
Iterative Algorithm for Solving Two-player Zero-sum
Extensive-form Games with Imperfect Information

Branislav Bošanský1 and Christopher Kiekintveld2 and Viliam Lisý1 and Michal Pěchouček1

Abstract. We develop and evaluate a new exact algorithm for find-
ing Nash equilibria of two-player zero-sum extensive-form games
with imperfect information. Our approach is based on the sequence-
form representation of the game, and uses an algorithmic framework
of double-oracle methods that have been used successfully in other
classes of games. The algorithm uses an iterative decomposition,
solving restricted games and exploiting fast best-response algorithms
to add additional sequences to the game over time. We demonstrate
our algorithm on a class of adversarial graph search games motivated
by real world border patrolling scenarios. The results indicate that
our framework is a promising way to scale up solutions for extensive-
form games, reducing both memory and computation time require-
ments.

1 Introduction

The field of computational game theory has made significant
progress in recent years in developing more efficient algorithms for
solving large, complex games. This is important because many real-
world situations can naturally be modeled using a game-theoretic
framework, but until recently many of these potential applications
have been limited because they are too complex for existing solu-
tion methods. Some recent algorithmic advances are already used in
impressive applications, including poker agents capable of defeating
human experts [10] and methods for scheduling homeland security
resources, such as Federal Air Marshals [12]. However, many classes
of games are still computationally challenging, and further progress
is needed to enable new applications.

Our primary motivation in this paper is a class of adversarial pa-
trolling problems motivated by border security problems faced by the
United States Customs and Border Patrol (CBP). Existing formula-
tions of patrolling problems in the literature have focused on situ-
ations where there is no change in information during the game for
either player (e.g, in [13]) — as soon as the evading player is detected
or reaches the goal, the game ends. However, information structures
are often significantly more complicated. For example, border patrol
agents frequently patrol areas for signs of recent passage, or use re-
mote sensing devices to provide (imperfect) remote detection, and
track down illegal activity based on these signs.

The types of interactions we observe in the CBP patrolling prob-
lem can be formally modeled as extensive-form games with imper-
fect information. This class of games also includes classic games
with private information, such as Poker and Kriegspiel. Since find-
ing an exact solution is typically a computationally hard prob-

1 Agent Technology Center, Dept. of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical University in Prague

2 Computer Science Department, University of Texas at El Paso

lem, existing algorithms for solving large extensive-form imperfect-
information games typically use approximation. Examples include
gradient methods with known error bounds [3], algorithms that ex-
ploit learning and regret minimization to converge to an approxima-
tive solution over time [7], and variants of Monte-Carlo tree search
modified for imperfect information games [2] (these are not guaran-
teed to converge to an equilibrium).

In this paper we develop a novel algorithm for solving two-player
zero-sum extensive-form games based on a double-oracle frame-
work. Our method differs from the current state-of-the-art techniques
in two key aspects: (1) it computes an exact Nash equilibrium (not
an approximation), and (2) it iteratively expands the game by in-
creasing the set of allowed strategies for players. Our approach is
inspired by the oracle methods that have proven successful for solv-
ing large normal-form games [9, 4, 5], combined with the sequence
form that allows a compact representation of strategies in extensive-
form games [6, 14]. The main idea is to restrict the game to a limited
number of possible sequences for each player, and iteratively expand
the game by adding best-response sequences to the solution of the
current restricted game. In the worst case, this approach may need to
enumerate all possible sequences, but in typical cases a solution can
be found by exploring a small fraction of the strategy space. We begin
by presenting background and related work, and then describe our al-
gorithm in detail before presenting a set of experimental results on
adversarial search games motivated by border patrolling examples.

2 Background and Related Work

Adversarial situations with sequential moves and uncertainty can be
modeled as extensive-form games (EFG) with imperfect information.
We focus on two-player, zero-sum variants of EFGs that can be de-
fined by a tuple (N,A,H,Z, χ, ρ, τ, I, u) [11]. N is a set of two
players N = {1, 2}, we use i to refer to one of the two players (ei-
ther 1 or 2), and −i to refer to the opponent of i. A represents the
set of actions, H denotes the set of all nonterminal choice nodes,
and Z is a set of all terminal nodes of the game tree. The function
χ : H �→ 2A maps each nonterminal node to the subset of the ac-
tions can be selected in the node. The function ρ : H �→ N assigns
each nonterminal node to a player, and τ : H × A �→ H ∪ Z is a
successor function that determines which node is reached after the
players selects an action a in a nonterminal node h. The utility func-
tion ui : Z �→ R assigns a utility value to each terminal node for
player i, and the zero-sum assumption gives us u1(z) = −u2(z).

Imperfect information is modeled through the use of information
sets. The information sets Ii for player i form a partition of {h ∈ H :
ρ(h) = i} by defining equivalence classes such that χ(h) = χ(h′)
and ρ(h) = ρ(h′) whenever there exists a j for which h ∈ Ii,j and

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-193

193



h′ ∈ Ii,j . We assume perfect recall so all nodes in some information
set Ii have the same history of actions for player i (i.e., players cannot
misremember their own actions).

Games with perfect recall can be represented using the compact
sequence form [6, 14]. A sequence σi is an ordered list of actions of
player i that occur on a path from the root to some node in the game
tree; the set of all sequences for player i is denoted by Σi and the
set of all sequences is Σ = ×i Σi. The notation Exti(σi) refers to
the set of sequences that extend σi by exactly one action for player i.
We use seqi(I) to denote the set of sequences of player i, which lead
to information set I . We overload notation and also use seqi(h) to
denote the sequence leading to node h. The notation Ii(σi) denotes
an information set in which the last action of sequence σi was taken.
The function gi : Σ �→ R extends the utility function to all nodes
by setting gi(σ) = ui(z) if the execution of sequences of all players
σ ∈ Σ ends in a terminal node z, and gi(σ) = 0 otherwise.

2.1 Sequence Form LP Method

Solving a game typically implies finding a profile of strategies that
meet the criteria for a solution concept, such as Nash equilibrium
in which each player plays a best response to the strategies of the
other players. Formally, let Πi be a set of pure strategies for player i,
and Δi be a set of mixed strategies that are probability distributions
over the pure strategies. A best response by player i to player −i is
a mixed strategy δ∗i ∈ Δi such that ui(δ

∗
i , δ−i) ≥ ui(δi, δ−i) for

all strategies δi ∈ Δi. A strategy profile δ = ×i δi is in a Nash
equilibrium if for all i : δi is a best response to δ−i.

It is known that a Nash equilibrium of a two-player, zero-sum
game in the normal form can be found efficiently using linear pro-
gramming (LP). One way to solve an extensive-form game is to rep-
resent a pure strategy for player i as a combination of actions to take
in each information set, and to transform it into a normal-form game.
This, however, results in a game of an exponential size in the size
of the game tree. Games with perfect recall can use a more compact
representation of strategies called behavioral strategies, in which a
mixed strategy is represented by a set of separate probability distribu-
tions over possible actions in each information set for a given player.
Using the sequence form, we can represent the strategies of a player
i as realization plans (ri : Σi �→ R) that are equivalent to behavioral
strategies. Realization plans specify the probability of executing se-
quence σi, conditioned on the opponent choosing compatible actions
that reach the information sets and the validity of taking actions spec-
ified in σi. Computing a Nash equilibrium using sequence form can
be formulated as an LP [11] that is linear in the size of the game tree:

min v0

s.t. vIi(σi) −
∑

I′∈Ii(Exti(σi))

vI′ ≥

≥
∑

σ−i∈Σ−i

gi(σi, σ−i)r−i(σ−i) ∀σi ∈ Σi

(1)

r−i(∅) = 1 (2)
∑

σ′−i∈Ext−i(I)

r−i(σ
′
−i) = r−i(seq−i(I)) ∀I ∈ I−i (3)

r−i(σ−i) ≥ 0 ∀σ−i ∈ Σ−i (4)

There are two types of variables in the program – variables vIi that
represent the expected utility of the player i, and the variables r−i

that represent the strategy of the opponent in the form of realization
plan. The first equation (1) ensures the maximization of the expected
utility of player i for each information set, while the opponent is try-
ing to minimize the utility by selecting the optimal realization plan,
which is constrained by equations (2–4).

Unfortunately, for many problems the size of the game tree quickly
becomes prohibitive even for this LP, since the number of nodes in
the tree grows exponentially in the length of the sequences. One ap-
proach used to solve large-scale optimization problems is to use de-
composition to explore the solution space iteratively, without ever
enumerating the full problem. These techniques are known in op-
erations research as column generation, branch-and-cut, or branch-
and-price methods [1]; in game theory they were adopted as the ora-
cle algorithms [9]. We introduce a new algorithm based on this type
of decomposition that operates on games in the sequence form after
overviewing some related approaches.

2.2 Oracle Algorithms for NFG and Convex Games

The main idea used in oracle methods (i.e., column/constraint gener-
ation) is to solve the problem iteratively. First, a restricted and easier
version of the full problem is formulated as an optimization problem
(e.g., as a linear program, called the core problem or coreLP). Based
on the solution of the coreLP, a second problem is solved to find
the optimal way to relax the current restrictions imposed, in order to
solve the original problem.

Oracle methods have been developed for normal-form games [9]
as well as for convex games [8]. For two-player normal-form games
(NFGs), the restricted coreLP problem corresponds to a game where
players are restricted to using only a subset of the full strategy space.
After solving this restricted game, new strategies are added to the
restricted game by calculating best responses for each player to the
current solution of the restricted game. This process converges to
a Nash equilibrium [9]. Intuitively, when there is no best response
to the restricted game solution that is not already included in the re-
stricted game, the solution must be an equilibrium. The best-response
algorithms are called oracles; restricting the strategy space only for
one player is called single-oracle (SO), and double-oracle (DO) al-
gorithms restrict the strategy space for both players.

A similar principle is used for convex games, in which the strategy
space is a convex set [8]. Convex games can be used to represent a
variety of different types of games, including extensive-form games.
Although both of these approaches can, in principle, be used for com-
puting solution of an extensive-form game, they do not effectively
use the specific tree structure of EFGs. In the first case we would
need a transformation to an exponentially-large NFG. For the case of
convex games, the oracle approach requires enumeration of the com-
plete set of sequences for both players, and the algorithm searches for
the solution as a combination of a fixed number of realization plans.

3 A Double-Oracle Algorithm for Sequence Form

We apply the framework of oracle methods to general two-player
zero-sum extensive-form games with imperfect information. We in-
troduce a DO algorithm that operates directly on the sequence form
of the game, and can find solutions without enumerating the full set
of sequences. The main idea of our method is to restrict the strategy
space of players by allowing them to play according to a limited sub-
set of all sequences. We solve this restricted game using the sequence
form LP as described in Section 2.1, and then add new sequences us-
ing a best-response oracle. However, the simplest form of this idea –

B. Bošanský et al. / Iterative Algorithm for Solving Two-Player Zero-Sum Extensive-Form Games with Imperfect Information194



Figure 1: An extensive-form game between two players, circle and
box. The same-colored rounded boxes on the same ply denote the
same information sets.

adding a single best-response sequence in each iteration – does not
work due to the problem of compatibility between sequences.

3.1 Sequence Compatibility

Consider the EFG shown in Figure 1. We arbitrarily select the initial
sequences AC for the circle player and xz for the box player. Played
together, these sequences lead to a leaf node. Now, suppose the best
response sequence for the box player to AC is yu; hence, it is added
to the restricted game and the execution of AC and yu also leads to
a leaf node. Now, suppose that in the next iteration the sequence BE
for the circle player is added as a best response. The execution of
BE and xz terminates in a leaf node, but the execution of BE and yu
does not because the action u is not legal after playing actions B,y,E.
In the sequence form LP the value function g(BE, yu) assigns the
value of this node to 0, which can lead to an incorrect result. Suppose
the values for the box player in the leaf nodes reached after moves s
and t in the far right information set are all large negative numbers.
In this case, the box player will never add sequences ys or yt as a best
response sequence. However, solving the current restricted sequence-
form LP can result in an incorrect solution because the value of the
combination BE and yu is overestimated for the box player and un-
derestimated for the circle player.

To solve this problem we define the concept of compatibility be-
tween sequences by introducing the function ω : Σ �→ H ∪Z which
maps each possible combination of sequences to the node in the game
tree that is reached by the execution of the two sequences of actions,
and stopping when the next action choice is not valid, or a leaf is
reached. We say that two sequences σi and σ−i are compatible if
ω(σi, σ−i) results in a terminal node from Z, and incompatible if it
results in an internal choice node from H .

The solution we adopt to the problem of incompatible sequences
is to add additional sequences to the restricted problem to ensure
that the sequence form LP return a valid solution. To do this we
consider the full-length sequences of the game (i.e., sequences that
have no valid extensions, which we denote by Φi = {σi : σi ∈
Σi ∧ Exti(σi) = ∅}). For every pair of full-length sequences, if the
two sequences are incompatible, we seek for a full-length sequence
within the set of all sequences of the player whose action was invalid,
that extends the execution and that is compatible with the opponent
sequence. If such a full-length sequence exists, it is added to the re-
stricted game. The effect of adding these sequences is to ensure that
each information set that is reachable in the restricted game is as-
signed a value based on a possible continuation of the path to a leaf
node. The algorithm for checking compatibility and generating the
new sequences is formalized in Figure 2.

Require: Φ′
1,Φ

′
2 are the current sets of full-length sequences

1: repeat
2: changed← false
3: for all σ1 ∈ Φ′

1, σ2 ∈ Φ′
2 s.t. we have not checked σ1, σ2 for

compatibility yet do
4: if ω(σ1, σ2) = h ∈ H then
5: j ← ρ(h)
6: if ∃σ′

j ∈ Φj : seqj(h) is prefix σ′
j ∧ ω(σ−j , σ

′
j) ∈ Z

then
7: if σ′

j /∈ Φ′
j then

8: Φ′
j ← Φ′

j ∪ {σ′
j}

9: changed← true
10: until changed
11: return Φ′

Figure 2: Compatibility Algorithm

Require: Φ′
1,Σ

′
1 ← ∅ ; Φ′

2,Σ
′
2 ← ∅

1: initialize Φ′
i with arbitrary full-length sequence σi

2: repeat
3: changed← false
4: ∀i ∈ N : Σ′

i ← generateAllPrefixes(Φ′
i)

5: (r′1, r
′
2)← CoreLP(Σ′

1,Σ
′
2)

6: for i ∈ N do
7: rπi ← BRi(r

′
−i)

8: for ∀σi : r
π
i (σi) = 1 ∧ σi /∈ Φ′

i do
9: Φ′

i ← Φ′
i ∪ {σi}

10: changed← true
11: ensure compatibility of Φ′

12: until changed
13: return (r′1, r

′
2)

Figure 3: Double Oracle Algorithm

3.2 Sequence Form Double-Oracle Algorithm

We can now present the main double-oracle algorithm for sequence
form, which is depicted in Figure 3. The algorithm begins by initial-
izing the sets Φ′

i with arbitrary (compatible) full-length sequences
for each player; this can be done by selecting an arbitrary action in
each information set until a leaf node is reached. Any time a new
full-length sequence is added, all of the prefix sequences are added
as well. The restricted game is solved using the coreLP for the se-
quence form (see Section 2.1), which generates a candidate solution
consisting of a realization plan for each player over the sequences
in the restricted game (line 5). Then the algorithm calculates a best
response (BR) for each player to the realization plan of the opponent
(we discuss BR algorithms in the next section). The BR algorithms
return (one or more) sequences that are represented as a partial real-
ization plan rπi for player i, and that are added to the restricted game
(lines 8-10). Additional sequences are added using the compatibility
algorithm described in Section 3.1. The algorithm terminates when
no new sequences are added based on the best responses.

Theorem 1 The sequence-form double-oracle algorithm terminates
and computes a Nash equilibrium.

Proof sketch The algorithm terminates, since the sets of sequences
is finite and in each iteration we add at least one sequence.

The convergence of the double-oracle method relies on two things.
First, the best-response algorithms used are complete in that they
will always find a best response in the full strategy space if one ex-
ists. Second, the coreLP must calculate an optimal strategy for each
player within the restricted game.

B. Bošanský et al. / Iterative Algorithm for Solving Two-Player Zero-Sum Extensive-Form Games with Imperfect Information 195



Our compatibility algorithm ensures that the sequences in the re-
stricted game form a valid sub-game of the original game. If the BR
algorithm does not add any new sequences, the expected values for
all information sets (v variables in the sequence form LP) in the
coreLP are equal to the their expected values in the full sequence
LP, since the value cannot be underestimated for either player. This
holds, because otherwise: (1) it would either mean that for some in-
formation set there exists another continuation sequence that yields
better utility value, contradicting the assumption that the BR algo-
rithm does not add any new sequence; or (2) it would mean that
there is some succeeding information set that is not considered in
the current coreLP, which is a contradiction with the compatibility
algorithm that adds sequences that lead to all information sets con-
ditioned on the current realization plan of the opponent. Thus, if we
use the compatibility algorithm and correct BR algorithms, the fi-
nal solution will be an equilibrium, since both players are playing a
best-response strategy. �

4 Best-response Algorithms

A key component of the double-oracle methods is to design an oracle
for finding additional best-response strategies to add to the restricted
game. We begin by describing a full tree-search best-response algo-
rithm for general extensive-form games, and then introduce methods
for speeding up the calculations.

The pseudocode for a recursive tree-search best-response algo-
rithm is shown in Figure 4. Based on the node currently considered
by the algorithm, we distinguish two main cases. If the given node is
terminal, the algorithm returns the utility value for the player i we are
finding a best-response for (lines 1–5). The utility value is weighted
by the probability of the opponent’s realization plan if the sequence
leading to this leaf node is in the restricted game (seq−i(I) ∈ Σ′

−i),
otherwise the raw value is returned.

If the current node h is an internal node it belongs to an infor-
mation set I assigned to one of the two players. If the player is the
searching player (i = ρ(h)) then we need to select the action with
maximum expected payoff which will form part of the best-response
sequence. We distinguish two cases: (1) there is at least one sequence
leading to a node in I that has a non-zero probability in the oppo-
nent’s realization plan, or (2) there is no non-zero opponent realiza-
tion plan that leads to the information set. In the first case (lines 7–
14) we can form a probability distribution over the nodes in I by
calculating the realization probability for all possible nodes h′ ∈ I ,
conditional on the searching player taking actions to reach this in-
formation set. For each possible action we make a recursive call to
assess the value of the resulting node, and weight this value by the
realization probability r′−i(seq−i(h

′)). The action with maximum
expected value is selected, and the value of this action is returned.

In the second case (lines 14–16) there is no probability information
about the likelihood of the states h′ ∈ I . In this case we choose the
most optimistic value for the search player so that a best response
cannot be missed. That is, for of each of the possible realizations of
nodes in the information set, we select the one with the maximum
value for the searching player for all possible continuation strategies.

Now, consider information sets belonging to the opponent −i,
which are handled in lines 18–30. The same two cases apply. In the
first case, there is a single sequence in the realization plan that leads
to the current information set with non-zero probability (due to the
perfect recall assumption). If the realization plan has a continuation
of this sequence with non-zero probabilities the behavior in this in-
formation set is well-defined, and we can calculate the value of the

Require: i ∈ N – player computing best response
h ∈ H ∪ Z – current node in the game tree
I information set for which h ∈ I
Vh ← 0, Va ← 0

1: if h ∈ Z then
2: if seq−i(I) ∈ Σ′

−i ∧ r′−i(seq−i(I)) > 0 then

3: return ui(h) · r′−i(seq−i(I))
4: else
5: return ui(h)
6: if ρ(h) = i then
7: if ∃σ′

−i ∈ seq−i(I) : σ
′
−i ∈ Σ′

−i ∧ r′−i(σ
′
−i) > 0 then

8: for all h′ ∈ I do
9: for all a ∈ χ(h′) do

10: σ−i ← seq−i(h
′)

11: Va ← Va + r′−i(σ−i) ·BRi(τ(h
′, a))

12: amax ← argmaxa(Va)
13: Vh ← BRi(τ(h, amax)))
14: else
15: for all a ∈ χ(h) do
16: Vh ← max(Vh, BRi(τ(h, a)))
17: else
18: if seq−i(I) ∈ Σ′

−i ∧ r′−i(seq−i(I)) > 0 then

19: for all a ∈ χ(h) do
20: σa

−i ← seq−i(I)⊕ a
21: Va ← BRi(τ(h, a))
22: if ∃a ∈ χ(h) : r′−i(σ

a
−i) > 0 then

23: for all a ∈ χ(h) : r′−i(σ
a
−i) > 0 do

24: Vh ← Vh + Va

25: else
26: for all a ∈ χ(h) do
27: Vh ← max(Va) · r′−i(seq−i(I))
28: else
29: for all a ∈ χ(h) do
30: Vh ← max(Vh, BRi(τ(h, a)))
31: return backup(Vh)

Figure 4: Full Tree-search Best-response Algorithm

node by weighting the values of the succeeding nodes (calculated
using recursion, lines 19–25).

It can also occur that all possible continuations have zero prob-
ability. This can occur because we search through the complete set
of sequences for the searching player i in the BR algorithm which
may lead the opponent to an information set with an undefined con-
tinuation plan when some of the sequences are not included in the
restricted game used to generate the realization plan. This case is
handled in lines 25–28 and it is handled as before by maximizing
the value for the searching player. Finally, there is a case in which
the sequence leading to I is not in the current realization plan of the
opponent. Again, this is handled by selecting the maximum possible
value for the current node h for the searching player (lines 28–30).

4.1 Improved Best-response Algorithm

The BR algorithm presented above is a straightforward depth-first
search, and can be improved significantly with a number of tech-
niques, including pruning and caching of partial results. Besides
generic methods, domain-specific information can be used to speed
up calculations even more dramatically. Since the BR method is in-
voked many times during a double-oracle algorithm, these improve-
ments can have a substantial impact on the overall efficiency.

The first improvement we incorporate is a general pruning method
for games with a bounded range of utility values, which is common.
Suppose the searching player is evaluating successors of some node

B. Bošanský et al. / Iterative Algorithm for Solving Two-Player Zero-Sum Extensive-Form Games with Imperfect Information196



h ∈ H and is trying to find the maximum value (as in Figure 4,
lines 14–16, and lines 28–30). Clearly, we can prune any remaining
branches as soon as one branch is explored that gives the maximum
utility of the game. We can also use domain-dependent move order-
ing heuristics to complement this pruning strategy by testing promis-
ing moves first (we describe such heuristics for our games later).

A second pruning strategy is possible if the node h belongs to the
opponent and there is a non-zero probability of reaching this node
according to the realization plan (in Figure 4, lines 19–25). We can
aggregate the total probability of the sequences that extend this node
based on the realization plan. As soon as the total probability of
the extensions reaches the probability of reaching the initial node
h (i.e. we reach the value r′−i(seq−i(I))), we can prune the remain-
ing branches since they have zero probability and cannot modify the
value of the node Vh.

5 Experiments

The performance of double-oracle methods depends on several fac-
tors: the speed of the coreLP, the speed of the best-response algo-
rithms, and the number of strategies (sequences) that need to be
added before terminating. Existing oracle methods for normal-form
games show performance improvements [9, 4, 5, 13], but the results
can vary substantially based on the properties of the game. Here we
present experimental results for our algorithm on a realistic class of
adversarial search games motivated by border patrolling scenarios.

5.1 Experimental Setting

As described in the introduction, one of the key tactics used by bor-
der patrolling agents is to look for recent signs of passage (e.g., foot
or vehicle tracks) and use this information to capture illegal entrants.
In addition, border patrol agents are also able to coordinate strate-
gies among multiple agents. We developed a simplified patrolling
scenario that captures these qualitative features in a game of incom-
plete information. There are two players, the patroller (or defender)
and the evader (or attacker). The game is played on a graph, with the
evader attempting to cross safely from a starting node to a destina-
tion node, and the defender patrolling the intermediate nodes to try to
capture the evader. Two example graphs are shown in Figure 5. The
evader starts in E and tries to get to D. The defender has two units
that move in the shaded areas P1 and P2.

During each turn, both players move their units simultaneously
from the current node to an adjacent node or stay in the same lo-
cation. Players do not know the location of the other player’s units,
until the defender occupies the same node as the evader or the evader
reaches the destination. In the first case the defender wins, and in the
second case the attacker wins. If a pre-determined number of turns is
made without either case occurring, the game is a draw. An additional
feature of the game is that the evader leaves tracks in visited nodes
that can be discovered if the defender visits the node later. In some
game instances, we also include an option for the attacker to move
slowly and avoid leaving tracks; this type of move requires two turns
(the evader removes the tracks in a node in one turn).

These games are computationally challenging for several reasons.
They have long sequences of moves for both players, and a high
branching factor (particularly for the defender, which has two units
to move on each turn). Furthermore, there is no simple structure to
the information sets; the defender’s observations depend on the ac-
tions of the evader. By modifying the structure of the graph we can
also explore games with different characteristics, since the number

Figure 5: Two variants of the graph used in the experiments.

of compatible sequences and number of information sets can change
dramatically with even small changes to the graph.

All the experiments were run on Intel i7 CPU running at 2.8GHz,
each of the compared algorithms could use 10 GB of memory, and
we used IBM CPLEX 12 for solving the LP.

5.2 Experimental Results

We experiment with three graphs; two are shown in Figure 5: graph
G on the left and GAC on the right. A final graph, GC, is similar to
GAC, but with bidirectional edges connecting the nodes in the middle
column. We vary the maximum number of turns in the game and
denote it as depth. Since there are three units to move for each turn,
the number of plies in the game tree is equal to 3 × depth. We also
vary whether or not the evader has the option to move slowly and
avoid leaving tracks. Our initial experiments compare three solutions
methods: (1) FULL LP generating and solving the full sequence form
LP, (2) FULL SO a single-oracle algorithm which uses all sequences
for the evader and generates defender sequences, and (3) FULL DO
a double-oracle algorithm generating sequences for both players.

The first result we note is that all three algorithms found the same
solution, experimentally confirming the correctness of our double-
oracle algorithm. In addition, we found that both the SO and DO ver-
sions of the algorithm typically found solutions after adding a small
fraction of the total number of sequences in the game (Figure 6a). For
the defender, the maximum fraction of sequences used was 22%, and
the effect was even stronger for larger games with typically less than
5% of the sequences used. The oracle algorithms also have lower
memory requirements for larger games. They were able to compute
an exact solution even in cases where FULL LP exhausted all avail-
able memory (for example, in configuration GC graph and depth 7).

Comparing the performance of the SO and DO approaches, we
find that the SO method often evaluates fewer sequences and uses
less time than the DO method. This is likely because of the large
imbalance in the number of sequences for the attacker and defender
(due in large part to the defender having two units to control). For
example, graph G with a depth of 7 has 137075 sequences for the
defender compared to only 264 for the attacker. Another interesting
feature of the data is that the graph GAC was hardest for the oracle
methods to solve, while for the FULL LP, the GC graph with the
highest number of sequences is the most difficult one. The reason
lies in the difficulty of computing compatible sequences in GAC; we
can see that the compatibility algorithm uses a large fraction of time
for this type of graph.

Overall, the running time of DO and SO is often slower than
FULL LP algorithm on smaller examples, though on larger example
the DO and SO show improved performance in some cases. We also
tested the DO and SO with the improved pruning and move order-
ing techniques described in Section 4.1. Move ordering uses domain
knowledge: the evader first evaluates actions moving in the direction
of the destination, and prefers slow movement if allowed. The de-
fender evaluates moves towards the current location of the evader.

B. Bošanský et al. / Iterative Algorithm for Solving Two-Player Zero-Sum Extensive-Form Games with Imperfect Information 197



Figure 6: Selected results on the number of defender sequences (6a)
and computation time (6b). Different settings are identified by three
characteristics: (1) the graph type (G, GC, or GAC), (2) whether slow
moves are allowed (ST), or not (SF), and (3) the number after D in-
dicates the maximum number of turns in the game. The parts of the
bars with pattern correspond to the number of sequences (or compu-
tational time) added by (or spent in) the BR algorithm.

These improved algorithms are termed IMPR DO and IMPR SO.
The data show that even these relatively simple improvements to

the best-response algorithm result in a large improvement in the run-
time for both the SO and DO algorithms. For most of the larger
instances IMPR DO and IMPR SO outperform the FULL LP algo-
rithm, in some cases dramatically. The breakdown of the time spent
in different parts of the algorithm give some additional insights. For
example, in the GC graph with slow moves and depth 6, the full
BR method took over 500 seconds and the improved version only 3.
However, the results show that using improved versions of BR algo-
rithms increases the time spent by the compatibility algorithm (BRs
add less sequences due to pruning), and improving this part of the
algorithm would likely lead to even better performance.

6 Conclusions and Future Work

In this paper we present a novel algorithmic framework for com-
puting exact Nash equilibria for two-player zero-sum extensive form
games with imperfect information. Our approach combines the it-
erative methodology of double-oracle algorithms with the compact
sequence-form representation to provide a promising new way for
scaling to larger, more realistic games. We demonstrate our new algo-
rithm on a class of adversarial search games motivated by real chal-
lenges in patrolling large open areas, such as international borders.

However, our algorithms are general and can be used for any problem
that can be modeled as a two-player zero-sum extensive-form game
with imperfect information.

Our experimental results show that the overall approach is promis-
ing, especially for larger problem instances where the DO method
was able to solve the game using a small fraction of the full set of se-
quences. Using improved best-response methods our DO algorithm
was significantly faster than solving the full sequence form game,
and used less memory (a key limitation of solving large LPs in prac-
tice). This result is typical of oracle-based methods; to see the full
benefits of the approach it is necessary to develop very fast oracles,
sometimes using domain-specific knowledge. The framework is flex-
ible enough that it can be used with a variety of different BR methods,
and can even incorporate approximate BR methods. The compatibil-
ity algorithm is also a limiting factor in our current implementation,
since it has not yet been optimized. We plan to explore additional
improvements in both BR and compatibility in future work.

ACKNOWLEDGEMENTS

We would like to thank the three anonymous reviewers for helping
in improving the presentation of this paper. This research was sup-
ported by the Czech Science Foundation (grant no. P202/12/2054),
and by the United States Department of Homeland Security through
the National Center for Border Security and Immigration (NCBSI).

REFERENCES

[1] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance, ‘Branch-and-price: Column generation for solving huge
integer programs’, Operations Research, (1998).

[2] P. Ciancarini and G. P. Favini, ‘Monte Carlo tree search in Kriegspiel’,
Artificial Intelligence, (2010).

[3] A. Gilpin, J. Pena, and T Sandholm, ‘First-Order Algorithm with
O(ln(1/epsilon)) Convergence for epsilon-Equilibrium in Two-Person
Zero-Sum Games.’, Mathematical Programming, (2011).

[4] E. Halvorson, V. Conitzer, and R. Parr, ‘Multi-step Multi-sensor Hider-
Seeker Games’, in Proc. of IJCAI, (2009).

[5] M. Jain, D. Korzhyk, O. Vanek, V. Conitzer, M. Tambe, and M. Pe-
choucek, ‘Double Oracle Algorithm for Zero-Sum Security Games on
Graph’, in Proc. of AAMAS, (2011).

[6] D. Koller, N. Megiddo, and B. von Stengel, ‘Efficient computation of
equilibria for extensive two-person games’, Games and Economic Be-
havior, (1996).

[7] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling, ‘Monte carlo
sampling for regret minimization in extensive games’, in Proc. of NIPS,
(2009).

[8] H. B. McMahan and G. J. Gordon, ‘A fast bundle-based anytime algo-
rithm for poker and other convex games’, Journal of Machine Learning
Research, (2007).

[9] H. B. McMahan, G. J. Gordon, and A. Blum, ‘Planning in the presence
of cost functions controlled by an adversary’, in ICML, (2003).

[10] N. A. Risk and D. Szafron, ‘Using Counterfactual Regret Minimization
to Create Competitive Multiplayer Poker Agents’, in Proc of AAMAS,
(2010).

[11] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithm,
Game-Theoretic, and Logical Foundations, Cambridge University
Press, 2009.

[12] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and M. Tambe, ‘IRIS -
A Tool for Strategic Security Allocation in Transportation Networks
Categories and Subject Descriptors’, in Proc. of AAMAS, (2009).

[13] O. Vanek, B. Bosansky, M. Jakob, V. Lisy, and M. Pechoucek, ‘Extend-
ing security games to defenders with constrained mobility’, in Proc. of
AAAI Spring Symposium GTSSH, (2012).

[14] B. von Stengel, ‘Efficient computation of behavior strategies’, Games
and Economic Behavior, (1996).

B. Bošanský et al. / Iterative Algorithm for Solving Two-Player Zero-Sum Extensive-Form Games with Imperfect Information198


