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Abstract. General Game Playing (GGP) agents learn strategies to
skillfully play a wide variety of games when given only the rules
of the game. The rules are provided in a language called Game De-
scription Language (GDL) and specify the initial game setup, what
constitutes legal moves and how they update the game state when
played, how the game terminates, and what the outcome is. In here
we extend this line of research further, that is, we assume that the
game-playing agent must learn the rules of a game by observing oth-
ers play instead of them being provided. Our focus here will mainly
be on modeling piece movements with less attention placed on the re-
maining game-rule properties. We define a subset of games, we name
simplified boardgames, that despite constituting only a small subset
of games expressible in GDL nonetheless encapsulate a large variety
of interesting piece movement patterns found in popular boardgames.
We provide a well-defined formalism and a practicable algorithm
for learning game rules of simplified boardgames. We empirically
evaluate the learning algorithm on different boardgames and under
different assumptions of availability of observations. Furthermore,
we show that our formalism offers at least an order of magnitude
speedup over state-of-the-art logic-based GDL reasoners for fitting
boardgames. The method is thus directly relevant for GGP systems.

1 Introduction

From the inception of the field of artificial intelligence, over half a
century ago, games have played a significant role as a test-bed for
advancements in the field. The focus was initially on developing
general problem-solving approaches but gradually shifted towards
— and stayed for decades on — building high-performance game-
playing systems capable of playing a specific game at a world-class
level. As a case in point are game-playing programs for chess (DEEP-
BLUE), checkers (CHINOOK), and Othello (LOGISTELLO) [10].

Interest in general approaches to intelligent game playing was re-
cently revitalized with at the advent of the General Game Playing
(GGP) competition [5]. The focus of GGP research is to build in-
telligent agents that automatically learn to play a wide variety of
games skillfully, given only a description of the game rules. This re-
quires that the agents learn diverse game-playing strategies without
any game-specific knowledge being provided by their developers. A
successful realization of this task poses many research challenges
for artificial intelligence, bringing in various subfields of study like
knowledge representation, agent-based reasoning, planning, heuris-
tic search, and machine learning.

Games in GGP are described in a language named Game Descrip-
tion Language (GDL) [7], which has axioms for describing the ini-
tial game state, the generation of legal moves and how they alter the
game state, and how to detect and score terminal positions. GDL is a
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first-order-logic-based language capable of expressing a wide range
of deterministic, perfect-information, single- or multi-player games.
This expressibility, however, comes at a cost: in the general case a
theorem-proving-based reasoning approach (e.g., Prolog) is required
to execute GDL-described state manipulation tasks, such as for gen-
erating legal moves. This results in GGP systems typically being or-
ders of magnitude slower than their game-specific counterparts.

The GDL game description is sent to participating GGP agents
at the beginning of a match and the agents are given a modest time
period (typically a few minutes or less) to analyze the description
before the match game commences. One of the main challenges of
GGP systems is thus to learn in real-time from the game descrip-
tion and through self-play the game-specific knowledge necessary
to play the game at hand skillfully. Based on the exact reasoning ap-
proach used by the GGP agent, such learned knowledge may take the
form of either an evaluation function for assessing the merits of non-
terminal game positions [11] or search-control heuristics for control-
ling simulation-based playouts [4].

In this paper we extend the line of GGP research a step further. The
focus is still on learning, however, instead of being provided with the
rules of the game as in GGP, the game-playing agent is now required
to learn the rules simply by observing others play. Once the game
rules have been learned, all methods developed for GGP agents are
applicable — we thus concern us here with only the task of learn-
ing the game rules. We provide a well-defined formalism for doing
this and give a practicable algorithm for inducing the games rules
directly from observations. Although, under the new formalism, we
restrict ourselves to a substantially narrower set of games than ex-
pressible in GDL, nonetheless, a variety of interesting boardgames
can be learned. For fitting boardgames we show that the learned rep-
resentation offers a speedup of at least an order of magnitude over
GDL-based reasoners.

The paper is organized as following. Section 2 introduces the nec-
essary terminology and provides preliminaries. Section 3 introduces
the learning approach, which is then evaluated empirically in Section
4. We summarize related work in Section 5 and, finally, conclude and
discuss future work in Section 6.

2 Preliminaries

A boardgame ”is a game which involves counters or pieces being
moved on a pre-marked surface or ’board’, according to a set of
rules” [2]. The rules, beside describing how the pieces move on the
board, include axioms for stating other necessary game logistics such
as the initial board setup, how players alternate turns, how the game
terminates, and what the possible game outcomes are.

The above definition of boardgames encompasses a vast set
of diverse arbitrarily complex games. In here we focus on a re-
stricted form of boardgames, that is, two-player zero-sum turn-taking
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boardgames of the following characteristics, henceforth referred to as
simplified boardgames:

• The game is played on a rectangular board consisting of n × m
squares. Each player controls an army of pieces, possibly of mul-
tiple types (e.g., pawn, knight, rook), initially placed on distinct
squares on the board in a predetermined arrangement. At most
one piece can be on a square at any time.

• Players take turns acting. On its turn a player moves one of his or
her pieces from its current square to a different one in a pattern ad-
hering to the rules of the game. More specifically, the movement
must be describable as a piece-movement pattern (to be defined
shortly). If a piece, own or opponent’s, happens to be on the des-
tination square it will be captured (and removed from the board).
The movement of a piece may, and typically is, affected by the
location of other pieces on the board, however, it should be impar-
tial to the absolute location of the piece itself (e.g., a knight on c3
should in principle move no differently than if it were on d5).

• A terminal position arises when a piece of a certain type reaches
a goal square (e.g., a pawn or a knight reaching a square on the
opponent’s back rank). The set of eligible piece types and the set
of goal squares are preset for each player (and may differ from
one player to the next).

• The game ends in a win for the player moving into a terminal posi-
tion , in a loss for the player to move if no legal moves are possible,
or in a tie when a preset maximum game length is reached. If one
player wins, the other loses, but a tie applies to both players. The
goal is to win the game (or tie if a win is not possible).

This framework of a simplified boardgame is general enough to al-
low a wide range of disparate piece movements, which is the primary
focus of this work. Other game aspects are thus deliberately kept un-
complicated, in particular the conditions for terminating a game.

A relative coordinate (Δx,Δy) references a square relative
to another one. The Δx indicates the relative file (column) dis-
tance and Δy the relative rank (row) distance. For example, the
left, up, right and down adjacent squares would be referenced as
(−1, 0), (0,+1), (+1, 0) and (0,−1), respectively; diagonally adja-
cent squares would similarly be referenced as (−1,+1), (+1,+1),
(+1,−1) and (−1,−1). A relative square can be non-adjacent to the
reference square, for example (+1,+2).

A relative square content is defined in the context of a board posi-
tion P and a square s as a pair (rc, on), where rc is a relative coordi-
nate (to s) and on ∈ {e, w, p} tells the content of that relative square
in board position P . The letter e indicates an empty square, w an own
piece, and p an opponent’s piece. For a shorthand notation we write
relative square content ((Δx,Δy), on) as a triplet (Δx,Δy, on); for
example, we write (0,+1, e) instead of ((0,+1), e).

A piece-movement pattern is a sequence of relative square con-
tents. For example, the two-step sequence (0,+1, e)(+1, 0, p) de-
scribes a pattern consisting of first moving a piece one square
up to an empty square and from there one square to the right to
land on a square occupied by an opponent’s piece. Given a piece-
movement pattern pmp of length n we define �(pmp) as the set
of subsequences of pmp of length n − 1 (n in total). One se-
mantic constraint is imposed on legitimate piece-movement pat-
terns, that is, within a sequence the same square cannot be implic-
itly reference more than once. This constraint forbids sequences
that move pieces in circles, such as sliding back and forth (e.g,
(0,+1, e)(0,+1, e)(0,−1, e) ...). Piece-movement patterns can be
used to describe complex piece movements found in many popular
boardgames, for example, as shown in Figures 1 and 2.

8 rZ0l0skZ
7 ZbZ0apop
6 pZ0o0m0Z
5 mpo0o0Z0
4 0Z0OPZ0Z
3 Z0O0ZNZP
2 POBZ0OPZ
1 SNAQS0J0

a b c d e f g h

Figure 1. A chess example. Two potential moves are shown for the pawn
on d4, advancing to d5 or capturing on c5. The former move yields the
one-step piece-movement pattern (0, 1, e) and the latter (−1, 1, p). The

knight move b1–d2 and the bishop move c1–g5 yield the piece-movement
patterns (2, 1, e) and (1, 1, e)(1, 1, e)(1, 1, e)(1, 1, e), respectively

8 0Z0Z0Z0Z
7 Z0ZnZ0Z0
6 0Z0Z0Z0Z
5 Z0ZpZ0Z0
4 0Z0Z0Z0Z
3 Z0ZRZ0Mr
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 2. A Chinese-chess inspired example. The cannon in chinese chess
slides orthogonally, but to capture it must leap over exactly one piece (either
own or opponent’s) before landing on the opponent’s piece being captured.
Assuming the piece on d3 moves like a cannon, the move d3–b3 yields the
piece-movement pattern (−1, 0, e)(−1, 0, e), the move d3–h3 the pattern
(+1, 0, e)(+1, 0, e)(+1, 0, w)(+1, 0, p), and the move d3–d7 the pattern

(0,+1, e)(0,+1, p)(0,+1, e)(0,+1, p)

3 Learning by Observing

Assume we observe an unfamiliar simplified boardgame in progress.
On a player’s turn we will observe him or her moving a piece in a
specific way, for example, a knight jumping in an L-shape, a rook
sliding along the file or rank it stands on, or some other foreign-
looking piece moving in an even more obscure pattern. Over time
we start noticing regularities in the movements from which we can
induce a general model or set of rules that describe the movements
of each individual piece. Similarly, we will notice under which con-
ditions the game terminates and what the outcome is.

Our learning agent faces the same task. The following subsections
describe how the agent models piece movements (and terminal con-
ditions), how the training observations are presented to the agent, and
the learning algorithm for inducing the model from the observations.
The model, once correct, can subsequently be used to generate legal
moves for any board position that can arise in that particular game.
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Figure 3. A DFA, Drook , describing the movements of a rook in chess

3.1 Model

We model each piece type in the game individually. The piece-
movement patterns we observe for pieces of the given type can be
thought of as words in a language. Because both the number of pos-
sible piece-movements patterns and their length is limited, the lan-
guage is finite and thereby also regular. We can use a determin-
istic finite automata (DFA), or equivalently a regular expression,
to model a regular language. More specifically, we define a DFA
for modeling the movements of a piece of type pt as a quintuple
Dpt = (Q, δ,Σ, q0, F ) where Q is a finite set of states, Σ is a finite
alphabet consisting of all possible relative square contents, q0 ∈ Q
is the start state, F ⊆ Q is the set of accepting states, and δ is the
transition function Q × Σ → Q. Figure 3 shows an example DFA
describing the movements of a rook in chess.

The DFA formalism is not only expressive enough to represent
the language, but also gives a permission to handy mechanisms for
inducing a generalized language from knowing only a subset of the
strings it contains, as shown in the following subsection. The learn-
ing task of the agent, when it comes to piece movements, is thus to
induce for each piece type a DFA that describes the movement pat-
terns of that piece type. The DFA, when run in a generation mode
in the context of a specific board position, should produce the exact
set of legal moves for a piece of the given type. When generating the
moves the DFA is traversed in a depth-first manner. On each transi-
tion the relative square content label of an edge is used to find which
square to reference and its expected content. If there are no matching
edges the search backtracks. A transition into a final state s ∈ F gen-
erates a move in the form of a piece-movement pattern consisting of
the edge labels that were traversed from the start state to reach s. A
special provision is taken to detect and avoid cyclic square reference
in piece-movement patterns.

3.2 Training Data

The observations of how a particular game is being played are pre-
sented to the agent in a log file consisting of a set of records, each
listing a game position and a subset of the moves permitted in that po-
sition. The details can differ from one record to the next, depending
on available information when observing. For example, in an ideal

0
rnbqkbnr
pppppppp
........
........
........
........
PPPPPPPP
RNBQKBNR
*
0 some 1
(6 (-1 2 e))
.
.
.
39
r.b.kbnr
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nq..p...
........
...pP...
..P....P
P...PP.P
RNBQKBNR
*
0 all 35
(1 (2 1 e))
(1 (-1 2 e))
(2 (1 1 e))
(2 (1 1 e) (1 1 e))
(2 (1 1 e) (1 1 e) (1 1 e))
(2 (1 1 e) (1 1 e) (1 1 e) (1 1 e))
(2 (1 1 e) (1 1 e) (1 1 e) (1 1 e) (1 1 e))
(2 (-1 1 e))
(2 (-1 1 e) (-1 1 e))
(3 (0 1 e))
(3 (0 1 e) (0 1 e))
(3 (0 1 e) (0 1 e) (0 1 p))
(3 (-1 1 e))
(3 (-1 1 e) (-1 1 e))
(3 (-1 1 e) (-1 1 e) (-1 1 e))
(4 (-1 1 e))
(5 (1 1 e))
(6 (-1 2 e))
...
(28 (0 1 e))
.
.
.

Figure 4. Two example training records from a chess-like game. First is a
sequential record number, following by the current board position (one line
per row, listed top to bottom), and then the game outcome (’*’ stands for a

non-terminal position and {−1, 0, 1} for a terminal position that is lost, tied,
or won for the player just moving, respectively). The line that follows has
three fields: the first tells which player has the move, the next whether all

legal moves in the position are listed or only a subset ({all, some}), and the
third the number of moves subsequently listed. The listing of the moves then
concludes the record, one per line where the piece-movement pattern follows

the square the piece is on (a1 = 0, b1 = 1, c1 = 2...)

case we might know for each position the exact set of legal moves,
whereas in the other extreme we might know only the single move
played. As usual when learning from data, we assume the training
data to be representative of the real world. Figure 4 shows an exam-
ple training-data record from a chess-like game.

A DFA is consistent with the training data if for each position it
generates all moves known to be legal2 and no moves known to be
illegal. This consistency check is straightforward in positions where
all legal moves are known, because the DFA should generate the ex-
act same set of moves. This check is not as straightforward in po-
sitions where only a subset of the legal moves is listed. The DFA
should as before generate all the moves known to be legal (i.e., the
listed subset), however, we cannot tell whether additional moves the
DFA generates are illegal or not. To handle such scenarios we make
the following assumption: Let U be the union of all piece-movement
patterns in the training data; then for those positions in the training
set that list only subset of legal moves, a generated piece-movement
pattern pmp is legal if either pmp ∈ U or �(pmp) ⊆ U . Algorithm
1 shows a detailed pseudo-code for checking a DFA’s consistency.

2 The set of known legal moves in a position may possibly be only a subset
of all the legal moves in that position.
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Algorithm 1 consistent(Piecetype pt, DFA dfa, TrainingData td)
1: for all {pos ∈ td} do

2: for all {sq ∈ pos.board | pceType(sq) = pt} do

3: movesDFA← generateMoves(dfa, pos, sq)
4: if pos.moves(sq) �⊆ movesDFA then

5: return false
6: end if

7: if pos.movelisting = all then

8: return (movesDFA �⊆ pos.moves(sq))
9: else { pos.movelisting = some }

10: for all {pmp ∈ movesDFA \ U} do

11: if �(pmp) �⊆ U then

12: return false
13: end if

14: end for

15: end if

16: end for

17: end for

18: return true

3.3 Learning Algorithm

Algorithm 2 shows the procedure for learning a DFA for a given
piece type. It proceeds in several steps. First we construct a Prefix
Tree Automata (PTA) from the training data (line 1), a specialized
DFA assembled by aggregating all the piece-movement patterns for
the given piece type into a prefix tree (an example is depicted as the
top-most DFA in Figure 5). The resulting DFA is checked for con-
sistency. The only reason for a DFA built as a PTA to be inconsistent
with the training data is if our assumption that piece movements are
independent of the square a piece is standing on is violated, in which
case the learning procedure returns null. Otherwise, we minimize the
DFA (line 5) and insert it into a priority queue, named Q (line 7). The
priority queue stores the generalized DFAs created so far that still re-
main unexplored, and is ordered in an increasing order by the DFAs

Algorithm 2 LearnDFA(Piecetype pt, TrainingData td)
1: dfa← constructPTA(pt, td)
2: if not consistent(pt, dfa, td) then

3: return null
4: end if

5: dfamin ← minimizeDFA(dfa)
6: n← 0
7: Q.insert(dfamin)
8: while not Q.empty() and n < MaxExpansions do

9: dfa← Q.pop()
10: if |dfa| < |dfamin| then

11: dfamin ← dfa
12: end if

13: statepairs← generalizingCandidates(dfa,K)
14: for all (s, s′) ∈ statepairs do

15: dfa′ ← NFAtoDFA(collapse(dfa, s, s′))
16: if consistent(pt, dfa′, td) then

17: dfa′ ← minimizeDFA(dfa′)
18: Q.insert(dfa′)
19: end if

20: end for

21: n← n+ 1
22: end while

23: return dfamin

size (the size of a dfa, noted |dfa|, is defined as the number of states
it contains). The while loop (lines 8-22) expands from the queue in
a best-first order, that is, removes the smallest DFA from the queue
(line 9), keeps track of the smallest one found so far (lines 10-12),
generalizes it by collapsing states in the DFA (lines 13 and 15), and
adds back to the queue the resulting generalized DFAs that remain
consistent with the training data (lines 16-19). More specifically, the
function generalizingCandidates returns a set of pairs, each propos-
ing two states in the DFA to collapse. It would be infeasible to con-
sider all O(|dfa|2) state pairs and thus a smaller candidate set of size
O(|dfa|) is generated, containing only pair of states of a (geodesic)
distance K or less from each other and of the same acceptance status
(that is, either both states are final or both non-final). The collapse
function merges the two states into one. This may result in a non-
deterministic automata (NFA), which is retransformed into a DFA
(the NFAtoDFA function) and then minimized (minimizeDFA
function). Figure 5 gives an example thereof.

The transformation of a NFA to a DFA may in the worst case
produce an exponentially larger DFA (O(2|nfa|)). In practice this
worst-case behavior is extremely rare, although we often experience
that an unfavorable generalization results in an NFA that transforms
into a DFA that grows by an order of magnitude. The best-first-search
expansion policy, however, bypasses for the most part the negative
effect of this, that is, a large DFA may get created but it is unlikely
that it will be generalized further.

3.4 Remaining Game Properties

We have seen how to learn the generation of legal moves in a simple
boardgame. The remaining game properties must be learned as well,
that is, what the initial board setup is, what constitutes a terminal po-
sition and how is it scored, and what the maximum game length is.
There is, however, no need to learn how playing a move updates the
current board position nor the game outcomes as this is already de-
cided in the definition of a simple boardgame. Because the remaining
game properties were deliberately kept simple it is somewhat trivial
to learn them in comparison to learning the piece movements. The
start position is fixed for each particular game, and can simply be
recorded. To learn the terminal conditions we record in each non-
tie terminal position in the training data which piece was moved last
and to which square it went. This way we collect for each player
the eligible pieces and goal squares, both of which is necessary (and
sufficient) for deciding whether a position is terminal. The following
generalization is done: if there are more than two goal squares on the
same file or rank, the entire file/rank is assumed to be goal squares
unless counter-evidence show otherwise. As for the maximum game
length we simply record the ply number of any record labeled with
a tie outcome. To be able to derive the above information given the
current training record format the training data must come from com-
plete games listed sequentially. Furthermore, for consistency the first
move listed in each position should be the one that was played.

4 Empirical Evaluation

In here we empirically evaluate the effectiveness of the learning al-
gorithms and the resulting models. We first describe the three simple
boardgame variants used in our experiments, then the experimental
setup, and finally the results of the experiments.
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Figure 5. A simple example assuming a rook-like piece that slides only
forwards. The four finite state machines emerge during different steps in the
learning process (Algorithm 2). The first one is the PTA as constructed from

the training data (line 1) and the second one is the DFA resulting from
minimizing that PTA (line 5). The third one is the NFA resulting from
collapsing the second and third state of the previous DFA (line 15, as

returned from the collapse call), and the fourth one shows the final DFA after
converting the NFA back to a DFA and minimizing it (line 17)

4.1 Games

Breakthrough is a two-player game played on an 8×8 chess or check-
ers board. Each player starts with sixteen pieces, named pawns, ini-
tially placed on the player’s own two back ranks, White at the bottom
and Black at the top. White moves first and the player then alternate
turns. On a turn the player to move advances one of his or her pawns
one step forward. This can be done either straight or diagonally when
moving onto an empty square, but only diagonally if capturing an
opponent’s piece. The goal of the game is to break through the op-
ponent’s defenses to reach his or her backrank with your own piece.
The first player to do so wins. This game has frequently been played
in the international GGP competitions in several variants.

Checkers-Breakthrough is played on a 8 × 8 checkers board with
checkers pieces. The initial board setup and basic piece movements
are the same as in checkers. A checker piece can move either onto
a diagonally forward adjacent empty square or jump over a diago-
nally adjacent opponent piece (possibly repeatedly). Unlike check-
ers, however, jumps are not mandatory and jumped-over pieces are
not captured. The first player to reach the opponent’s backrank wins
(thus no king promotions).

Chess-Breakthrough is played using a regular chess board and
pieces and from the standard chess start position. The first player to
place a pawn or a knight on the opponent’s backrank wins (thus no
promotions). The normal chess rules for piece movements have also
been slightly modified to fit our simplified boardgame framework:
castling, en-passant, and two-step pawn moves are not allowed; a

king can be moved into and left in check (and thus captured); and the
draw-by-threefold-repetition and 50-move rules do not apply.

4.2 Results

We ran two sets of experiments using different kind of training data:
in the former all legal moves are known in each position whereas in
the latter only a single move is known. The training data was gener-
ated by having two random agents play against each other, with the
maximum game length set to 80 moves (per player). Each experi-
ment was repeated 20 times with new training data generated each
time. We report the average, min, and max values over the 20 trials.
In the learning algorithm we set K to 2 (in candidate generation) and
MaxExpansions to 20. The start position, max game length, and
terminal conditions were trivially learned (and thus not reported). All
experiments were run on an 2GHz Intel Core i7 processor.

4.2.1 All Moves Known

Table 1 shows the learning results when all moves are known, using
a training data with 50 complete games. The learning produced the
optimal DFAs in all cases, often almost instantly but in the worst
case in slightly under 50 seconds. The sliding pieces (rook, bishop
and queen) take noticeable longer to learn than the other pieces. Also
of interest is that only 50 games (and this is an upper bound) seem
sufficient to robustly learn the piece movements in the tested games.

Table 1. Learning time (sec.) when all moves are known (G = 50)

First player Second player

BT avg min max avg min max
Pawn < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
CheckBT avg min max avg min max
Checker 0.45 0.09 0.83 0.62 0.18 0.87
ChessBT avg min max avg min max
Pawn < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
King < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Knight < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bishop 10.25 7.38 12.42 10.32 8.66 13.08
Rook 11.65 10.18 13.56 11.58 10.00 13.21
Queen 40.22 32.40 47.05 40.73 30.61 49.01

This type of learning could for example be useful in GGP agents
where move generation is typically very slow. If suitable games are
encountered, such as Breakthrough, one could handily use random
simulations to generate training data from which appropriate DFAs
could be learned, allowing faster move generation. Faster state ma-
nipulation results in more simulations being run in a given time
frame, which yields significant improvement in playing strength [3].
We compared the speed of move generation in our model to that
of a world-class GGP player [1] in the game Breakthrough. In our
DFA-based model a move generation in a position took on average
7 microseconds, whereas in the GGP player it took on average 159
microseconds. This is almost a 23-fold speedup.3

3 To ensure a fair comparison we timed only the move generation rou-
tine, which is functionally equivalent in both systems. In simulation-based
search, which is the dominating search approach in GGP, the move genera-
tion is typically by far the most time consuming component. Furthermore,
from our experience with GGP systems, we expect the speedup to be even
higher in the other two game variants (we did not have GDL description for
them to try), however, this must be tested before drawing conclusions.
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Table 2. Learning time (sec.) when a single move is known (G = 1000)

First player Second player

BT avg min max avg min max
Pawn < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
CheckBT avg min max avg min max
Checker - - - - - -
ChessBT avg min max avg min max
Pawn < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
King < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Knight < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Bishop 104.82 115.64 114.74 104.78 87.81 116.94
Rook 121.01 115.64 127.88 121.28 113.60 128.77
Queen 421.69 369.35 457.82 412.64 368.28 454.32

Table 3. Number of games needed to produce consistent training data

First player Second player

BT avg min max avg min max
Pawn 1.40 1 3 1.3 1 2
CheckBT avg min max avg min max
Checker - >1000 − - >1000 -
ChessBT avg min max avg min max
Pawn 1.95 1 5 1.50 1 3
King 6.5 1 17 5.95 1 17
Knight 12.55 4 28 12.50 3 28
Bishop 149.40 10 448 135.25 14 353
Rook 85.65 22 249 85.85 19 249
Queen 148.55 29 448 160.75 15 416

4.2.2 A Single Move Known

Table 2 shows the result when only a single legal move is known
in each position (the move played), using a training data from 1000
complete games. Many more games are required than in the previ-
ous setup to compensate for both fewer and less variety in known
piece-movement patterns. The learning is more difficult in this set-
ting, as witness by longer learning times and the inability to learn the
checkers piece moves. The problem is that under our definition of
consistency many games are required to even get a consistent dataset,
which is a necessary condition for successful learning (although not
sufficient). This is further evaluated in Table 3. We see, for exam-
ple, that even with 1000 games we do not have a varied enough data
to be consistent with the optimal DFAs for the checkers pieces. The
diagonally sliding pieces in chess also require up to 500 games. An
example of a poorly represented move is a queen or a bishop sliding
from one corner of the board to an opposite one with a capture. It is
rare for a position to occur where such a move is possible and even
rarer that this exact move will be played in that position. This move
was for example not present is some of the 1000-game training sets,
but because a 6-square diagonal-sliding capture was seen the �( )
subsequences ensured that the data was nonetheless consistent.

5 Related Work

Learning is at the core of GGP systems, but focusses on learn-
ing either evaluation functions for assessing the merits of non-
terminal game positions [11] or search-control heuristics for control-
ling simulation-based playouts [4]. This is the first work (in GGP) on
learning an efficient representation for a game by observing play. As
finding a more efficient representation for state manipulation in GGP
offers great benefits — for example, this was the prime novelty in the
reigning GGP world-champion TURBOTURTLE — and several other
work also exists in that direction [13, 6, 12]. That work, however,
uses different formalisms and focuses on analyzing the GDL game

rules as opposed to observing play. In ILP work exists on inducing
chess variant rules (written as first-order-logic programs) from a set
of positive and negative examples, background knowledge, and the-
ory revision [8]. We are in our work, however, avoiding the computa-
tionally expensive first-order-logic representation. Aside from games
DFAs are commonly used to learn regular languages (e.g., [9]).

6 Conclusions and Future Work

In this paper we introduced a novel method for learning the rules of
simple boardgames by observing play. The method learns effectively,
in particular, when all legal moves are known in the given game po-
sitions. Whereas this would be unrealistic scenario when observing
humans play, this has direct practical relevance in e.g. GGP systems.
Even though the game rules are known in GGP one could, for ap-
plicable games, relearn the rules in the simplified boardgame frame-
work to get an order of magnitude faster mechanism for game state
manipulation. Our learning method is already efficient enough for
this to be practicable in real-time, but could be even further sped up
with an optimized implementation and learning different piece type
movements in parallel (many GGP systems use multiple processors).
When only a single move is known in a given position the learning
is not as effective, the main reason being the large number of games
required for the training data to become representative. This could be
alleviated with more powerful generalization mechanisms; for exam-
ple, our definition of a consistent training data seems too restrictive.

In future work the focus will be on deriving more sophisticated
generalization schemes, as well as implementing the method in a
state-of-the-art GGP system. Also, an important future work is to ex-
tend the approach to be applicable in a broader range of boardgames,
for example, such that the complete ruleset of games like chess and
checkers could be learned. This would require adding pre- and post-
conditions for piece movements, side-effects of moves (e.g., to han-
dle en-passant and castling), and more general terminal conditions.
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