, and Nx,o :=
Pn

k=1 I{(x,o)}(Xk, ok)
the number of emissions of observation o from state x. Since the
state sequence X1:n is not known (not observed), the Baum–Welch
algorithm uses successive estimates n̂x,z := E(Nx,z|o1:n) for the
expected number of transitions conditional on the observations, and
similarly for n̂x := E(Nx|o1:n) and n̂x,o := E(Nx,o|o1:n). Once
the algorithm, and these estimates, have converged to stationary val-
ues, they are plugged into the IDM formulas, leading to the following
formulas for the estimated local imprecise transition model:

Q({z}|x) =
n̂x,z

s +
P

z′∈X n̂x,z′
, Q({z}|x) =

s + n̂x,z

s +
P

z′∈X n̂x,z′

and for the estimated local imprecise emission model:

S({o}|x) =
n̂x,o

s + n̂x
, S({o}|x) =

s + n̂x,o

s + n̂x
.

6.2 MePiCTIr

One interesting application of the MePiCTIr algorithm (see Sec-
tion 4) to iHMMs concerned model tracking [1]. Here we describe
a simple application for predicting future major (with magnitude 7
and higher) earthquake rates.

We use a hidden Markov model, where we assume that the earth
can be in m different ‘seismic’ states λ1, . . . , λm and that the oc-
currence of earthquakes in any given year year depends on the seis-
mic state Λ of the Earth in that year. The Earth, being in a seismic
state Λ,“emits” a number of earthquakes O governed by a Poisson
distribution with parameter Λ: the emission model is assumed to be
precise and characterised by the mass function s(o|Λ) = e−ΛΛo

/o!.
To learn the transmission and emission models, we have used data

of counted annual numbers of major earthquakes over 107 subse-
quent years, from 1900 to 2006.5 We have modelled this problem
as an iHMM of length 107, in which each observation variable Oi

corresponds to one of the 107 yearly earthquake counts. The states
correspond to the seismic states Earth can be in. The set of seismic
states {λ1, . . . , λm} defines the space X of the state variables in
the HMM. Since there is only 107 years of data, we believe that a
precise local transition model is not justified, so we have done an
imprecise estimation. To show how the resulting model imprecision
changes with changing number of possible state values m, we have
plotted, as a function of m ranging from 3 to 10, the imprecision
Q({λ•}|λk) − Q({λ•}|λk) of the transition probability estimates
for going from state λk to state λ•, for s = 2 and their harmonic
mean H , known to increase with m as H = ms/ms+n−1.

5 Freely available from http://neic.usgs.gov/neis/eqlists.

m

Q({λ•}|λk) − Q({λ•}|λk)

3 4 5 6 7 8 9 10
0

0.5
imprecision Q({λ•}|λk) − Q({λ•}|λk) with k in {1, . . . , m}
harmonic mean

With the learned transition model (we choose m = 3 for graphical
convenience), we have used the MePiCTIr algorithm to predict fu-
ture earthquake rates, in the years 2007, 2016, 2026 and 2036: we
are interested in the imprecise probability model for the state variable
Λ in these years, conditional on the observed rates. The figure be-
low shows conservative approximations (the smallest hexagons with
vertices parallel with the borders of the simplex) of such updated
models, as credal sets in the probability simplex. Dark grey are the
estimates corresponding to s = 2, light grey the ones for s = 5.

λ2

λ1λ3 2007 2016 2026 2036

The precision of the predictive inferences decreases as we move for-
ward in time. For 2007, we can be fairly confident that seismic rate
will be close to λ1, but for 2036, we can only make very imprecise
inferences about the seismic rate. This is a (we believe desirable)
property that predictions with precise HMMs do not have.

6.3 The EstiHMM algorithm

Suppose we have observed the output sequence o1:n, how do we es-
timate the state sequence x1:n? In precise HMMs, the solution can
be calculated efficiently using the well-known Viterbi algorithm. It
solves the problem by finding the state sequence with highest poste-
rior probability, after conditioning on the observed outputs. For im-
precise HMMs, the solution can be efficiently calculated using the
EstiHMM algorithm [4], and allows us to robustify the results ob-
tained through the Viterbi algorithm.

If the local models of the iHMM have been identified, the global
model P is determined using the recursive construction in Sec-
tion 3.5. We take into account the observed output sequence o1:n

by conditioning the global model on it, using regular extension. By
Theorem 1, the resulting conditional model P (·|o1:n) yields coher-
ent inferences if we assume all local models to be strictly positive.6

With imprecise models, solving a decision-making problem does
not necessarily lead to a single solution: set-valued results are al-
lowed, containing multiple so-called optimal solutions. EstiHMM
decides which state sequences are optimal using the criterion of
(Walley–Sen) maximality [14, 12]: a state sequence x̂1:n is consid-
ered to be strictly better than a sequence x1:n if its posterior probabil-
ity is strictly higher for each conditional mass function p(·|o1:n) in
the credal set associated with the updated lower prevision P (·|o1:n).
This induces a partial order on the set of all possible sequences. The
maximal sequences are those that are undominated under this partial
order, meaning that there is no sequence that is strictly better.

6 This is always the case if the local models are derived using the method
proposed in Section 6.1.
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Finding all maximal state sequences seems a daunting task: the
search space grows exponentially in the length n of the iHMM. How-
ever, by exploiting the recursive formulas of Section 3.5, an appro-
priate version of Bellman’s Principle of Optimality can be derived,
allowing for an exponential reduction of the search space. By using
a number of additional tricks, EstiHMM finds all maximal state se-
quences in a time essentially linear in the number of such maximal
sequences, quadratic in the length of the chain, and cubic in the num-
ber of states; a complexity comparable to that of Viterbi’s algorithm.

As a first toy application, we used EstiHMM to try and detect mis-
takes in words. A written word was regarded as a hidden sequence
x1:n, generating an output sequence o1:n by artificially corrupt-
ing the word. This simulates not perfectly reliable observational
processes, such as the output of an Optical Character Recognition
(OCR) device. As an example, the Italian word QUANTO generated
the output OUANTO. The objective was to try and detect such
errors by using EstiHMM. We started building an imprecise hidden
Markov model by applying IDM estimation to a data set of correct
words and their corrupted counterparts. Next, we took a corrupted
word, for example OUANTO, and let it play the role of an output
sequence, using EstiHMM to try and produce the corresponding
hidden sequence (the original correct word QUANTO). For this
particular example, EstiHMM returned CUANTO, DUANTO,
FUANTO and QUANTO as maximal (undominated) solutions,
including the correct one. Applying the Viterbi algorithm to the
same problem, using a precise identification, resulted in the single
incorrect solution DUANTO. This already illustrates that EstiHMM
is able to robustify the results of the Viterbi algorithm. Let us justify
this statement by analysing how both algorithms compared in trying
to detect errors in a set of 200 words, 63 of which had been corrupted.

total number correct corrupted
total number 200 (100%) 137 (68.5%) 63 (31.5%)
EstiHMM
correct solution included 172 (86%) 137 35
correct solution not included 28 (14%) 0 28

Viterbi
correct solution 157 (78.5%) 132 25
wrong solution 43 (21.5%) 5 38

EstiHMM suggested the original correct word as one of its solutions
in 86% of cases. Assuming we are able to detect this correct word (in
some way), the percentage of correct words rises from 68.5% to 86%
by applying the EstiHMM algorithm, thereby outperforming the
Viterbi algorithm by almost 10%. Also, unlike Viterbi’s algorithm,
EstiHMM did not introduce new errors in already correct words.
Since the Viterbi solutions are always contained within EstiHMM’s,
the difference between both methods is only relevant if EstiHMM
returns multiple solutions. We therefore take a closer look at those
words for which this was indeed the case.

total number correct corrupted
total number 45 (100%) 8 (17.8%) 37 (82.2%)
EstiHMM (multiple solutions)
correct solution included 38 (84.4%) 8 30
correct solution not included 7 (15.6%) 0 7

Viterbi
correct solution 23 (51.1%) 3 20
wrong solution 22 (48.9%) 5 17

A first conclusion is that EstiHMM’s being indecisive serves as a
rather strong indication a word contains errors: when EstiHMM
returns multiple solutions, the original word was corrupted in 82.2%
of cases. A second conclusion, related to the first, is that EstiHMM’s
being indecisive also indicates that the result returned by the Viterbi
algorithm is less reliable: here the percentage of correct words for
Viterbi drops to 51.1%, in contrast with the global percentage of

78.5%. EstiHMM, however, still yields the correct word as one
of its solutions in 84.4% of cases, which is almost as high as its
global percentage of 86%. EstiHMM seems to notice we are dealing
with more difficult words and therefore gives us multiple solutions,
between which it cannot decide.

We conclude that EstiHMM can be usefully applied to robustify
the results of the Viterbi algorithm, and to gain an appreciation of
where it is likely to go wrong. If EstiHMM returns multiple solu-
tions between which it cannot decide, this indicates robustness issues
for the Viterbi algorithm, which will apparently pick one of them in
a fairly arbitrary way, thereby likely increasing the number of er-
rors. EstiHMM’s advantage is that it detects such robustness issues,
leaving us with the option of resolving the ambiguity by picking the
correct word, for instance by using a dictionary or a human expert.
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