
Ideal Point Guided Iterative Deepening

J. Coego and L. Mandow and J.L. Pérez de la Cruz 1

Abstract. Many real world search problems involve different ob-
jectives, usually in conflict. In these cases the cost of a transition is
given by a cost vector. This paper presents IPID, a new exact algo-
rithm based on iterative deepening, that finds the set of all Pareto-
optimal paths for a search problem in a graph with vectorial costs.
Formal proofs of the admissibility of IPID are presented, as well as
the results of some empirical comparisons between IPID and other
approaches based on iterative deepening. Empirical results show that
IPID is usually faster than those approaches.

1 Introduction

Multiobjective problems arise in many different real world domains,
from combinatorial auctions [8] to resource allocation problems [9],
from channel routing [2] to domain independent planning [7]. Exact
multiobjective search algorithms do not deal with a single optimal so-
lution cost as single objective algorithms do, but with a set of several
optimal costs with traded-off objectives. For example, route planning
in road maps [6], a current research topic among transportation prob-
lems, involves two relatively uncorrelated objectives: economic cost
(including fuel and tolls) and travel time. The main goal of multiob-
jective search is to minimize both components. However, decreasing
travel time may cause obvious increasing costs because of larger fuel
consumption and possibly tolls.

Exact multiobjective approaches try to locate the whole set of op-
timal solution costs (also known as Pareto-optimal solutions or non-
dominated solutions). Both best-first and depth-first algorithms have
been designed for this task; however, in tree-shaped search spaces
depth-first algorithms are the natural choice, since —contrary to best-
first algorithms— they present worst-case linear-space complexity.

This paper presents Ideal Point Iterative Deepening (IPID), a new
exact depth-first multiobjective algorithm which extends the single-
objective IDA∗ algorithm [4]. Previous approaches to this extension
have been proposed: IDMOA∗ [3] and PIDMOA∗ [1]. IPID aims to
improve the performance of both algorithms by dealing with their re-
spective weaknesses: unnecessary reexpansion of nodes in IDMOA∗

and excessive number of dominance tests in PIDMOA∗. In fact, ex-
perimental tests presented in this paper show reductions of execution
time by a factor of 3 over these algorithms.

The structure of this paper is as follows. Section 2 presents the
basics of multiobjective search. Section 3 describes IPID, the new
algorithm, presented through both its explained pseudocode and an
example of its execution. It also includes formal proofs on the ad-
missibility of IPID. Section 4 presents the experimental testbed used
in order to compare IPID with previous proposals and discusses the
obtained results, mainly in terms of time consumption. Finally, in
section 5 some conclusions and future work are outlined.

1 Dpto. Lenguajes y Ciencias de la Computación. Universidad de Málaga,
Spain, email: {jcoego,lawrence,perez}@lcc.uma.es

2 Basics of Multiobjective Search Problems

This section summarizes the main concepts used in multiobjective
search that are needed to define algorithm IPID. In multiobjec-
tive problems, the cost of reaching a node is represented by a q-
dimensional vector cost �g = {o1, . . . , oq}, where q is the number
of objectives being considered. Given two cost vectors �g1 and �g2, we
define the dominance relation (≺) as �g1 ≺ �g2 iff ∀i(1 ≤ i ≤ q)
�g1(i) ≤ �g2(i) and �g1 �= �g2. The dominance relation implies that
the dominating vector has at least a cost component smaller than the
dominated vector. Similarly a weaker relation, "dominates or equals"
(�) is defined as �g1 � �g2 iff ∀i(1 ≤ i ≤ q) �g1(i) ≤ �g2(i). Also an
indifference relation (∼) is defined as �g1 ∼ �g2 iff neither �g1 domi-
nates �g2 nor �g1 dominates �g2. Finally we define the relation strictly-
better (�) as �g1 � �g2 iff ∀i(1 ≤ i ≤ q) �g1(i) < �g2(i).

Given a set of vectors T , nodomset(T) = {�t ∈ T | ��u ∈
T �u ≺ �t}. The elements of nodomset(T) are called nondomi-
nated or Pareto-optimal. The ideal point �iP oint of T is given by the
best components �iP oint(i) that can be found in any vector in T , i.
e., ∀i, 1 ≤ i ≤ q, �iP oint(i) = min{�v(i) | �v ∈ T }.

Multiobjective search performs an exploration of a graph G with
a set N of nodes and a set A of arcs connecting pairs of nodes.
We assume a start node s ∈ N and a set of goal nodes Γ ⊆ N .
We assume that H(n) returns a nondominated set of estimated costs
�h(n) from n to Γ. A multiobjective heuristic function H(n) is ad-
missible when for all non-dominated solution paths P ∗ = (s, n1,
...,ni,ni+1, ...,γk), γk ∈ Γ and each subpath P ∗

i = (s,n1, ...,ni) of
P ∗, there exists �h ∈ H(ni) such that �g(P ∗

i) + �h � �g(P ∗). F (n)
is the set of all the �f(n) vectors such that there are �g(n),�h(n) with
�f(n) = �g(n) + �h(n).

Given G, s and Γ, a multiobjective search algorithm is admissible
iff it returns exactly the whole set of Pareto-optimal solutions. This
set is also referred to as C∗.

3 Algorithm IPID

Ideal Point Iterative Deepening (IPID) is an algorithm which extends
the notion of heuristic iterative deepening search presented in [4]
(IDA∗) to the multiobjective case. Iterative deepening search per-
forms consecutive depth-first searches, each one bounded by a cost
value computed in the previous iteration. When the cost of the node
being explored exceeds the current bound, then search is discontin-
ued. In IDA∗ this bound is computed by taking the minimum f value
of the nodes discarded in the previous iteration. IDA* can be proven
to be admissible under reasonable assumptions.

Extending this idea to the multiobjective case is not straightfor-
ward, since vectorial costs are now involved. Computing the non-
dominated values in a set of cost vectors will usually give a set of
bounds, due to the partial order nature of the dominance relation.

ECAI 2012
Luc De Raedt et al. (Eds.)

© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-246

246

Two different multiobjective extensions of IDA∗ have been previ-
ously proposed: IDMOA∗ [3] and PIDMOA∗ [1].

IDMOA∗ focuses on a single objective at a time and computes
scalar thresholds bounding the sucessive searches. Initially, when the
first objective is considered, IDMOA∗ behaves like IDA∗, comput-
ing only the values of the first component in the cost vector. Unlike
IDA∗, IDMOA∗ continues the search until all the solutions with the
minimum value in the first component are located, so it is guaranteed
that a Pareto-optimal solution has been found. Then, the rest of the
objectives are considered sequentially in the same way, but includ-
ing an upper limit for each one, given by the maximum value of the
objective taken into account in the solutions found so far.

IDMOA∗ presents two main drawbacks. Since it focuses on a sin-
gle objective at a time, information concerning the remaining objec-
tives is discarded, which results in redundant re-expansions of nodes
in the following iterations. Also it may temporarily add dominated
solutions to the solution set, inducing extra tests to be performed each
time a new goal node is located. On the other hand, since tests against
the threshold just compare two scalar values, they can be computed
very efficiently.

The other approach, PIDMOA∗, takes into account all the objec-
tives simultaneously, and each threshold is computed as the set of
non-dominated cost vectors of the nodes discarded at the previous
iteration. Search is discontinued when the cost vector of the node is
dominated by any vector in the current threshold or is dominated by
previously found solutions. Since PIDMOA∗ processes all the objec-
tives at once, it drastically decreases node re-expansion. However,
since the threshold is usually multi-vectorial, dominance tests are
heavily time-consuming.

IPID —the proposal here presented— also maintains a vectorial
threshold in order to decrease node re-expansion. However, in order
to decrease the number of dominance tests performed by PIDMOA∗,
IPID reduces this multi-vectorial threshold to a single vector before
search is actually performed in the next iteration. This value is the
ideal point of the cost vectors of the nodes discontinued at the current
iteration.

At the first iteration, IPID uses the heuristic vectors of the start
node as the first threshold set. Then it performs a depth first search
bounded by the ideal point of this threshold set. When the path cur-
rently being explored is dominated by any previously found solution,
then this path is fully discarded, since it cannot lead to a Pareto-
optimal solution. When the path is strictly worse than the thresh-
old, then it is discarded and its cost vectors are used to compute the
next threshold. In fact, requiring just a dominance test to discard a
path may result in endless cycles when computing iteration thresh-
olds. For example, let us consider a graph with heuristic function
∀n�h(n) = �0 and a start node s having two successor nodes s1 and s2

with �g(s1) = (1, 2) and �g(s2) = (2, 1). IPID will use �h(s) = (0, 0)
as the initial threshold. At the first iteration, it will expand s, gener-
ating nodes s1 and s2. Since threshold= (0, 0) ≺ (1, 2) = �g(s1)
and threshold = (0, 0) ≺ (2, 1) = �g(s2), search is discontin-
ued at both nodes and a new ideal point is computed as threshold
= idealPoint{(1, 2)(2, 1)} = (1, 1). The next depth-first search re-
expands the start node s, generating g1 and g2. But now current
threshold (1,1) dominates both �g(s1) and �g(s2); should IPID check
just dominance, search would be discontinued again at both nodes, a
threshold (1, 1) would be again computed, and the algorithm would
be trapped in an endless computation. However, by applying the
strictly better check, IPID ensures that a threshold is always differ-
ent from the previous one. In our example, since (1,1) is not strictly
better than (1,2) nor (2,1), both nodes s1 and s2 will be expanded in

the second iteration.
If the current path is not discontinued, then IPID performs the goal

test on the leaf node of the current branch. If it is a goal node, then
its cost vector is added to the current solution set.

PIDMOA∗ only finds non-dominated solutions [1]. However, both
IDMOA∗ and IPID may temporarily add dominated solutions to the
solution set C∗, which will be discarded at later steps. This issue is
present in the example in section 3.1

Taking into account these considerations, the complete pseu-
docode of IPID is as shown in table 1.

IPID (G, s, Γ)

SOL = ∅; ThresholdSet = nodomset({�h(s)})
WHILE ThresholdSet �= ∅

�threshold = IdealPoint (ThresholdSet)
(ThresholdSet,SOL) = DFS (s, �threshold, SOL)

return (nodomset(SOL))

DFS (node, �currentT h, SOL)

ndomv = { �f(node) ∈ F (node) | (�(γ, P ∗(γ)) ∈ SOL

| P ∗(γ) � �f(node))}
IF (ndomv = ∅) THEN return (∅, SOL);
ndomv = { �f(node) ∈ F (node) | ¬(�currentT h � �f(node)))}
IF (ndomv = ∅) THEN return (F(node),SOL);
IF (node ∈ Γ) THEN

SOL = SOL ∪ {(node, �f (node))}
return (∅, SOL)

ELSE
ThresholdDFS = ∅
successors = expand_node (node)
FOR each n in successors DO

(ThresholdRT,SOL) = DFS(n, �currentT h, SOL)
ThresholdDFS = nodomset (ThresholdDFS ∪ ThresholdRT)

return (ThresholdDFS, SOL)

Table 1. Algorithm IPID

Function IPID computes the threshold for each iteration by calcu-
lating the ideal point of cost vectors at nodes where search was dis-
continued. Then it performs the corresponding depth-first searches
by calling the DFS function. This function returns a pair (next-
threshold, SOL), being next-threshold the set of vectors used to com-
pute the next single-vector threshold (its ideal point), and being SOL
the set of solutions (cost vectors) found so far.

DFS function behaves as mentioned before: it discards nodes dom-
inated by any previously found solution; it discards nodes strictly
worse than the current threshold, considering their cost vectors for
computation of the next threshold; it add cost vectors of the goal
nodes to the SOL set; and expands the node if none of these condi-
tions arise, by recursively calling the DFS function.

An example of IPID in action is presented in the next subsection.

3.1 Example

Figure 1 shows a simple bi-objective tree search problem, where each
node is labelled with its heuristic vector and each arc is labelled with
a single cost vector. The set of goal nodes Γ includes γ1, γ2 and γ3.
The paths to γ2 and γ3 are both Pareto-optimal solutions, while γ1
is dominated by γ2. Notice that although the whole search tree is
depicted at each iteration, this tree will be expanded in a depth-first
manner, from left to right.

The first iteration of IPID is depicted in Figure 2(a). The first
threshold is �h(s), that is, (0,0). Then a depth-first search bounded

J. Coego et al. / Ideal Point Guided Iterative Deepening 247

Figure 1. Multiobjective problem

by (0,0) is started. Since �f(s) is not strictly worse than the current
threshold, node s is expanded. Since the current threshold is strictly
better than �g(n1) and �g(n2), search is discontinued at both nodes and
a new threshold is computed by calculating the ideal point of �g(n1)
and �g(n2).

The second iteration of IPID, shown in Figure 2(b), uses the vec-
tor (2,5) (strictly worse than the previous threshold (0,0)) as the new
bound. The start node is expanded. Since the cost vectors of n1 and
n2 are not strictly worse than the current threshold (even though it
dominates them), both nodes are expanded. However, nodes at the
leaf level are strictly worse than (2,5), so search is fully discontin-
ued at this iteration. The next ideal point is computed as indicated,
resulting in vector (5,10). A graphical representation of IPID and
PIDMOA∗ thresholds is depicted in Figure 2(b). PIDMOA∗ would
expand nodes outside the boundaries of the squares defined by each
one of the cost vectors included in its threshold. On the other hand,
IPID just defines a single vector as a threshold, simplifying disconti-
nuity tests.

The third and last iteration of IPID is shown in Figure 2(c). The
start node is expanded, as well as n1 and n2. Since �g(γ1) is not
strictly worse than the current threshold (5,10), γ1 is found to be a
goal node and its cost vector (5,15) is added to SOL (even though
it is a dominated solution). γ2 is also generated and its cost vector
(5,12) is added to the solution set, but since it dominates the previous
solution, vector (5,15) is excluded from SOL. Node n3 is generated,
but its cost vector is dominated by a previously found solution (5,12),
so it is fully discarded. Finally node γ3 is also added to the solution
set.

The next threshold is empty, so IPID finishes, returning the whole
set of Pareto-optimal solutions.

3.2 Properties of IPID

We will make the following assumptions: (i) the graph G is con-
nected and its branching factor is bounded; (ii) there exists at least
one solution, i. e., a path from s to a node γ ∈ Γ; (iii) there exist pos-
itive numbers εi (1 ≤ i ≤ q) such that for every i and for every edge
cost �c in G, �εi ≤ ci; (iv) all heuristic values �h(n) are non-negative;
(v) the heuristic function H(n) is admissible. These assumptions are
equivalent to those presented for IDMOA∗ and PIDMOA∗ in [1].

Lemma 1 For every iteration i, �thresholdi � �thresholdi+1.

Proof: Let us assume the contrary; then there exists a compo-
nent j such that �thresholdi+1(j) ≤ �thresholdi(j). However,

�thresholdi+1 is the ideal point of the next-threshold set T of costs
of all nodes where search was discontinued at step i. By definition
of IPID, for each �t ∈ T and every component j we have �t(j) >

(a)

(b)

(c)

Figure 2. Example of IPID (a) 1st iteration (b) 2nd iteration (c)
3rditeration

�thresholdi(j) and hence �thresholdi+1(j) > �thresholdi(j), re-
sulting in a contradiction. Therefore �thresholdi � �thresholdi+1.

Lemma 2 At anytime during the process of IPID, for every non-
dominated solution path P ∗ = (s, n1, . . . , ni, . . . , γ) and every
subpath P ∗

i = (s, n1, . . . , ni), there exists an �f(P ∗
i) such that

�f(P ∗
i) � �f(P ∗).

J. Coego et al. / Ideal Point Guided Iterative Deepening248

Proof: Trivial from the definition of admissibility in H(n).

Lemma 3 When IPID finishes, C∗ ⊆ SOL, that is, every non dom-
inated solution will be eventually found by IPID.

Proof: For every non-dominated solution path P ∗, there is at least
a node belonging to this path which has been expanded by IPID at
a given iteration. This is trivial for the first iteration, since the start
node belongs to every path (particularly the non-dominated solution
paths) in the search graph and ∃�h(s) ∈ H(s) | �threshold0 � �h(s)
and �h(s) is not strictly-worse than �threshold0 at this iteration. From
lemma 1, we have that �threshold0 � �threshold1 � . . . �

�thresholdn, being n the number of iterations performed by IPID.
That is, the start node will be expanded at each iteration.

Let us suppose that IPID finishes and the cost �c∗ corresponding to
the non-dominated solution path P ∗ has not been discovered. Since
IPID finishes, its final threshold is ∅. We know that a subpath P ∗

i ⊆
P ∗ has been expanded (containing at least the start node). Let m the
last node from this subpath and let us assume that �c∗ /∈ SOL.

Search may have been discontinued at node m by the following
reasons:

• ∃�c ∈ SOL such that �c dominates all �f(m). But from lemma 2,
we know that there exists a �f(m) such that �f(m) � �f(P ∗) = �c∗

so �c ≺ �c∗ and �c∗ would not be a nondominated solution cost,
contrary to the assumption.

• Let �tfinal be the threshold for the last iteration of IPID. Search is
discontinued because for all �f(m), �tfinal � �f(m). In this case,
IPID would add �f(m) to the next-threshold set used to compute
the following ideal point; so next-threshold is not empty and IPID
does not terminate yet, so we have arrived again at a contradiction.

There are no more possibilities to discontinue search at node m,
so the results holds.

Theorem 1 IPID always finishes and at its termination SOL = C∗.

Proof: Firstly, let us prove that IPID always finishes. Since by as-
sumption the branching factor of the graph is bounded and each com-
ponent of the cost vector is bounded from below by a possitive num-
ber εi, it is obvious that at every step i of deepening —given by a
threshold thresholdi— the explored graph is finite and search fin-
ishes. On the other hand, by lemma 1, the sequence of thresholds is
strictly increasing in every component j, and by assumption the in-
crease is at least εj . Let �cmax = (v1, . . . , vk), where vi = max{yj}
and yj is the j-th component for every �f(P ∗

γ) included in C∗. Then
for all �f(P ∗

γ) ∈ C∗ it holds that �f(P ∗
γ) ≺ �cmax. Then each ex-

panded path will reach a cost of �cmax in at most � max{vj }
min{εj } steps. At

step � max{vj }
min{εj } , each expanded node n will verify that there exists

�f(P ∗
γ) ∈ C∗ such that �f(P ∗

γ) ≺ �f(n) and, as a result of this, the
threshold for the next iteration will be empty, so IPID will finish.

Now, by lemma 3, we know that at the termination step C∗ ⊆
SOL. But there is an explicit final check to guarantee that vectors
in SOL are nondominated; so dominated solutions that eventually
could have been put into SOL will be discarded and the algorithm
will return exactly the set C∗.

4 Empirical Evaluation

4.1 Setup

To perform the empirical evaluation of the three multiobjective itera-
tive deepening approaches, an extensive set of random problems was

generated. Each problem consists of an infinite binary tree, where
each arc was labelled with a bidimensional cost vector. Values for
each component of the vector varies in the integer range [1,50]. Both
objective values are calculated using a uniform random distribution.
A single null heuristic function (�h(n) = �0, ∀n) was used in every
problem (in general, trends are not affected by the use of simple
heuristics on random problems). According to the goal nodes, they
were located at a fixed depth for each instance. Goal depths were set
at levels 8, 10, 12, 14, 16, 18, 20 and 22. Tests also parameterized the
number of goal nodes considered at each fixed depth. This number
was reflected as a percentage of the nodes at the fixed depth.

So a single problem consists of an infinite binary tree, with bidi-
mensional cost vectors, costs in the range [1,50] and correlation zero,
and goal nodes located at a fixed depth (even values from 8 to 22).
A percentage of the nodes at the fixed depth are goal nodes (percent-
ages comprises 1%, 4%, 7%, 10%, 25%, 40%, 60% and 80%). The
cost vectors of all these goal nodes are not necessarily Pareto-optimal
solutions.

For each pair (solution depth, percentage of goal nodes), a group
of five solution sets was generated. Each solution set was related to a
different binary tree. Infinite random trees were generated using the
efficient scheme described in [5], that better parametrizes solution
depth and number of solutions..

4.2 Results

This section shows the results obtained by solving the problems de-
scribed in subsection 4.1. The experiments were performed on a com-
puter with two processors Six-Core AMD Opteron 2435 2600MHz
and 64 GB of main memory. The algorithms were implemented with
LispWorks Enterprise Edition 6.0, running on Windows Server 2008
R2 Enterprise 64bits . Tested algorithms were IDMOA∗, PIDMOA∗

and IPID. Results for each triple (algorithm, solution depth, percent-
age of goal nodes) are averaged for 5 different problems with their
corresponding solution sets.

Several figures regarding time requirements (in seconds) are de-
picted. Figures 3(a) and 3(b) show the results for problems with vary-
ing solution depth and 4% and 80% of goal nodes respectively, lo-
cated at these solution depths. Figures 4(a) and 4(b) show the results
for problems with fixed solution depth at levels 16 and 22 respec-
tively, varying the percentage of goal nodes at these solution depths.

Additional figures are included analyzing several other perfor-
mance measures related to the computation of two sample problems:

• Figure 5 shows the expanded nodes per iteration
• Figure 6 shows the size (number of vectors) of both C∗ and thresh-

old sets at each iteration. Related to IDMOA∗, the threshold size is
symbolic (value 1), since the threshold for this algorithm is scalar.
Threshold size for IPID is constant (1 vector) since the ideal point
computed at each iteration is a single vector.

All the figures regarding time requirements use logarithmic scale
for the vertical axis. The remaining figures maintain a linear scale for
the vertical axis.

4.3 Discussion

All the algorithms tested in this paper share a common iterative deep-
ening nature, having linear space requirements, so our evaluation of
the experiments’ results will focus mainly on time performance. Pre-
vious works on performance of single objective problems, like [10],

J. Coego et al. / Ideal Point Guided Iterative Deepening 249

(a)

(b)

Figure 3. Time requirements (in seconds) with logarithmic scale for ID-
MOA*, PIDMOA* and IPID with (a) 4% of goal nodes (b) 80% of goal nodes

consider the number of expanded nodes as a good proxy for execu-
tion time, since it is assumed constant processing time per node. It
is a reasonable assumption, because just a scalar comparison must
be added to node expasion operations. However, this does not apply
to many multiobjective algorithms, where the cost vector of a node
must be compared against both C∗ and threshold sets. Since these
sets have a variable size, the processing time per node may vary con-
siderably and execution time does not depend just on the number of
expanded nodes.

Figures 5(a) and 5(b) show the number of nodes per iteration ex-
panded by the algorithms in two sample problems. Since IDMOA∗

processes the objectives one at a time, discarding most of the infor-
mation related to the remaining objectives, it increases the number
of iterations (figure 5), and so does the number of re-expansion of
nodes compared to its counterparts PIDMOA∗ and IPID. This ap-
plies mainly at lower rates of goal nodes in the fixed solution depth.
However, since the number of expanded nodes is greater in IDMOA∗,
this does not lead to greater time requirements, as it can be shown in
Figures 3 and 4. In fact IDMOA∗ performs better than PIDMOA∗ in
all but the shallower searches.

The reason for this behaviour relies on the simplicity of the scalar
tests performed to test the discontinuity condition. PIDMOA∗ main-
tains a threshold usually containing several cost vectors. The evolu-
tion of the size of the threshold sets for two sample problems is de-
picted in Figure 6. Each expanded node has to be compared against
the C∗ set as well as the threshold set, in case it is not dominated by
any located solution. This results in a heavy time overload, though
the number of nodes expanded by PIDMOA∗ is commonly smaller
than the ones expanded by IDMOA∗.

(a)

(b)

Figure 4. Time requirements (in seconds) with logarithmic scale for ID-
MOA*, PIDMOA* and IPID with (a) Solution depth 16 (b) Solution depth
22

IPID takes the best ideas from both approaches. It reduces consid-
erably the number of iterations (compared to IDMOA∗) by maintain-
ing not an scalar threshold, but a vectorial one. This results in faster
advances of the threshold and a smaller amount of re-expansions of
nodes. But since vectorial dominance tests may drastically decrease
the performance of the algorithm, IPID keeps the size of the threshold
set to a minimum (Figure 6). While the threshold set of IPID remains
constant, the threshold for PIDMOA∗ increases considerably as the
algorithm deepens in the search tree. This threshold set decreases
(as well as dominance tests) as Pareto-optimal solutions are located,
which results in prunes of the search space.

Figures shown here related to expanded nodes and size of thresh-
old and C∗ sets involve just two sample problems. However, the
same trends can be detected for different problem instances with
varying solution depths and percentages of goal nodes.

Figures 3 and 4 show the time requirements for several problem
sets. Figure 3(a) analyzes the algorithms when solving problems with
a 4% of goal nodes at a fixed depth, varying from 8 to 22. PIDMOA∗

is found to behave more efficiently at lower depths, but as the depth
of the solutions increases, IPID becomes the faster algorithm. The
same trend is observed in Figure 4(b). When compared to IDMOA∗

in terms of time requirements, IPID proved to be up to three times
faster than IDMOA∗.

Figures 4(a) and (b) show the time requirements related to prob-
lems with solution depth 16 and 22, varying the percentage of goal
nodes. IPID remains the more efficient algorithm, increasing its dif-
ference with IDMOA∗ and PIDMOA∗ at higher solution depths. As
the percentage of goal nodes increases, so does the efficiency of

J. Coego et al. / Ideal Point Guided Iterative Deepening250

(a)

(b)

Figure 5. Expanded nodes per iteration for problems with (a) 80% of nodes
at depth 22 being goal nodes (b) 4% of nodes at depth 16 being goal nodes

the algorithms. This is due to the density of Pareto-optimal solu-
tions. The more goal nodes we have, the more likely is to find non-
dominated paths, which results in larger prunes of the space search.
In our testbed, the Pareto-optimal solution set becomes saturated ap-
proximately with 40% of goal nodes. At larger percentages, no sig-
nificative improvements are achieved by any algorithm.

5 Conclusions and Future Work

This paper presents IPID, a new extension of the iterative deepening
paradigm to the multiobjective case. The algorithm is proven to be
admissible, i.e., to terminate and return all the Pareto-optimal solu-
tions. IPID aims to improve previous proposals by considering all the
objectives at once, but minimizing the number of vectorial compar-
isons performed. This is achieved by keeping a single-vector thresh-
old (the ideal point) to control the sequence of deepenings.

A detailed testbed over infinite random binary trees with biobjec-
tive cost vectors, varying the solution depth and the number of goal
nodes, shows that IPID outperforms both IDMOA∗ and PIDMOA∗

in terms of time requirements. Results also raise some questions like
the deep impact of dominance tests on performance, or the advan-
tages of having a great number of goal nodes to prune wider areas of
search space.

Future work includes an extension of this comparison to other
depth-first multiobjective algorithms outside the iterative deepening
family, like Branch and Bound.

(a)

(b)

Figure 6. Size of threshold and C∗ sets per iteration for problems with (a)
80% of nodes at depth 22 being goal nodes (b) 4% of nodes at depth 16 being
goal nodes

ACKNOWLEDGEMENTS

This work has been partially funded by Consejería de Innovación,
Ciencia y Empresa. Junta de Andalucía (España) - P07-TIC-03018
and TIN2009-14179, Plan Nacional de I+D+i, Gobierno de España.

REFERENCES

[1] J. Coego, Lawrence Mandow, and J. L. Pérez de la Cruz, ‘A new ap-
proach to iterative deepening multiobjective A*’, in AI*IA 2009, LNCS
5883, pp. 264–273, (2009).

[2] Pallab Dasgupta, P.P. Chakrabarti, and S.C. DeSarkar, Multiobjective
Heuristic Search, Vieweg, Braunschweig/Wiesbaden, 1999.

[3] S. Harikumar and Shashi Kumar, ‘Iterative deepening multiobjective
A*’, Information Processing Letters, 58, 11–15, (1996).

[4] Richard E. Korf, ‘Iterative-deepening A*: an optimal admissible tree
search’, in Proc. of the IX Int. Joint Conf. on Artificial Intelligence (IJ-
CAI’85), pp. 1034–1036, (1985).

[5] Richard E. Korf and David Maxwell Chickering, ‘Best-first minimax
search’, Artif. Intell., 84(1-2), 299–337, (1996).

[6] E. Machuca and Lawrence Mandow, ‘Multiobjective route planning
with precalculated heuristics’, in Proc. of the 15th Portuguese Confer-
ence on Artificial Intelligence (EPIA 2011), pp. 98–107, (2011).

[7] Ioannis Refanidis and Ioannis Vlahavas, ‘Multiobjective heuristic state-
space planning’, Artificial Intelligence, 145, 1–32, (2003).

[8] E. Rollon and J. Larrosa, ‘Constraint optimization techniques for mul-
tiobjective branch and bound search’, in Lecture Notes in Economics
and Mathematical Systems, Vol. 618, pp. 89–98, (2009).

[9] Francis Sourd and Olivier Spanjaard, ‘A multiobjective branch-and-
bound framework: Application to the bi-objective spanning tree prob-
lem’, INFORMS Journal on Computing, 20(3), 472–484, (2008).

[10] W. Zhang, State-Space Search: Algorithms, Complexity, Extensions,
and Applications, Springer, 1999.

J. Coego et al. / Ideal Point Guided Iterative Deepening 251

	Introduction
	Basics of Multiobjective Search Problems
	Algorithm IPID
	Example
	Properties of IPID

	Empirical Evaluation
	Setup
	Results
	Discussion

	Conclusions and Future Work

