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Abstract. Optimal sampling in spatial random fields is a complex
problem, which mobilizes several research fields in spatial statistics
and artificial intelligence. In this paper we consider the case where
observations are discrete-valued and modelled by a Markov Random
Field. Then we encode the sampling problem into the Markov De-
cision Process (MDP) framework. After exploring existing heuristic
solutions as well as classical algorithms from the field of Reinforce-
ment Learning (RL), we design an original algorithm, LSDP (Least
Square Dynamic Programming), which uses simulated trajectories
to solve approximately any finite-horizon MDP problem. Based on
an empirical study of the behaviour of these different approaches
on binary models, we derive the following conclusions: i) a naı̈ve
heuristic, consisting in sampling sites where marginals are the most
uncertain, is already an efficient sampling approach; ii) LSDP out-
performs all the classical RL approaches we have tested; iii) LSDP
outperforms the heuristic in cases when reconstruction errors have
a high cost, or sampling actions are constrained. In addition, LSDP
readily handles action costs in the optimisation problem, as well as
cases when some sites of the MRF can not be observed.

1 INTRODUCTION

Optimal sampling in spatial random fields is a complex problem,
which mobilizes several research fields in spatial statistics [2, 10]
and artificial intelligence [7, 6, 13]. It raises methodological issues
in modelling, inference and algorithm design. An active stream of
research about optimal spatial sampling is dedicated to the study of
the case of real-valued observations (e.g. temperature or pollution
monitoring). Models and efficient algorithms have been proposed
[9, 7], mainly based on the geostatistical framework of Gaussian ran-
dom fields and kriging. Much less attention has been paid to the case
of discrete-valued observations. However, this problem is ubiquitous
in many studies about biological systems. Discrete-valued observa-
tions can be species abundance classes, disease severity classes, pres-
ence/absence values...

Solving optimal sampling problems in discrete-valued random
fields is a difficult question admitting no universally accepted so-
lution, so far. One should look for approximate solution algorithms
with reasonable/moderate complexity and with satisfying approxi-
mation quality. We propose, similarly to [6, 13, 14], to define the
optimal sampling problem within the framework of Markov random
fields (MRF, [4]), classically used in image analysis. We consider the
case of adaptive sampling, where the set of sampled sites is chosen
sequentially and observations from previous sampling steps are taken
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into account to select the next sites to explore [19]. Simple heuristics
have been proposed [19, 2, 14] to design adaptive sampling strate-
gies. However, it is difficult to evaluate their quality since there is
no efficient exact method to compare to. In this paper, we design
a new reinforcement-learning (RL, [17]) algorithm which improves
classical heuristic and RL approaches, thus providing a reference al-
gorithm. The algorithm, named LSDP (Least Square Dynamic Pro-
graming) uses an encoding of the optimal adaptive sampling problem
as a finite-horizon Markov Decision Process (MDP, [15]) with fac-
tored state space.

The MRF formalization of the optimal adaptive spatial sampling
problem is introduced in Section 2, together with a computational
complexity study. We show how to model it as a finite-horizon fac-
tored MDP in Section 3 and we discuss classical RL solutions in
Section 4. Then, we describe the LSDP algorithm in Section 5. We
present an empirical comparison between heuristic approaches, clas-
sical RL algorithms and LSDP in Section 6. Some methodological
and applied perspectives of this work are discussed in Section 7.

2 OPTIMAL ADAPTIVE SAMPLING IN
MARKOV RANDOM FIELDS

2.1 Problem statement

Let X = (X1, . . . , Xn) be a vector of discrete random variables
taking values in Ωn = {1, . . . ,K}n. V = {1, . . . , n} is the set
of indices of the vector X and an element i ∈ V will be called
a site. The distribution P of X is that of a Markov Random Field
(MRF) with associated graph G = (V,E) where E ⊆ V 2 is a set
of undirected edges. x = (x1, . . . , xn) is a realization of X and we
adopt the following notation: xB = {xi}i∈B , ∀B ⊆ V . Then we
can write P(X = x) ∝ ∏

c∈C Ψc(xc), where C is the set of cliques
of V and the Ψc, c ∈ C are strictly positive potential functions [4].

The sampling problem we consider can be described intuitively.
Our goal is to reconstruct the vector X on a specified subset R ⊆ V
of sites of interest. To do this, we can acquire a limited number
of observations on a subset O ⊆ V of observable sites. We will
assume that R ∪ O = V and intersection between O and R can be
non-empty. The sampling problem is to select a set of sites A ⊆ O,
(a sample), where X will be observed. When sample A is chosen,
a sample output xA results, from which the MRF distribution P is
updated. Intuitively, our objective is to choose A in a sequential way,
so that the updated distribution P(·|xA) becomes as informative as
possible (in expectation over all possible sample outputs).
In the following we describe the different elements allowing to
formally define the sampling optimisation problem.
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Reconstruction. When a sample output xA is available, the Maxi-
mum Posterior Marginals (MPM) criterion, classically used in image
analysis, is used to derive an estimator x∗

R of the hidden map xR:

x∗
R =

{
x∗
i | i ∈ R, x∗

i = argmax
xi∈Ω

P(xi | xA)

}
.

Adaptive sampling policy. In adaptive sampling, the sample A is
chosen sequentially. The sampling plan is divided into H steps.
Ah ⊆ O is the sample explored at step h ∈ {1, . . . , H} and xAh is
the sample output at step h. The samples size is fixed (|Ah| = L)
and ΔL is the set of all policies satisfying |Ah| = L, ∀h. The
choice of sample Ah depends on the previous samples and outputs.
An adaptive sampling policy δ = (δ1, . . . , δH) is then defined by
an initial sample A1 and functions δh specifying the sample cho-
sen at step h ≥ 2, depending on the results of the previous steps:
δh((A1, xA1), . . . , (Ah−1, xAh−1)) = Ah.

A history is a trajectory (A1, xA1), . . . , (AH , xAH ) followed
when applying policy δ. The set of all histories which can be
followed by policy δ is τδ . We will assume throughout the paper that
observations are reliable. As a consequence, we will only consider
policies visiting each site at most once (Ah ∩ Ah′ = ∅, ∀h 
= h′).
Furthermore, since our definition of the quality of a policy is based
on the MPM criterion, it does not depend on the order in which
observations are received. Therefore, the relevant information in a
history can be summarized by the pair (A, xA), where A = ∪hA

h.

Sample cost. The modeling of a sampling cost function is an is-
sue as it stands. Here we illustrate this notion with the simplest
definition, where sample costs are additive. For a given history(
(A1, xA1) . . . , (AH , xAH )

)
, the total cost is

H∑
h=1

c(Ah) = c
(
∪hA

h
)
,with c(Ah) =

∑
i∈Ah

ci, ci ∈ R
+.

Quality of a sampling policy. The quality of a policy δ is mea-
sured as the expected quality of the estimator x∗

R that can be ob-
tained from δ. In practice, we first define the quality of a history
((Ah, xAh))h=1..H as a function of (A, xA), where A = ∪hAh:

U
(
A, xA

)
=

∑
i∈R

[
max
xi∈Ω

{
P(xi | xA)

}]
− c(A). (1)

The quality of a sampling policy δ is then defined as an expectation
over all possible histories:

V (δ) =
∑

((Ah,xAh
))h∈τδ

P
(
xA

)
U
(
A, xA

)
.

Optimal adaptive sampling in MRF (OASMRF). The problem of
optimal adaptive sampling is to find the policy of highest quality :

δ∗ = argmax
δ∈ΔL

V (δ). (2)

2.2 Computational complexity of optimal adaptive
sampling in MRF

In this section we study the computational complexity of the
OASMRF problem. More precisely, we will study the following,
generalised OASMRF problem (GOASMRF), expressed in a deci-
sion form: Does there exist δ of depth at most N , such that:∑

((Ah,xAh
))h=1..H∈τδ

P
(
xA

)
U
(
A, xA

) ≥ G ?

Where G > 0 is a fixed threshold, and

U
(
A, xA

)
=

∑
i∈R

fi
(
x∗
i ,P(x

∗
i | xA)

)− c(A),

where the functions fi are non-decreasing functions in their second
argument and x∗

i = argmaxxi P(xi | xA).
This form of utility of a history generalises (1), which is recov-

ered when fi is a projection on his second argument. The extended
form can represent criteria consisting in maximising a weighted ex-
pected number of well-restored variables (when some variables are
more important than others), or the expected number of variables re-
stored with confidence above a given threshold. The fact that x∗

i is
involved and not only its probability, allows to bias restoration to-
wards particular values of xi. This can be useful, for instance, if we
want to build an invasive species map, where we give more weight to
restoring invaded sites than non-invaded ones. Finally, the fact that
fi is non-decreasing is not essential for proving the proposition, but
reflects the fact that the more certain we are about x∗

i , the better.

Proposition 1. The GOASMRF problem is PSPACE-complete.

Proof. There is not much difficulty in proving that GOASMRF
belongs to PSPACE. The difficult part is to establish the PSPACE-
hardness of the GOASMRF problem. To prove this, we reduce the
State Disambiguation (SD) problem, which is known to be PSPACE-
hard [1] to it. A detailed proof is given in the Appendix.

The consequence of Proposition 1 is that exact optimization of
the sampling policy is intractable. So, we must turn to approxi-
mate solution methods for computing sample policies. In the next
section we present a (factored) Markov Decision Process (MDP)
model of the OASMRF problem3. Using an MDP model allows us
to solve OASMRF problems approximately by applying simulation-
based Reinforcement Learning (RL) algorithms [17].

3 Finite horizon MDP modelling of the OASMRF
problem

A finite-horizon Markov Decision Process model 〈S,D, T, p, r〉 is a
5-tuple, where S is a finite set of system states, D is a finite set of
available decisions, T = {1, . . . , H} is a finite set of decision steps,
termed horizon. p is a set of transition functions pt, t = 1 . . . H ,
where pt(st+1|st, dt) indicates the probability that state st+1 ∈ S
results when the system is in state st ∈ S and decision dt ∈ D is
implemented at time t ∈ {1, . . . , H}. A terminal state sH+1 ∈ S
results when the last action is applied, at decision step H . r is a set
of reward functions: rt(st, dt) ∈ R is obtained when the system is in
state st at time t and dt is applied. A terminal reward rH+1(sH+1)
is obtained when state sH+1 is reached at time H + 1.

A decision policy (or policy, for short) π = {π1, . . . , πH} is a set
of decision functions πt : S → D. Once a decision policy is fixed,
the MDP dynamics becomes that of a finite Markov chain over S,
with transition probability pt(st+1|st, πt(st)). The value function
V π : S × T → R of a policy π is defined as the expectation of the
sum of future rewards, obtained from the current state and time step
when following the Markov chain defined by π:

V π(s, t) = Eπ

[
H+1∑
t′=t

rt
′ | s

]
, ∀(s, t) ∈ S × T.

3 Which can be easily extended to GOASMRF.
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Solving an MDP amounts to finding an optimal policy π∗

which value is maximal for all states and decision steps:
V π∗(s, t) ≥ V π(s, t), ∀π, s, t. We now show how to model
the OASMRF problem in the MDP framework.

State space. An MDP state st, t = 1, . . . , H+1 summarizes current
information about variables indexed in O:

st =

(
t−1⋃
h=1

Ah,

t−1⋃
h=1

xAh

)
, ∀t = 2, . . . , H + 1 and s1 = (∅, ∅).

The total number of possible states of the system is, of course,
exponential in the OASMRF representation size.

Action space. An admissible decision dt is a sample At such that
|At| = L and such that At ∩At′ = ∅, ∀t′ < t.

Horizon. Decision steps in the MDP correspond to decision steps in
the OASMRF problem. Thus, T = {1, . . . , H}.

Transition functions. If st = (A, xA) and dt = At the transition
function of the MDP can be derived straightforwardly from the orig-
inal MRF distribution P:

pt
(
st+1 | st, dt) = P

(
xAt | xA

)
, ∀t ∈ T.

Reward functions. ∀t, (negative) rewards represent sampling costs:

rt(st, dt) = rt(dt) = −c(At), ∀t ∈ T, st, dt.

After decision dH has been applied at decision step H , and state
sH+1 = (A, xA) has been reached, the final reward rH+1(sH+1) is
obtained, which is defined as the quality of the MPM reconstruction:

rH+1(sH+1) =
∑
i∈R

[
max
xi∈Ω

{
P(xi | xA)

}]
.

The optimal policy for the above-defined MDP is a set of functions
associating samples to unions of past samples outputs. It thus has the
same structure as an OASMRF sampling policy. Furthermore, we can
establish the following proposition:

Proposition 2. An optimal policy for the MDP model of an
OASMRF problem provides an optimal policy for the initial
OASMRF problem (2).

Proof. (Sketched). The proof follows three steps and uses the fact
that the quality of a policy and cost function does not depend on the
order in which observations are obtained:

(i) We define a function φ, transforming any MDP policy π into a
valid OASMRF policy δ = φ(π), which defines actions indepen-
dently of the order in which past observations were received, and
show that V (φ(π)) = V π((∅, ∅), 1).

(ii) We establish that, for any partial history (past observations), the
value of an optimal OASMRF policy starting from these observa-
tions does not depend on the order in which they were received.
As a consequence, we can limit the search for optimal policies of
the OASMRF problem to policies prescribing actions which do
not depend on the order of observations.

(iii) We show that any such OASMRF policy δ can be transformed
into an MDP policy, through a transformation μ, and that V (δ) =
V μ(δ)((∅, ∅), 1).

As a result of these three steps, if π∗ is an optimal policy for the
MDP encoding of the OASMRF problem, then φ(π∗) is optimal for
the OASMRF problem.

In the following we will use the same notation δ to represent both
OASMRF and MDP policies.

4 APPROACHES FOR SOLVING OASMRF

4.1 Exact dynamic programming

The backwards induction algorithm [15] can be applied to compute
the optimal policy of any finite-horizon MDP. It consists in solving
iteratively the following equations: ∀t = H, . . . , 1, ∀s, d ∈ S ×Dt,

V ∗(s,H + 1) = rH+1(s),

Q∗(s, d, t) = rt(s, d) +
∑
s′

pt(s′|s, d)V ∗(s′, t+1), (3)

π∗,t(s) = π∗(s, t) = argmax
d

Q∗(s, d, t),

V ∗(s, t) = max
d

Q∗(s, d, t).

However, since the OASMRF problem is PSPACE-complete, exact
dynamic programming is inapplicable to large problems. Therefore,
we have to look for sub-optimal policies. To do this, we can explore
two families of approaches used for solving OASMRF: heuristic ap-
proaches and simulation-based approaches.

4.2 Heuristic approaches

Heuristic approaches are methods for sample selection which pro-
vide an arbitrary sample in short time. These methods either solve a
simpler optimization problem, or provide simple arbitrary policies.
Several heuristics have been proposed, either in Statistics or in AI,
that can be applied to solve the OASMRF problem. In spatial sam-
pling of natural resources, random and regular sampling are classic
ones [2]. Another classical method to sample 0/1 variables is Adap-
tive Cluster Sampling (ACS, [19]). Recently, [14] proposed a heuris-
tic (BP-max heuristic) which consists in sampling locations where
the marginal probabilities are less informative, in order to solve (2).
It has been shown to outperform random, regular and ACS heuristics.
In [7], the authors proposed to optimize a mutual information (MI)
criterion to design sampling strategies in Gaussian Processes.

4.3 Simulation based approaches: Reinforcement
learning

The main idea of Reinforcement Learning approaches (RL,
[18],[17]) is to use repeated simulated experiences (st, dt, rt, st+1),
instead of dynamic programming, in order to estimate Q∗ or a
parametrized approximation Q̃ of Q∗ [17]4. They can either esti-
mate Q∗ directly (Q-learning approach, for example), or interleave
estimation steps of a current policy π (TD(λ) can be used) with im-
provement steps, in a general policy iteration scheme [17].

In most cases where simulation is used to solve large, factored
MDP such as in the OASMRF problem, functions Qπ are too expen-
sive to store in tabular form. In this case, a parametric approxima-
tion of the Q-function is built as : Q̃(s, d, t) = w�φ(s, d, t), where
w ∈ R

b is a vector of parameters values and φ : (St, Dt, t) → R
b is

4 For simplicity notation ˜Q is used instead of ˜Q∗
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a mapping from state-action pairs to real-valued b-dimensional vec-
tors. Simulations are used to compute values w of parameters that
give a good approximation of Q∗. Algorithms for computing w̃ are,
for example, LSPI [8], Fitted Q-iteration ([3],[11]), etc. Online algo-
rithms, as UCT ([5]), for example, could be applied. However, the
time needed to compute sample policies online seems incompatible
with the real-time constraints we are facing, therefore we did not
consider these approaches.

5 LEAST-SQUARES DYNAMIC
PROGRAMMING (LSDP)

5.1 Approximate dynamic programming

The main idea of the algorithm we propose is to combine a
parametrized representation of the Q-function with dynamic pro-
gramming (DP) iterations and simulation in order to approximate
Q∗. Namely, we consider an approximation Q̃ of Q∗ as a linear com-
bination of n arbitrary features [17]:

Q̃(s, d, t) =
∑

i=1..n

w
(t)
i φi(s, d, t), ∀s, d, ∀t ∈ T and

Q̃(s,H + 1) = rH+1(sH+1), ∀s.

The weights wt
i are computed recursively for t = H to 1, in such

a way that equations (3) are approximately satisfied:∑
i=1..n

wt
iφi(s, d, t) ≈ rt(s, d) +

∑
s′

pt(s′|s, d)Ṽ (s′, t+ 1)

where Ṽ (s, t) = max
d

∑
i=1..n

wt
iφi(s, d, t). (4)

Equations (4) form a set of |S| × |D| linear equations for each time
step t ∈ T , with variables wt

i , i = 1..n. These systems are clearly
over-constrained (|S| × |D| � n), therefore we look for least-
squares solutions, instead of exact ones. The dynamic programming
part of the approach comes from the fact that the systems are solved
separately for t = H to 2, each solution vector wt+1 being plugged
into the system obtained at time t.

5.2 LSDP Algorithm

Systems (4) are too large to build when S is factored, not to men-
tion solving. Therefore, we suggest to consider only a subset of
equations, corresponding to a subset of samples (called batch [16])
B = {(s, d, t)} ⊆ S ×D × T . We propose to build B from a finite
set of simulated trajectories (length H + 1) starting in s1, obtained
by simulating successive transitions. Actions are chosen randomly,
either maximizing Q̃w (with probability 1 − ε) or uniformly (with
probability ε) at each time step.

We use these batches to define the Least-Squares Dynamic Pro-
gramming (LSDP) algorithm, a variant of the policy iteration algo-
rithm [15]. LSDP iterates updates of the current parameters values
w from a current simulation batch, applying approximate dynamic
programming and accepting the updated parameters values only if
the value of the corresponding policy (estimated by simulation) im-
proves the previous one. If the value is not improved, another batch
B′ is randomly built and used. A maximum number of batches to
simulate is fixed, and when reached, the current policy is returned.

Of course, one can note that, for a given set of parameters values,
different batches may be obtained by simulation, leading to differ-
ent updated parameters values and thus to different updated policies.

Furthermore, there is no guarantee that the updated policy improves
the current policy in state s1. This is why the value of the updated
policy has to be estimated (by simulation) and compared to the value
of the previous policy, before being accepted if it actually improves.
This conditional acceptation allows to guarantee that the successive
policies returned by the algorithm are of increasing value.

5.3 Application to the OASMRF problem

In order to apply the LSDP algorithm to the OASMRF problem, we
take into account the problem structure (i) to define features φi and
(ii) to propose an adapted batch construction method.

The BP-max heuristic (see [14] and Section 4) can be mimicked
by a linear combination of the following features, with all weights
equal to 1: ∀i ∈ {1, . . . , n},

φi(s, d) =
(
1− 1{i=d}) max

xi∈Ω
P̃
(
xi | xA

)
+ 1{i=d}, where

P̃(xi | xA) = P
BP (xi) +

∑
j∈A

[
P
BP (xi | xj)− P

BP (xi)

]
.

A ⊆ O is the set of indices of previously observed variables, and
P
BP (xi|xj) are approximations of the marginal distributions com-

puted by the Belief Propagation (BP) algorithm [12]. Starting the
LSDP algorithm with weights all equal to 1, iterated updates will al-
low to improve the value of the BP-max heuristic. Since computing
final reward rH+1 is too time consuming using BP algorithm, we use
distribution P̃ instead, which provides good empirical results.

The second point is the construction of the batch of simulations.
Simulating trajectories in the OASMRF problem is complex since,
for each transition, one has to simulate observations xA from the
MRF distribution P. This requires to apply the Gibbs Sampling al-
gorithm, which is rather costly, thus severely limiting the size and
number of batches that can be constructed. However, larger batches
can be constructed if we divide the construction into two phases.
First, we simulate, off-line, a batch of hidden maps, {x1, . . . xp},
which will be used for all iterations of the LSDP algorithm. The con-
struction of this batch is done using Gibbs Sampling, and induces a
single overhead cost for the whole algorithm. Then, trajectories are
easy to simulate: (i) a hidden map is selected, (ii) actions are cho-
sen randomly (ε-greedily with respect to the current policy) and (iii)
successor states follow immediately by reading the value of the vari-
ables corresponding to the current observation. This second phase of
trajectories simulation is fast. Furthermore, simulated trajectories do
not have to be stored (only the batch of maps does), thus saving much
memory space.

6 EXPERIMENTAL EVALUATION

We present simulated problems to illustrate the gain of using LSDP
instead of classical heuristics or RL-based solution algorithms. We
compared LSDP to the random heuristic, the BP-max policy, TD(λ)
with tabular representation of the Q-function and LSPI. We also
compared LSDP to a greedy algorithm based on the Mutual Infor-
mation (MI) criterion [7], with exact computation of the MI.

The OASMRF problem considered is the following. The graph G
is a regular grid and R = O = V . One variable is observed at each
decision step (L = 1) and sampling costs are null. We considered
the following Potts model distribution: ∀ x ∈ {1, 2}n

Pβ

(
x
) ∝ exp

( ∑
(i,j)∈E

β1{xi=xj}

)
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All experiments were run with β = 1
2

.
4× 4 grid. This small problem was used in the experiments since

we were able to compute the corresponding optimal policy and the
exact value of any policy. TD(λ) was run with λ = 0.1, using an
ε-greedy method for action choice (ε = 0.1). The LSDP and LSPI
algorithms were run with ε = 0.9. For all RL algorithms we used
the same batch size. The TD(λ) algorithm was run using 675000
simulated state-action trajectories. We ran LSDP and LSPI with a
batch of 100 maps and 6750 iterations. For LSDP the value of the
policy obtained at the last iteration of the algorithm was returned,
while for LSPI the value of the best policy among all iterations was
returned, since the latter algorithm oscillates.

The first conclusion is that the absolute difference between the
values of all policies is small: an absolute increase of the percentages
of 2.2 at most. We also compared the policies in terms of normalised
gain compared to the random one δR (Figure 1): the score of a given
policy δ is defined as score1(δ) = V (δ)−V (δR)

V (δ∗)−V (δR)
.

Figure 1. OASMRF problem with 16 variables: score1 of LSPD and
classical RL-based and heuristic policies.

Among RL algorithms, TD(λ) is the best and LSDP gives very
similar results. In comparaison, LSPI shows a poor behaviour, al-
ways returning dominated policies. Surprisingly the relative value of
the MI policy decreases with the number of observed variables, while
the opposite behavior is observed for the BP-max heuristic. The poor
performance of the BP-max heuristic with small sample size is ex-
plained by the fact that with few observed sites, all sites have similar
marginal probabilities, leading to a purely random choice of samples.

10× 10 grid. For this problem size, only LSDP, LSPI, BP-max
and random policy can be computed. For LSDP and LSPI we used a
batch size of 1000 maps and 1000 iterations. The value of a policy
was estimated by Monte Carlo approximation. We modified score1
into score2(δ) = V (δ)−V (δR)

|V (δBP−max)−V (δR)| : since the value of an op-
timal policy cannot be computed, δBP−max serves as a reference.
Results are displayed on Figure 2.

Figure 2. OASMRF problem with 100 variables: score2 of LSDP and
LSPI policies.

We observed again the poor performance of the LSPI algorithm

(even dominated by the random policies, for H = 10 to 20). On the
contrary, LSDP performs quite better than the BP-max heuristic for
small sample sizes. LSDP also performs better than LSPI, in terms
of computation time: for H = 40, an iteration takes about 7 seconds
for LSDP, 77 seconds for LSPI.

Constrained moves problem. We also compared LSDP, BP-max
and random policies on a more realistic sampling problem, involv-
ing constrained moves on the grid for observing sites. After having
observed a site, the agent can only move to distance-2 sites for the
following observation.

Figure 3. Constrained moves problem with 100 variables: score2 of
LSDP policy.

We again observed that the absolute difference between all policies
remained small (for H = 10, the value of the LSDP policy is 61.7
while the value of the heuristic policy is 59.4). LSPI showed the same
poor behaviour than in the previous experiment. As we expected,
the gain provided by LSDP in terms of relative improvement of the
random policy (H ≤ 20, see Figure 3) is significant when the sample
size is small (Figure 3).

7 CONCLUSION

In this article, we have provided a factored MDP model to repre-
sent problems of optimal adaptive sampling of spatial processes ex-
pressed in the Markov random field framework. We have proved the
PSPACE completeness of this problem. Then the MDP model has
allowed us to propose an adapted simulation-based solution algo-
rithm, LSDP, combination of a parametrized representation of the
Q-function and Dynamic Programming principles.

Comparison of the LSDP algorithm with heuristic algorithms and
classical RL algorithms enables us to draw the following conclu-
sions. First, in small problems where the optimal policy can be com-
puted, we notice that the performance of a purely random strategy
is quite close to that of the optimal one. This seems to also hold
for larger problems, where the estimated value of the random policy
remains close to that of the LSDP policy. However, in real-life appli-
cations of sampling for mapping, small errors in the reconstruction
of maps can lead to significant increases in management costs (think
of imperfect mapping and eradication of invasive species, leading to
future outbreaks).

Second, for large problems, TD(λ) or exact mutual information
are too computationally intensive to apply, and the adaptation of the
LSPI approach does not perform well. On the contrary, both BP-max
heuristic and the LSDP algorithm provide good results. BP-max is
less costly to apply than LSDP. However, it is an ad-hoc method
and its performance depends on which form of sampling costs are
considered. We can also predict poor performances when the set of
observable variables differs from the set of variables of interest in
the reconstruction. This limits the applicability of BP-max. In con-
trast, LSDP can handle different cost functions. It can also easily be
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adapted to other definitions of policy value, provided that they can
be estimated efficiently from a batch of trajectories. Furthermore,
the LSDP algorithm can be applied to general factored finite-horizon
MDP, and not only to spatial sampling problems.

LSDP is currently being validated on a real problem of sampling
in crop fields for weeds mapping. We also plan to use it to design
policies for controlling spatio-temporal systems (e.g. weeds control)
and not only for building maps.

8 Appendix

We establish that the GOASMRF problem is PSPACE-complete. Let
us define the state-disambiguation (SD) problem. We have:

• A set Θ = {θ1, . . . , θl} of possible states of the world and a
probability distribution p over Θ.

• A utility function u : Θ → [0; +∞[: u(θi) is the utility of discov-
ering that the state of the world is θi.

• A set Q = {Q1, . . . , Qr} of queries. Qj = {qj1, . . . , qjmj} is a
set of subsets of Θ, such that

⋃
1≤k≤mj

qjk = Θ. If the true state
of the world is θi and Qj is asked, an answer is chosen (uniformly)
randomly among the answers qjk containing θi.

• A maximum number N of queries that can be asked and a target
real value G > 0.

The SD problem consists in deciding whether there exists an adaptive
policy, asking at most N queries, that gives expected utility at least
G. If pδ(θi) denotes the probability of identifying θi by using policy
δ, the SD problem amounts to deciding whether there exists δ such
that

∑
1≤i≤l p(θi)pδ(θi)u(θi) ≥ G. It has been shown that SD is

PSPACE-hard, even when N ≤ l [1].
In order to prove that the GOASMRF problem is PSPACE-

complete, we propose a reduction from a SD problem to a
GOASMRF problem. Let SD = (Θ, u,Q, N,G) be given.

• We build a GOASMRF over variables X = (θ, q1, . . . , qr). Vari-
ables in the GOASMRF problem correspond to the sets in the SD
problem: θ takes values in Θ and qj in Qj .

• The considered graphical model is a MRF with distribution:

P(X) = P(θ)
r∏

j=1

P(qj |θ),

where P(θ = θi) = p(θi), ∀i = 1..n and the conditional proba-
bilities are P(qj = qjk|θ = θi) =

1
|{qjk′∈Qj ,θi∈qjk′}|

if θi ∈ qjk

and P(qj = qjk|θ = θi) = 0 else.
• Then, we set R = {θ} and O = {q1, . . . , qr}: we want to restore

the value of variable θ, but can only sample variables qj .
• Only one site (variable) can be sampled at each of N time steps,

and H = N .
• Cost function c is set uniformly null (c(A) = 0, ∀A ⊆ O).
• Function fθ is defined as: fθ(θi, 1) = p(θi)u(θi) and

fθ(θi, ν) = 0, ∀θi ∈ θ, 0 ≤ ν < 1. We get a reward only when
the value of θi is known with certainty.

In order to prove that solving the GOASMRF problem we have
just defined also solves the SD problem, it is enough to prove that:
(i) any policy δSD in the SD problem has an equivalent policy
δGOASMRF in the GOASMRF problem, and vice-versa, (ii) any
two corresponding policies δSD and δOASMRF have identical val-
ues in their respective problems.

Point (i) holds since available actions in both frameworks cor-
respond to the same qj’s (queries in SD and variables allowed for

sampling in GOASMRF). Then, since allowed observations are the
same in both cases and since the depth of both query trees are equal
(to N ), the set of policies are the same, and these are in direct corre-
spondence in both problems.

For point (ii) note that the two values of a policy δ are defined by:

vGOASMRF (δ) =
∑

(A,xA)∈τδ

P(xA)U(A, xA),

vSD(δ) =
∑

1≤i≤l

p(θi)pδ(θi)u(θi).

For any strategy δ, let τθi
δ denote the set of branches which, in the

SD case, allow to disambiguate set Θ in θi. Then it is easy to see that

vSD(δ) = vGOASMRF (δ) =
∑

1≤i≤l

∑
(A,xA)∈τ

θi
δ

p(θi)P(xA)u(θi).
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