
Planning as Quantified Boolean Formula

Michael Cashmore 1 and Maria Fox 2 and Enrico Giunchiglia 3

Abstract. This paper introduces two techniques for translat-
ing bounded propositional reachability problems into Quantified
Boolean Formulae (QBF). Both exploit the binary-tree structure of
the QBF problem to produce encodings logarithmic in the size of the
instance and thus exponentially smaller than the corresponding SAT
encoding with the same bound. The first encoding is based on the
iterative squaring formulation of Rintanen. The second encoding is a
compact tree encoding that is more efficient than the first one, requir-
ing fewer alternations of quantifiers and fewer variables. We present
experimental results showing that the approach is feasible, although
not yet competitive with current state of the art SAT-based solvers.

1 Introduction

Planning as Satisfiability is one of the most well-known and effec-
tive techniques for classical planning: SATPLAN [8] was an award-
winning system in the deterministic track for optimal planners in the
first International Planning Competition (IPC) in 1998, the 4th IPC
in 2004, and the 5th IPC in 2006. The basic idea is to encode the ex-
istence of a plan with n+1 (or fewer) steps as a propositional (SAT)
formula obtained by unfolding, n times, the symbolic transition re-
lation of the automaton described by the planning problem. In recent
work [14], the basic SAT approach has been improved by equipping
the solver with planning-specific variable and value-ordering heuris-
tics that are similar to the helpful actions filter of FF [6]. This is very
effective for solving planning problems in the SAT framework. In
general, SAT-based planning, though quite successful, suffers from
the problem that it is easy to come up with problems in which the
number of steps required is large, making it impossible to even en-
code the original problem as a propositional formula. The same prob-
lem arises in bounded model checking [1]. The use of compact en-
coding as Quantified Boolean Formulae (QBFs) combined with the
use of QBF solvers has been proposed [7, 11, 4] as a way to over-
come this problem4. In particular, [13, 7] present an encoding that is
logarithmic in n, resembling the proof of the PSPACE-hardness of
solving QBFs [15, 16].

Here we introduce two techniques for translating bounded propo-
sitional reachability problems into Quantified Boolean Formulae
(QBF). Both of the translations that we present exploit the PSPACE
complexity of the QBF problem to produce encodings that are loga-
rithmic in n, and thus exponentially smaller than the corresponding

1 University of Strathclyde, Glasgow, G1 1XH, UK,
email: michael.cashmore@strath.ac.uk

2 King’s College London, London, WC2R 2LS, UK,
email: maria.fox@kcl.ac.uk

3 Universit di Genova, 16145 Genova (GE), Italy,
email: giunchiglia@unige.it

4 It should be noted that the QBF encodings of symbolic reachability prob-
lems presented in [4, 11] have size polynomial in the makespan of the prob-
lem, and thus possibly exponential in the number of variables.

SAT encodings with the same bound. By encodings logarithmic in
n we mean that when encoding the existence of a plan with n + 1
steps we require only O(logn) variables, rather than O(n) as would
be required in SAT. The existence of these encodings forms the first
step to finding compact QBF encodings of planning problems that are
more efficient than SAT encodings. The first encoding we present is
a recursive formulation similar to that presented in [13]. We make
no novelty claims for the first encoding - we are using it simply as
an example of the standard recursive formulation which we contrast
with our second encoding. The second encoding that we present re-
duces redundancy in the first formula and is tree structured. It is more
efficient than the first one in that:

1. the QBF that encodes the existence of a plan of length n has
one fewer universal quantifier. This means that an encoding with
the same number of quantifier alternations will captures twice the
makespan, and

2. even when the two formulations have the same number of univer-
sal quantifiers, it necessitates far fewer variables.

We refer to the first encoding as the Flat Encoding and the second as
the Compact Tree Encoding throughout this paper. In order to deter-
mine the effectiveness of the two encodings we run a preliminary ex-
perimental analysis showing that the Compact Tree Encoding tends
to perform better on hard problems, solving (or proving unsolvable)
many instances that cannot be solved (or proved unsolvable) by the
Flat Encoding within the 30-minute time bound that we allowed. Fur-
thermore, our results show that the Compact Tree Encoding is much
faster (often by at least one or two orders of magnitude) than the
Flat Encoding on a large number of instances from classical planning
benchmark domains. We show through these encodings that the QBF
approach to classical planning in general is feasible. To the best of
our knowledge, this is the first attempt in the literature to demonstrate
this. We also stress that although we include a direct comparison with
state-of-the-art planning as satisfiability techniques, we do not claim
that the approaches discussed here are competitive. Indeed, such a
comparison is not fair, given the maturity of the research in SAT and
in planning as SAT, compared to the maturity of the much younger
field of research in QBFs (and of course of classical planning as QBF,
starting with this paper). Our goal is to demonstrate that QBF-based
encodings are feasible for planning and to encourage further research
into making them competitive. Consequently we focus on comparing
the new Compact Tree Encoding with the Flat Encoding throughout
this paper, comparing with SAT at the end of Section 4.

After some preliminaries in Section 2 the two encodings will be
introduced in Section 3. Section 4 will detail the experiments run on
these encodings and discuss the results, beginning with time based
comparisons and moving onto memory consumption. Finally we
conclude in Section 5.

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-217

217

2 Preliminaries

Quantified Boolean Formula

Formally, the language of QBFs extends propositional logic by al-
lowing for universal (∀) and existential (∃) quantification over vari-
ables (in our case, fluents and actions). Semantically, ∀x.ϕ (resp.
∃x.ϕ) can be interpreted as (ϕx ∧ ϕ¬x) (resp. (ϕx ∨ ϕ¬x)), where
ϕx (resp. ϕ¬x) is the formula obtained from ϕ by replacing x with
� (resp. ⊥).5 The process of substituting ∀x.ϕ (resp. ∃x.ϕ) with
(ϕx ∧ ϕ¬x) (resp. (ϕx ∨ ϕ¬x)) is called expansion. By expanding
all quantifiers, each QBF can be reduced to (possibly an exponen-
tially larger) propositional formula. When every variable is quanti-
fied, such an expansion reduces to a Boolean combination of � and
⊥ and is thus equivalent to either � or ⊥. The QBF formula ex-
pands recursively into a tree-structured representation where all of
the propositional variables are at the leaves. Expansion therefore pro-
duces an and-or tree that accords to the semantics of the QBF.

The Planning Problem

Let F and A be two finite sets representing the sets of fluents and
actions respectively. A state (resp. (complex) action) is an interpreta-
tion of the set of fluents (resp. actions). In the following, we use X to
denote the whole set of variables, i.e., the set of fluents unioned with
the set of actions.

A planning problem is a triple 〈I, τ,G〉 where

• I is a Boolean formula over F and represents the set of initial
states;

• τ is a Boolean formula over X∪X ′ where X ′ = {x′ : x ∈ X} is
a copy of the set of variables and represents the transition relation
of the automaton describing how (complex) actions affect states
(we assume X ∩X ′ = ∅);

• G is a Boolean formula over F and represents the set of goal
states.

The above definition of the planning problem differs from the tra-
ditional ones in which the description of the effects of actions on a
state is described in an high-level action language such as STRIPS.
We prefer this formulation because the techniques we are going to
describe are independent of the action language used. The only as-
sumption that we make is that the description is deterministic: there
is only one state satisfying I and the execution of a (complex) action
α in a state s can lead to at most one state s′. More formally, for
each state s and complex action α, any two interpretations extend-
ing s ∪ α and satisfying τ interpret in the same way the variables in
F ′ = {f ′ : f ∈ F}.

3 Encoding planning problems as QBFs

Consider a planning problem Π = 〈I, τ,G〉. As standard in planning
as satisfiability, the existence of a parallel plan with makespan n is
proved by building a propositional formula with n copies of the set
of variables. In the following,

• by Xα we denote one such copy of the set of variables;
• by I(Xα) (resp. G(Xα)) we denote the formula obtained from

I (resp. G) by substituting each x ∈ X with the corresponding
variable xα ∈ Xα;

5 � and ⊥ are the logical symbols we use for truth and falsity.

• by τ(Xα, Xβ) we denote the formula obtained from τ by sub-
stituting each variable x ∈ X with the corresponding variable
xα ∈ Xα and similarly each x′ ∈ X ′ with the corresponding
xβ ∈ Xβ .

For n ≥ 1, the planning problem Π with makespan n is the Boolean
formula Πn defined as

I(X1) ∧
n∧

i=1

τ(Xi, Xi+1) ∧G(Xn+1) (n ≥ 0) (1)

and a plan for Πn is an interpretation satisfying (1).
However, since the plan existence problem is a PSPACE-complete

problem [3] the size of (1) can be exponential in the number of flu-
ents - making it impossible to even build (1) in practice. QBFs are a
promising alternative representation language given that:

1. there exists an encoding of the planning problem with makespan n
as QBFs which are polynomial in the number of fluents (assuming,
as we do, a deterministic transition relation), and

2. there is a growing interest in developing efficient solvers for
QBFs; see, for example, the report from the last QBF competition
[12].

Flat Encoding

The flat encoding of a planning problem 〈I, τ,G〉 with makespan
n = 2k is the formula:

I(XI) ∧ Ek(XI , XG) ∧G(XG) (2)

where k ≥ 0 is the folding parameter and Ek(XI , XG) is defined as
follows (in the following, given two finite sets Xα and Xβ of vari-
ables, ∃XαXβ denotes the result of existentially quantifying each
variable in Xα∪Xβ , and (Xα ↔ Xβ) stands for (∧x∈Xxα ↔ xβ)):

Ek(XI , XG) := ∃Xst∀y∃XsXt(
(¬y ⇒ ((Xst ↔ Xt) ∧ (XI ↔ Xs)))∧
(y ⇒ ((Xst ↔ Xs) ∧ (XG ↔ Xt)))∧
Ek−1(Xs, Xt))

if k > 0, and

E0(XI , XG) := ∃X1∃X2

((XI ↔ X1) ∧ τ(X1, X2) ∧ (X2 ↔ XG))

when k = 0. The correspondence between (1) and the Flat Encod-
ing is clear when k = 0. When k > 0, by expanding the universal
quantifiers we find the same correspondence. Intuitively, the branch
formed by expanding y divides the formula into Ek(¬y) and Ek(y),
each representing one half of the total timesteps. As Xst remains
above this branch it is used to link these two halves together with
equality constraints.

The above formulation involves (3k + 2)|X| existential variables
and k universal variables. Further, the Flat Encoding can be con-
verted into prenex conjunctive normal form (corresponding to the
QDIMACS format used by most QBF solvers) with 4(2k+1)|X|+
|τ | clauses, where |τ | is the number of clauses in the transition rela-
tion of the original planning problem.

Proposition 1 For each k ≥ 0, if n = 2k the existential closures of
(1) and the Flat Encoding are equivalent.

The proof can be found in Rintanen [13], in which the Flat encod-
ing is first introduced.

M. Cashmore et al. / Planning as Quantified Boolean Formula218

Compact Tree Encoding

We now describe a new encoding which removes redundancy and
requires considerably fewer variables than the Flat Encoding.

Intuitively, the Flat Encoding describes a one-to-one correspon-
dence between the states traversed and the leaves of the expansion
corresponding to the QBF. The leaves of the expansion are composed
of the values of the innermost existentially quantified variables. By
contrast, in our second encoding, the Compact Tree Encoding, there
is a one-to-one correspondence between the states traversed and the
nodes of the tree corresponding to the QBF. Every existentially quan-
tified layer in the QBF is used to represent at least one distinct state.

Given a QBF formula with k universal quantifiers, the new en-
coding is a tree of depth k which removes all redundancy from the
formula, by only specifying equivalent states once. The key novelty
of this encoding is in the traversal of its tree structure, in which edges
are encoded from each leaf node to one of the nodes in each of the
preceding layers of the tree. This leads to a formula that encodes
2k+1 transitions in a tree with k layers. The formula is quadratic in
k because every edge to and from level i requires k − i − 1 terms
to express the context which is the assignment to the variables in the
intervening layers. While the Flat Encoding does not require these
contexts and therefore is linear in k, twice as many variables are re-
quired to enforce the equivalence of sets of existentially quantified
variables on different branches as are required in the Compact Tree
Encoding to describe the traversal of the tree.

The Compact Tree Encoding of a planning problem 〈I, τ,G〉 with
makespan n = 2k+1 is the formula:

I(XI) ∧Qk(XI , XG) ∧G(XG) (3)

where

Qk(XI , XG) := ∃Xk∀yk . . .∃X1∀y1∃X(

((
∧k

i=1 ¬yi) ⇒ τ(XI , X))

∧((∧k
i=1 yi) ⇒ τ(X,XG))∧k

i=1(((¬yi ∧i−1
j=1 yj) ⇒ τ(X,Xi))

∧((yi ∧i−1
j=1 ¬yj) ⇒ τ(Xi, X))))

This formula states that the goal state GG is reachable in 2k+1 ap-
plications of the transition relation. Only k + 1 states are quantified
(Xk to X1 and X).

The Compact Tree Encoding (3) has k universal variables and
(k + 1)|X| existential variables. Further, with (3) we check the
existence of plans having makespan equal to 2k+1, i.e., twice the
makespan allowed by the Flat Encoding for the corresponding num-
ber of quantifier alternations. The conversion of (3) to prenex con-
junctive normal form has 2(k + 1)|τ | clauses. Although this has
more clauses than the Flat Encoding and in some cases requires more
memory it can be seen in Section 4 that in practice it does not make
the problem more difficult to solve.

The correspondence between the Compact Tree Encoding and (1)
is again found when expanding the universally quantified variables.
Unlike the Flat Encoding however, when expanding yk, Xk does not
link the two halves of the plan using equality constraints, but instead
with two transition relations - Xk representing a distinct state in the
solution to the planning problem.

Proposition 2 For each k ≥ 0, if n = 2k+1 the existential closures
of (1) and the Compact Tree Encoding (3) are equivalent.

Proof: We prove, by induction on k, that Qk(XI , XG) is equiva-
lent to (1) with n = 2k+1

k = 0: In this case, Qk(XI , XG) becomes

∃X(τ(XI , X) ∧ τ(X,XG))

and the thesis trivially holds.
k = p+ 1: By expanding the outermost universal quantifier, yp+1,

(
∧k

i=1 ¬yi) ⇒ τ(XI , X) becomes false in one branch of the ex-
pansion, (Qk,yp+1), and (

∧k
i=1 yi) ⇒ τ(X,XG) in the other,

(Qk,¬yp+1).
In addition

p+1∧

i=1

(
(¬yi ∧i−1

j=1 yj) ⇒ τ(X,Xi))

∧((yi ∧i−1
j=1 ¬yj) ⇒ τ(Xi, X))

)

is reduced to

p∧

i=1

(
(¬yi ∧i−1

j=1 yj) ⇒ τ(X,Xi))

∧((yi ∧i−1
j=1 ¬yj) ⇒ τ(Xi, X))

)

with two clauses falling out when i = p + 1: (
∧p

i=1 yi) ⇒
τ(X,Xp+1) in (Qk,yp+1) and (

∧p
i=1 ¬yi) ⇒ τ(Xp+1, X) in

(Qk,¬yp+1).
After expansion Qk(XI , XG) becomes

∃Xp+1(
∃Xp∀yp . . .∃X1∀y1∃X(
(
∧p

i=1 ¬yi ⇒ τ(XI , X))∧
(
∧p

i=1 yi ⇒ τ(X,Xp+1))∧
(
∧p

i=1 ((¬yi ∧∧i−1
j=1 yj) ⇒ τ(X,Xi))

∧((yi ∧∧i−1
j=1 ¬yj) ⇒ τ(Xi, X))))∧

∃Xp∀yp . . .∃X1∀y1∃X(
(
∧p

i=1 ¬yi ⇒ τ(Xp+1, X))∧
(
∧p

i=1 yi ⇒ τ(X,XG))∧
(
∧p

i=1 ((¬yi ∧∧i−1
j=1 yj) ⇒ τ(X,Xi))∧

((yi ∧∧i−1
j=1 ¬yj) ⇒ τ(Xi, X)))))

By induction hypothesis,

∃Xp∀yp . . .∃X1∀y1∃X(
(
∧p

i=1 ¬yi ⇒ τ(XI , X))∧
(
∧p

i=1 yi ⇒ τ(X,Xp+1))∧
(
∧p

i=1 ((¬yi ∧∧i−1
j=1 yj) ⇒ τ(X,Xi))∧

((yi ∧∧i−1
j=1 ¬yj) ⇒ τ(Xi, X))))

is equivalent to

∃X ′
1 . . . X

′
2p+1−1(τ(XI , X

′
1)

∧∧2p+1−2
i=1 τ(X ′

i, X
′
i+1) ∧ τ(X ′

2p+1−1, Xp+1))

The second half of the expansion can be equated to a similar
expression in an analogous fashion - with the exception that the
chain of transitions are between Xp+1 and XG, as they represent
the second half of the plan. Thus, by combining the conjunctions
we get

∃X1 . . . X2p+2−1(τ(XI , X1)

∧∧2p+2−2
i=1 τ(Xi, Xi+1) ∧ τ(X2p+2−1, XG))

which is the thesis. �

M. Cashmore et al. / Planning as Quantified Boolean Formula 219

Figure 1. Times on problems solved with DEPQBF using the Compact Tree Encoding and Flat Encoding, times in ms.

Flat Encoding Compact Tree Encoding
solver #solved unique #solved unique

QuBE7.0 39 0 61 22
DepQBF 58 0 68 10

Table 1. Number of solved problems using the Compact Tree Encoding and Flat Encoding.

Abstract Example

The following simple abstract example emphasises the difference be-
tween the Compact Tree Encoding and the Flat Encoding.

If we build an expression containing two universal quantifiers us-
ing the Compact Tree Encoding, we express the existence of a plan
of makespan 8. Below is a simple example,

∃X2∀y2∃X1∀y1∃X · (
(¬y2 ∧ ¬y1 ⇒ τ(I,X)) ∧
(y2 ∧ y1 ⇒ τ(X,G)) ∧
(¬y2 ∧ y1 ⇒ τ(X,X2)) ∧
(y2 ∧ ¬y1 ⇒ τ(X2, X)) ∧
(¬y1 ⇒ τ(X,X1)) ∧
(y1 ⇒ τ(X1, X)))

It should be noted that the last two transitions are both invoked
twice: once in the context where y2 is true and once in the context
where it is false. The other transitions are all invoked once, account-
ing for all 8 transitions.

By contrast, two universally quantified variables using the Flat En-
coding produces:

∃X1∀y1∃X2∃X3 · (
(y1 ⇒ I ↔ X2 ∧X1 ↔ X3)∧
(¬y1 ⇒ X1 ↔ X2 ∧X3 ↔ G)∧

∃X4∀y2∃X5∃X6·
((y2 ⇒ X2 ↔ X5 ∧X4 ↔ X6)∧
(¬y2 ⇒ X5 ↔ X5 ∧X3 ↔ X6)∧
∃X7∃X8·

(X5 ↔ X7 ∧X8 ↔ X6 ∧ τ(X7, X8))))

The single transition is invoked in all of the contexts generated by
assignments to y1 and y2. This is only 4 contexts, so the encoding
expresses the existence of a plan of 4 transitions.

It can be seen that by expanding the universal quantifiers in both
Flat and Compact Tree Encoding, we get propositional formulae in
which the Compact Tree Encoding has twice as many transition re-
lations. The Flat Encoding uses twice as many variables as the Com-
pact Tree Encoding for the same number of universal quantifiers, and
encodes only half as many transitions.

4 Results

We ran some experiments to form a number of comparisons, hoping
to show that:

• the Compact Tree Encoding uses less memory, and less time than
the Flat Encoding,

• the QBF approach uses less memory than SAT,
• there exists a problem that can be represented using QBF, but can-

not be built in practice with SAT, due to memory limitations.

In general, we do not expect that the QBF approach is competitive
with SAT in terms of time, but include a comparison to illustrate this
gap in performance.

For these we used encodings of STRIPS-style planning problems
from the IPC benchmarks; depots, driverlog, freecell, gripper, op-
ticaltelegraph, philosophers, pipesnotankage, rovers, tpp and zeno.
These were solved with a variety of solvers in a number of experi-
ments.

The problems were solved using Quantified Boolean Formula as
follows:

A plan graph was created until level-off and then encoded as a
QBF, this was passed to the choice of solver. If the QBF proved to
be unsatisfiable a larger encoding (larger makespan) was created and
the process repeated. Once a QBF was found to be satisfiable, or the
time limit (30 minutes per encoding) was reached, the next problem

M. Cashmore et al. / Planning as Quantified Boolean Formula220

DEPQBF QuBE7
domain CTE Flat CTE Flat SATPLAN’06

average smoothed average smoothed average smoothed average smoothed average smoothed
average average average average average

depots 281 292 283 201 1994 1211 563 329 1944 1427
driverlog 217 186 539 293 772 527 432 245 2090 2193

gripper 68 89 126 135 145 182 384 306 437 496
freecell 495 501 143 175 765 802 365 279 2087 2613

philosophers 105 70 669 370 54 51 344 240 902 763
pipesnotankage 401 313 377 220 1910 871 965 468 2095 2194

rovers 524 314 573 392 597 422 835 558 2061 1577

Table 2. Memory used solving problems using SATPLAN’06, the Compact Tree Encoding (CTE) and Flat Encoding, solving QBFs with DEPQBF and
QUBE7; sizes to the nearest MB.

Figure 2. Average memory usage over time per domain (smoothed
average), SAT and QBF encodings, solving QBFs with DEPQBF; memory

in (kb)
Figure 3. Times on problems solved using the Compact Tree Encoding

with various solvers against SAT, times in ms.

was considered. This was repeated for each pairing of formula and
solver.

Comparing the Flat with the Compact Tree
Encoding

The encodings were solved using DEPQBF [10] and QUBE7 [5].
QUBE7 was used as, although it is not the latest version, we have
a modified version that allows for easier plan extraction. We do not
present a resolution based solver in these results, such as QUANTOR-
3.0 [2] because it resolves the formula to SAT and hence it performs
similarly to our SAT based encoding. We found that DEPQBF used
far less memory in solving these encodings, and that, although the
results are mixed, the smallest memory footprint is found when us-
ing the Compact Tree Encoding and DEPQBF. As a result DEPQBF
will be used primarily in the discussion and figures. Figure 1 com-
pares times (in ms) for solving the Compact Tree Encoding and Flat
Encoding with DEPQBF.

All problems from the benchmarks listed above were tested, with
only problems solved by both techniques included in the figure 1.
This comparison shows that the Compact Tree Encoding dominates
the Flat Encoding in time. Table 1 reinforces this, showing the num-

ber of problems solved overall using each encoding. The column
unique in Table 1 displays the number of problems solved by an en-
coding that were not solved by the alternate encoding.

Memory Comparison

The memory used for each approach was recorded. For each domain
every problem was attempted, under the same time limits and on the
same machines as previous experiments. Problems with greater than
5120 grounded fluent and action variables were not attempted. The
memory use is displayed in Table 2 and Figure 2.

In Table 2 the average column denotes the mean of the maximum
and minimum memory footprint of the solver. The memory used by
the solver was recorded at small time intervals throughout solving,
the smoothed average column is the mean value over time. The av-
erage will be sensitive to spikes in memory usage, while smoothed
average presents a clearer view of the memory used over the course
of the solving process. smoothed average is close to the average in
the QBF-based approaches, in most cases it is smaller: the amount
of memory used is low for the majority of the execution time. The
opposite is true for the SAT-based approach, in which the amount of
memory used increases quickly from the minimum and levels out.

M. Cashmore et al. / Planning as Quantified Boolean Formula 221

As can be seen from the tables, all QBF-based approaches use far
less memory than SAT.

The minimum amount of memory used is ideally the amount
of space taken once the problem is grounded and translated into a
boolean formula. As should be expected this is much smaller in the
QBF form. The maximum amount of memory used behaves errati-
cally in the results for QUBE7 (when compared to the SAT results).
This is due to the way in which QUBE7 approaches the problem: the
size of learned cubes can grow very large if the initial guesses to the
solution are far from correct and a lot of backtracking is involved.
This is often the case in the depots domain, in which QUBE7 per-
formed very poorly.

Comparison with SAT

The experiment carried out to compare the Compact Tree Encod-
ing with the Flat Encoding was repeated using a SAT based planner.
SATPLAN’06 was used for this as it uses the same actions-only
translation of the plan graph and states to boolean formula as the
encodings described here [9]. Alternative representations of state,
improvements in Planning level constraints and modifications to the
solver have all been shown in improve the effectiveness of SAT based
planners [9, 17, 14]. We do not compare against more sophisticated
SAT based planners as we are concerned only with the gap in perfor-
mance between QBF and basic, unenhanced SAT approaches, and so
choose a SAT planner with the same state and transition representa-
tion as our QBF implementation. It should be noted however that
these improvements are also applicable to QBF-based approaches
with little or no modification.

The results are shown in Figure 3.
Although on some smaller problems the QBF approach is faster,

overall it scales much more poorly than the SAT-based planner. How-
ever, this is only the first step of future work in QBF representation
and solving for planning - the Compact Tree Encoding provides a
foundation upon which more competitive, and more efficient QBF
planners can be built.

5 Conclusions

In this paper we have presented methods for encoding reachability
problems (specifically, propositional planning problems), as QBFs.
We described two alternative encodings. The first encoding, the Flat
Encoding, is an equivalence-based encoding based on [13]. The sec-
ond encoding, the Compact Tree Encoding, uses fewer universal and
existential quantified variables than the first when encoding problems
with a given makespan. In fact, for plans encoded with the same
depth of universal quantification, the Compact Tree Encoding de-
scribes a plan of double the makespan of that described by the Flat
Encoding. We have experimented with sets o f problem instances
taken from the IPC benchmarks, and we have shown that the second
encoding leads to faster solution (and proof of unsolvability) of the
harder problems in these sets.

SAT-based planners work on encodings in which every variable
represents some aspect of the Planning problem. However, in the Flat
Encoding the majority of the variables are redundant - essentially
serving only as machinery to allow the problem to be represented
in QBF. In the Compact Tree Encoding we include only variables
that represent distinct aspects of the underlying Planning problem,
much like SAT. We consider this to be the more natural translation
of Planning to QBF, as well as the more elegant. We find this ex-

citing because, as our results show, it holds the potential for marked
improvement in the performance of planners based on QBF-solving.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, ‘Symbolic model checking
without BDDs’, in Proceedings of the Fifth International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’99), pp. 193–207, (1999).

[2] Armin Biere, ‘Resolve and expand’, in Proc. SAT, pp. 59–70, (2004).
[3] Tom Bylander, ‘The computational complexity of propositional

STRIPS planning’, Artif. Intell., 69(1-2), 165–204, (1994).
[4] Nachum Dershowitz, Ziyad Hanna, and Jacob Katz, ‘Bounded model

checking with QBF’, in SAT, pp. 408–414, (2005).
[5] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella,

‘QUBE: A system for deciding quantified Boolean formulas satisfia-
bility’, in Proc. of the International Joint Conference on Automated
Reasoning (IJCAR’2001), LNAI 2083, pp. 364–369, (2001). QUBE is
available at www.mrg.dist.unige.it/star/qube.

[6] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: fast plan
generation through heuristic search’, J. Artif. Int. Res., 14, 253–302,
(May 2001).

[7] Toni Jussila and Armin Biere, ‘Compressing BMC encodings with
QBF’, Electr. Notes Theor. Comput. Sci., 174(3), 45–56, (2007).

[8] Henry Kautz and Bart Selman, ‘Planning as Satisfiability’, in
Proc. ECAI, pp. 359–363, (1992).

[9] Henry Kautz and Bart Selman, ‘Pushing the envelope: planning, propo-
sitional logic and stochastic search’, in Proc. AAAI-96, pp. 1194–1201,
(1996).

[10] Florian Lonsing and Armin Biere, ‘Depqbf: A dependency-aware qbf
solver’, Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 7, 71–76, (2010).

[11] Hratch Mangassarian, Andreas G. Veneris, and Marco Benedetti, ‘Ro-
bust QBF encodings for sequential circuits with applications to verifica-
tion, debug, and test’, IEEE Trans. Computers, 59(7), 981–994, (2010).

[12] Claudia Peschiera, Luca Pulina, Armando Tacchella, Uwe Bubeck,
Oliver Kullmann, and Ines Lynce, ‘The seventh QBF solvers evalua-
tion (QBFEVAL’10)’, in Proc. SAT, (2010).

[13] Jussi Rintanen, ‘Partial implicit unfolding in the Davis-Putnam proce-
dure for Quantified Boolean Formulae’, in Proc. LPAR, volume 2250
of LNCS, pp. 362–376, (2001).

[14] Jussi Rintanen, ‘Heuristics for planning with SAT’, in Proceedings of
the 16th international conference on Principles and practice of con-
straint programming, CP’10, pp. 414–428, Berlin, Heidelberg, (2010).
Springer-Verlag.

[15] Walter J. Savitch, ‘Relationships between nondeterministic and de-
terministic tape complexities’, J. Comput. Syst. Sci., 4(2), 177–192,
(1970).

[16] Larry J. Stockmeyer and Albert R. Meyer, ‘Word problems requiring
exponential time: Preliminary report’, in STOC, pp. 1–9, (1973).

[17] Zhao Xing Yixin Chen and Weixiong Zhang, ‘Long-distance mutual
exclusion for propositional planning’, Proc. International Joint Con-
ference on Artificial Intelligence (IJCAI-07).

M. Cashmore et al. / Planning as Quantified Boolean Formula222

