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Abstract. Argumentation between agents through dialogue is an
important cognitive activity. There have been a number of proposals
for formalizing dialogical argumentation. However, each proposal in-
volves a number of quite complex definitions, and there is significant
diversity in the way different proposals define similar features. This
complexity and diversity has hindered analysis and comparison of the
space of proposals. To address this, we present a general approach
to defining a wide variety of systems for dialogical argumentation.
Our solution is to use an executable logic to specify individual sys-
tems for dialogical argumentation. This means we have a common
language for specifying a wide range of systems, we can compare
systems in terms of a range of standard properties, we can identify
interesting classes of system, and we can execute the specification of
each system to analyse it empirically.

1 INTRODUCTION

Dialogical argumentation involves agents exchanging arguments in
activities such as discussion, debate, persuasion, and negotiation
[3]. Dialogue games are now a common approach to characterizing
argumentation-based agent dialogues (e.g. [2, 4, 7, 10, 13, 14, 15,
17, 18, 19, 20, 21, 22, 25, 26]). Dialogue games are normally made
up of a set of communicative acts called moves, and sets of rules
stating: which moves it is legal to make at any point in a dialogue
(the protocol); the effect of making a move; and when a dialogue
terminates. One attraction of dialogue games is that it is possible to
embed games within games, allowing complex conversations made
up of nested dialogues of more than one type.

In the current state of the art, describing a system for dialogical
argumentation involves complex definitions with no standard way of
presenting them. Hence, it is difficult to ensure the definitions are
correct, it is difficult to show that they are well-behaved, and it is
difficult to compare different proposals. There is a lack of considera-
tion of general properties of argumentation dialogues, and as a result,
there is a lack of formal criteria to delineate types of system. Further-
more, there is a lack of theoretical tools for designing systems and a
lack of prototyping tools for evaluating systems empirically.

To address these issues, this paper introduces a simple and gen-
eral framework for defining dialogical argumentation systems, called
the Framework for Dialogical Argumentation (FDA). Each state of
the dialogue comprises a private state for each agent, and a public
state that all agents see. Each of these components of a dialogue state
is represented by a set of literals. A dialogical argumentation sys-
tem is specified in an executable logic by a set of logical rules. The
rules specify how the components of a dialogue state are changed (by
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adding and/or deleting literals) to create the next dialogue state.

2 LANGUAGE

We assume a set of variable and function symbols, from which we
can construct terms and ground terms in the usual way. We also as-
sume a set of predicate symbols, and we use these with terms, to
construct literals and ground literals in the usual way. We use the lit-
erals to form classical formulae (respectively ground classical formu-
lae) in the usual way using the disjunction, conjunction, and negation
connectives. We construct modal formulae using the �, �, ⊕, and �
modal operators. We only allow literals to be in the scope of a modal
operator. If φ is a literal (respectively ground literal), then each of
⊕α, �α, �α, and �α is an action unit (respectively ground action

unit). Informally, we describe the meaning of action units as follows.

• ⊕α means that the action by an agent is to add the literal α to its
next private state.

• �αmeans that the action by an agent is to delete the literal α from
its next private state.

• �α means that the action by an agent is to add the literal α to the
next public state.

• �αmeans that the action by an agent is to delete the literal α from
the next public state.

We use the action units to form action formulae (respectively
ground action formulae) as follows using the disjunction and con-
junction connectives: (1) If φ is an action unit (respectively ground
action unit), then φ is an action formula (respectively ground action
formula); And (2) If α and β are action formulae, then α ∨ β and
α ∧ β are action formulae (respectively ground action formulae).

We define the action rules as follows, where Variables(α) returns
the set of variables occurring in α. Since the classical formulae and
action formulae, as defined above, do not involve quantifiers, all vari-
ables in these formulae are free. For the action rules, we assume all
free variables are in the scope of implicit universal quantifiers given
outermost.

• If φ is a classical formula and ψ is an action formula such that
Variables(ψ) ⊆ Variables(φ), then φ→ ψ is an action rule.

• If φ → ψ is an action rule and Variables(φ) = ∅, then φ → ψ is
a ground action rule.

Example 1. Consider the action rule b(X) ⇒ �c(X) where the
predicates b denotes belief, and c denotes claim, and X is a variable.
So the rule says that if an agent has a belief that can instantiate X,
then the action is to claim it. Hence if b(p) is a literal in the agent’s
private state, or in the public state, then we will see later that we can
obtain b(p) ⇒ �c(p) as a ground action rule.
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Implicit in the definitions for the language is the fact that we can
use it as a meta-language [27]. For this, the object-language will be
represented by terms in this meta-language. For instance, the object-
level form p(a, b) → q(a, b) can be represented by a term where
the object-level literals p(a, b) and q(a, b) are represented by con-
stant symbols, and → is represented by a function symbol. Then we
can form the literal belief(p(a, b) → q(a, b)) where belief is a
predicate symbol.

3 STATES

We use a state-based model of dialogical argumentation with the fol-
lowing definition of an execution state. To simplify the presentation,
we restrict consideration in this paper to two agents. An execution
represents a finite or infinite sequence of execution states. If the se-
quence is finite, then t denotes the terminal state, otherwise t = ∞.

Definition 1. An execution e is a tuple e = (s1, a1, p, s2, a2, t),
where for each n ∈ N where 0 ≤ n ≤ t, s1(n) is a set of ground
literals, a1(n) is a set of ground action units, p(n) is a set of ground
literals, a2(n) is a set of ground action units, s2(n) is a set of ground
literals, and t ∈ N ∪ {∞}. For each n ∈ N, if 0 ≤ n ≤ t, then
an execution state is e(n) = (s1(n), a1(n), p(n), a2(n), s2(n)). We
call s1(n) the private state of agent 1 at time n, a1(n) the action
state of agent 1 at time n, p(n) the public state at time n, a2(n) the
action state of agent 2 at time n, s2(n) the private state of agent 2 at
time n. We call e(0) the starting state.

Example 2. The first 5 steps of an infinite execution where each row
in the table is an execution state.

n s1(n) a1(n) p(n) a2(n) s2(n)

0 b(p) t(ann) b(¬p)
1 b(p) �c(p) t(ann) b(¬p)

�t(ann)
�t(bob)

2 b(p) c(p) �c(¬p) b(¬p)
t(bob) �t(bob)

�t(ann)

3 b(p) �c(p) c(p) b(¬p)
�t(ann) c(¬p)
�t(bob) t(ann)

4 b(p) c(p) �c(¬p) b(¬p)
c(¬p) �t(bob)
t(bob) �t(ann)

5 . . . . . . . . . . . . . . .

Later we will see how we can assign each agent one of the following
action rules to generate the execution where the predicates b denotes
belief, c denotes claim, and t denotes turn, and X is a variable.

• t(ann) ∧ b(X) ⇒ �c(X) ∧ �t(ann) ∧ �t(bob)
• t(bob) ∧ b(X) ⇒ �c(X) ∧ �t(bob) ∧ �t(ann)

In general, there is no restriction on the literals that can appear
in the private and public state. The choice depends on the specific
dialogical argumentation we want to specify. This flexibility means
we can capture diverse kinds of information in the private state about
agents by assuming predicate symbols for their own beliefs, objec-
tives, preferences, arguments, etc, and for what they know about
other agents. The flexibility also means we can capture diverse in-
formation in the public state about moves made, commitments made,
etc. Furthermore, we can augment the literals in a private or public
state using builtin predicates as explained next.

4 BUILTIN PREDICATES

Builtin predicates are literals that can be inferred from the literals in a
private state plus the public state. For example, the builtin predicate
member(a, {b, a, c}) holds in any state (assuming the usual defini-
tion). A convenient way to define builtin predicates is to use Prolog,
but we could define and implement them in other languages.

Example 3. Suppose we have predicates of the form belief(Y) in
the private state of an agent, and Y is a formula. We can define builtin
predicates bels, argument, entails, and literal as follows. For
this, we use some builtin predicates that normally occur in Prolog
software. These are member, subset, atom, and findall(X, A, L).
The latter returns a list L of all the groundings for the variable X in
atom A for which that instantiated atom is true. So for example, if we
have the program p(a, b), p(e, c), p(d, b), p(f, b), and we have the
call findall(X, p(X, b), L) then L is [a, d, f].

bels(B) :− findall(X, belief(X), B).
argument(S, C) :− bels(B), subset(S, B), entails(S, C).
entails(S, C) :− literal(C), member(C, S).
entails(S, C) :− member(X → C, S), entails(S, X).
entails(S, X ∧ Y) :− entails(S, X), entails(S, Y).
literal(X) :− atom(X).
literal(¬X) :− atom(X).

The above is an example, and so in general, we do not assume any
fixed definition for say argument or entails. For instance, here
argument is defined so that there is no condition to ensure that the
support S is minimal or consistent. If we require those conditions,
then we revise this definition for the application.

For e(n) = (s1(n), a1(n), p(n), a2(n), s2(n)), the reasoning

state for an agent x is sx(n) ∪ p(n). This denotes the literals that
agent x has available at time n in its private state and the public state.
An agent has access to the definitions of the builtin predicates via a
base function, denoted Base, that returns the closure of the literals
that can be inferred from the reasoning state and the definitions of
the builtin predicates.

Example 4. Let Prog be the Prolog program given in Ex 3. For an
agent x with reasoning state sx(n) ∪ p(n), let

Base(sx(n), p(n)) = {φ | Prog ∪ sx(n) ∪ p(n) �Prolog φ}
where Prog∪sx(n)∪p(n) �Prolog φ denotes that the ground atom
φ follows from the program Prog and the literals in sx(n) ∪ p(n).
Suppose s1(1) contains belief(p) and belief(p → q), then
Base(s1(1), p(1)) contains argument({p, p → q}, q). In this ex-
ample, we skip the straightforward details of translating between lit-
erals and Prolog syntax (e.g. representing sets as lists).

We could define builtin predicates to capture a range of proposals
for argumentation, such as for ASPIC+ [24], DeLP [12], ABA [9],
classical logic [3], or abstract argumentation [6, 8]. SinceBase is the
closure of the reasoning state, it is straightforward to define it without
using Prolog (e.g. declaratively using classical logic, or imperatively
using pseudocode, or a programming language).

5 SYSTEMS

We define each FDA system in terms of a set of agents, where each
agent is defined by a set of action rules. The action rules for an agent
specify what moves the agent can potentially make based on the cur-
rent state of the dialogue, and a selection function picks a subset of
these to act upon.
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Definition 2. A system is a tuple (Base,Rulesx, Selectx, Start)
where {1, 2} is the set of agents, Base is a base function, Rulesx is
the set of action rules for agent x, Selectx is the selection function
for agent x, and Start is the set of starting states.

Given the current state of an execution, the following definition
captures which rules are fired. For agent x these are the ground rules
that have the condition literals satisfied by the current private state
sx(n) and public state p(n), together with any implied builtin pred-
icates. In this paper, we use classical entailment, denoted |=, for the
satisfaction relation, but other entailment relations such as for Bel-
nap’s four logic could be used.

Definition 3. For a system (Base,Rulesx, Selectx, Start) and
an execution e = (s1, a1, p, a2, s2, t), the fired action formu-

lae, denoted Firedx(n), is defined as follows where x ∈ {1, 2},
n ∈ {1, . . . , t}, and Grd(Rulesx) = {φ′ ⇒ ψ′ | φ ⇒ ψ ∈
Rulesx and φ′ ⇒ ψ′ is a ground version of φ⇒ ψ}.

{ψ′ | φ′ ⇒ ψ′ ∈ Grd(Rulesx) and Base(sx(n), p(n)) |= φ′}

The selection function Selectx picks a subset of the heads of the
fired grounded action rules for an agent x and n ∈ N, thereby speci-
fying how the current state is changed into the next state of the execu-
tion. In general, we want simple definitions for the selection function.
We illustrate some options below. Note, the second option below is
an alternative to encoding turn-taking in action rules (c.f. Ex. 2). For
the fourth option below, we assume each agent has a ranking over its
ground action rules reflecting its preferences over the actions.

• Selectx is an exhaustive selection function iff Selectx(n) =
Firedx(n).

• Selectx is a turn-taking selection function iff

– Selectx(n) = Firedx(n) when x is 1 and n is odd

– Selectx(n) = Firedx(n) when x is 2 and n is even

– Selectx(n) = ∅ when x is 2 and n is odd

– Selectx(n) = ∅ when x is 1 and n is even

• Selectx is a non-deterministic selection function iff
Selectx(n) = {φ} where φ is the head of a randomly
selected fired rule for agent x.

• Selectx is a ranked selection function iff Selectx(n) = {φ}
where φ is the head of the fired rule of highest rank for agent x.

In order to relate an action state in an execution with an action
formula, we require the following definition of satisfaction.

Definition 4. For an action state ax(n), and an action formula φ,
ax(n) satisfies φ, denoted ax(n)|∼ φ, as follows.

1. ax(n)|∼ α iff α ∈ ax(n) when α is an action unit
2. ax(n)|∼ α ∧ β iff ax(n)|∼ α and ax(n)|∼ β
3. ax(n)|∼ α ∨ β iff ax(n)|∼ α or ax(n)|∼ β

For an action state ax(n), and an action formula φ, ax(n) mini-

mally satisfies φ denoted ax(n) � φ, iff ax(n)| ∼ φ and for all
{ψ1, ..., ψi} ⊂ ax(n), {ψ1, ..., ψi}|�∼ φ.

Example 5. Consider the execution in Example 2. For agent 1 at n
= 1, we have a1(1) � �c(p) ∧ �t(ann) ∧ �t(bob).

A system generates an execution when the first state e(0) is an
allowed starting state according to the system, and each action state

minimally satisfies the selected actions for each agent, and each sub-
sequent private state (respectively each subsequent public state) is the
current private state (respectively current public state) for the agent
updated by the actions given in the action state, as defined next.

Definition 5. A system (Base,Rulesx, Selectx, Start) generates

an execution (s1, a1, p, s2, a2, t) iff for all x ∈ {1, 2} and for all
n ∈ {0, . . . , t− 1} and where a(n) = a1(n) ∪ a2(n)

1. e(0) ∈ Start
2. sx(n+ 1) = (sx(n) \ {φ | �φ ∈ ax(n)}) ∪ {φ | ⊕φ ∈ ax(n)}
3. p(n+ 1) = (p(n) \ {φ | �φ ∈ a(n)}) ∪ {φ | �φ ∈ a(n)}
4. ax(m) �

∧
(Selectx(m)) for m ∈ {1, . . . , t}

5. a1(m) �= ∅ or a2(m) �= ∅ for m ∈ {1, . . . , t− 1}
6. ax(t) = ∅

Given the starting state, the subsequent states then depend on
which action rules are fired and which actions are selected: Con-
dition 1 ensures that the execution starts from an allowed starting
point; Condition 2 ensures that the next private state for an agent is
the current private state minus those literals that need to be removed,
plus those literals that need to be added; Condition 3 ensures that the
next public state is the current public state minus those literals that
need to be removed, plus those literals that need to be added; Condi-
tion 4 ensures that after the starting state, the actions for each agent
minimally satisfy those that are selected actions for the agent; and
Conditions 5 and 6 ensure that if either agent has actions, then the
execution continues, otherwise the execution terminates.

Example 6. Consider the system where there are no builtin predi-
cates, Selectx is the exhaustive selection function, and the starting
state is ({α, δ}, {}, {β}, {}, {β}).

• Rules1 = {α ∧ δ ⇒ �α ∧ �δ)};
• Rules2 = {α ∧ β ⇒ ⊕α ∧ �β ∧ �β};

For this, there is one execution. It is a simplistic dialogue in which
agent 1 has a literal in its private state that it makes public, and this
causes agent 2 to change its private state to containing that literal.

n s1(n) a1(n) p(n) a2(n) s2(n)

0 α, δ β β

1 α, δ �α,�δ β β

2 α α, β ⊕α,�β,�β β

3 α α α

Given a system, all the executions generated by the system with
the same starting state are collected into an execution tree. So given
the starting state at the root, each path is an execution.

Example 7. Consider the system where there are no builtin predi-
cates, Selectx is the exhaustive selection function, and the starting
state is ({}, {}, {α}, {}, {}).

• Rules1 = {α⇒ �α ∧ (�β ∨ �γ)}
• Rules2 = {β ⇒ �β ∧ (�δ ∨ �φ), γ ⇒ �γ ∧ (�ε ∨ �ψ)}
Each branch refers to an execution (i.e. a dialogue). Each node in
this tree is a public state.

α

β

δ φ

γ

ε ψ
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We can also get branching in the execution tree by using the non-
deterministic selection function. For instance, we can generate the
above execution tree if we have Rules1 containing α ⇒ �α ∧ �β
and α ⇒ �α ∧ �γ and Rules2 containing β ⇒ �β ∧ �δ, β ⇒
�β ∧ �φ, γ ⇒ �γ ∧ �ε, and γ ⇒ �γ ∧ �ψ.

6 CASE STUDY

Here we consider a simple persuasion dialogue system adapted from
the system by Prakken [22, 23]. It supports a range of dialogical
moves including assertion of claims, querying of claims, retraction
of claims, assertion of arguments for claims, and assertion of coun-
terarguments to arguments. This means that counterarguments can be
presented to arguments by recursion. For this, we assume the follow-
ing variables and function: X is an agent and op(X) is the other agent;
And B and C are formulae, and S is a set of formulae.

• bel(C) is a literal in the private state of an agent to denote that the
agent believes formula C.

• claim(X, C) is a literal in the public state that represents that agent
X has claimed formula C.

• why(X, C) is a literal in the public state that represents that agent X
has queried the other agent about C.

• concede(X, C) is a literal in the public state that represents that
agent X has conceded to the other agent that it believes C.

• posit(X, S, C) is a literal in the public state that represents that
agent X has presented S as support for an argument with claim C.

In addition, we require the following builtin predicates that help
agents to identify what moves to make.

• unqueried(C) holds when there is a claim for C, and there is no
why move concerning C, and no argument for C has been posited.

• unconceded(X, B) holds when agent X has not conceded the for-
mula B.

• hasarg(X, S, C) holds when agent X believes each of the items in
S and S is the support for an argument with claim C.

• lackarg(X, C) holds when agent X lacks some beliefs for the sup-
port for an argument with claim C

• new(S, C) holds when no argument with support S and claim C has
been posited.

Using these builtin predicates, we can define the following action
rules that are in bothR1 andR2, where X, C, S, T, and B are variables.

• claim(X, C) ∧ unqueried(C)
⇒ �why(op(X), C)

• claim(X, C) ∧ why(op(X), C) ∧ lacksarg(X, C)
⇒ �claim(X, C) ∧ �why(op(X), C)

• why(op(X), C) ∧ hasarg(X, S, C) ∧ new(S, C)
⇒ �posit(X, S, C) ∧ �why(op(X), C)

• posit(X, S, C) ∧ in(B, S) ∧ bel(B) ∧ unconceded(op(X), B)
⇒ �concede(op(X), B)

• posit(X, S, C) ∧ (in(B, S) ∨ B = C) ∧ hasarg(op(X), T,¬B) ∧
new(T,¬B) ⇒ �posit(op(X), T,¬B)

The following is the sequence of actions in the execution of the
system with the turn-taking selection function. The dialogue is be-
tween agent 1 (Olga) and agent 2 (Paul) concerning the claim by
Paul that a particular car is safe. Olga believes that the airbags can
explode without an accident, and Paul believes that the report on this
comes from unreliable newspaper reports. Olga also believes that

the car is too fast. The starting state includes an action which in ef-
fect has initiated the dialogue. For the starting state, s1(0) contains
bel(airbag), bel(expld), bel(expld → ¬safe), bel(fast),
and bel(fast → ¬safe), and p(0) = ∅, and s2(0) contains
bel(airbag), bel(airbag → safe), bel(unreliablenews), and
bel(unreliablenews → ¬expld).

n x ax(n)

0 2 �claim(Paul, safe)

1 1 �why(Olga, safe)

2 2 �why(Olga, safe)
�posit(Paul, {airbag, airbag → safe}, safe)

3 1 �concede(Olga, airbag)
�posit(Olga, {expld, expld → ¬safe},¬safe)
�posit(Olga, {fast, fast → ¬safe},¬safe)

4 2 �posit(Paul, {unreliablenews,
unreliablenews → ¬expld},¬expld)

In the above execution, we can see how the actions on the public
state can capture information about moves and commitments made
by each agent x. With similar builtin predicates, and action rules, we
can capture a range of existing proposals for dialogical argumenta-
tion in this formalism (e.g. [2, 4, 10]). Moreover, the approach allows
any literals to be used in the execution state so allowing richer mod-
eling of the information an agent has about the world and/or about
the other agent, for instance taking into account uncertainty or goals,
thereby allowing for more sophisticated behaviours to be captured
via appropriate action rules.

7 PROPERTIES

We have presented FDA systems as a way to capture a wide range
of interesting and useful systems for dialogical argumentation. So a
natural question is how general is this approach? In this section, we
consider some properties that hold for finite FDA systems (i.e. a sys-
tem where for each action rule, there is a finite number of groundings
of the rule). We show: (1) For any finite state machine (FSM), there is
an FDA system and starting state that generates exactly the execution
sequences consumed by the FSM; and (2) For any finite FDA system,
and a starting state, there is an FSM that consumes exactly the finite
execution sequences of the FDA system for that starting state.

A tuple (States, T rans, Initial, Ends,Alphabet) is a finite

state machine (FSM) where States is a set of states such that
Initial ∈ States is the initial state and Ends ⊆ States are the
end states, Alphabet is a set of letters, and Trans : States ×
Alphabet �→ States is the transition function that given a state and
a letter returns the next state.

A languageLang is a set of strings where each string is a sequence
of letters. An FSM accepts a string τ1...τk in Lang iff there is a
sequence of states σ1, ..., σk such that σ1 is the initial state, σk is an
end state, and for each 1 ≤ i < k, Trans(σi, τi) = σi+1.

Definition 6. Let Lang be the set of strings formed from the letters
in Alphabet. An execution e = (s1, a1, p, a2, s2, t) mimics a string
ρ ∈ Lang iff (1) ρ is a sequence of t − 2 letters; (2) for all n such
that 1 < n ≤ t− 1, |p(n) ∩ Alphabet| = 1; and (3) if τ is the nth
letter in ρ, then τ ∈ p(n+ 1).

We explain the conditions in Def. 6 as follows: (1) the execution
terminates at t, and the string has t − 2 letters; (2) each public state
from n = 2 to n = t− 1 contains one letter; and (3) the nth letter of
the string occurs as a positive literal in the (n+ 1)th public state.
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Example 8. For the string ρ = τaτbτbτc, the following execution
mimics it.

n s1(n) a1(n) p(n) a2(n) s2(n)

0 start

1 �σa, �τa, �start start

2 �σa, �τa, �σb, �τb σa, τa

3 �σb, �τb, �σb, �τb σb, τb

4 �σb, �τb, �σb, �τc σb, τb

5 �σb, �τc, �σc σb, τc

6 σc

We can generate this execution from the following set of action
rules in R1, and R2 = ∅.

start⇒ �start ∧ �σa ∧ �τa

σa ∧ τa ⇒ �σa ∧ �τa ∧ �σb ∧ (�τb ∨ �τc)
σb ∧ τb ⇒ �σb ∧ �τb ∧ �σb ∧ (�τb ∨ �τc)
σb ∧ τc ⇒ �σb ∧ �τc ∧ �σc

Definition 7. An FDA system S simulates an FSM M iff

• for all ρ such thatM accepts ρ, there is an e such that S generates
e and e mimics ρ.

• for all finite e such that S generates e, then there is a ρ such that
M accepts ρ and e mimics ρ.

Example 9. The following FDA system S simulates the FSM M
below where the starting state is (∅, ∅, {start}, ∅, ∅) and each agent
has the following action rules and the exhaustive selection function.

start⇒ �start ∧ �σa ∧ (�τa ∨ �τb)
σa ∧ τa ⇒ �σa ∧ �τa ∧ �σb ∧ �τc

σa ∧ τb ⇒ �σa ∧ �τb ∧ �σc ∧ (�τd ∨ �τe)
σb ∧ τc ⇒ �σb ∧ �τc ∧ �σd

σc ∧ τd ⇒ �σc ∧ �τd ∧ �σd

σc ∧ τe ⇒ �σc ∧ �τe ∧ �σc ∧ (�τd ∨ �τe)

σastart

σb

σc

σd

τa

τb

τc

τd

τe

In the above example, we introduce an atom σi in the language of
the action rules for each state σi in the FSM, and we introduce an
action rule for each transition that effectively creates the transition
from state σi and letter τj to state σk by deleting σi and τj and adding
σk in the next public state in the execution. Next, we generalize this
to give the result that any FSM can be simulated by an FDA system.

Theorem 1. For each FSM M , there is an FDA system S such that
S simulates M .

Now we turn to showing that each execution generated by a finite
FDA system and a starting state can be modelled by an FSM. For this,
we require the following definition which says that a string reflects an
execution when each letter in the sequence is a tuple (a1(n), a2(n))
where the first item is the actions of agent 1 at time n, and the second
item is the actions of agent 2 at time n.

Definition 8. A string ρ reflects an execution e =
(s1, a1, p, a2, s2, t) iff ρ is the string τ0 . . . τt−1 and for each
0 ≤ n < t, τn is the tuple (a1(n), a2(n)).

Example 10. The string ρ = τaτbτcτdτe reflects the follow-
ing execution where τa = ({}, {}), τb is ({�α,�δ}, {�β,�δ}),
τc is ({�α}, {�γ}), τd is ({�δ,�γ}, {}), and τe is ({}, {�ε}).

n s1(n) a1(n) p(n) a2(n) s2(n)

0 δ

1 �α, �δ δ �β, �δ
2 �α α, β �γ
3 �δ, �γ β, γ
4 β, δ �ε
5 β, δ, ε

Definition 9. Let S = (Base,Rulesx, Selectx, Start) be an FDA
system. An FSM M fabricates S with respect to c ∈ Start iff

• for all ρ such thatM accepts ρ, there is an e such that S generates
e and e(0) = c and ρ reflects e.

• for all finite e such that S generates e and e(0) = c, then there is
a ρ such that M accepts ρ and ρ reflects e.

Example 11. Let S be an FDA system where each agent has the
following action rules, and the exhaustive selection function, and let
the starting state be c = ({α}, {}, {}, {}, {}).

α⇒ (�β ∨ �γ) ∧ �α
β ⇒ �δ ∧ �β
γ ⇒ �δ ∧ �γ

The FSM M below fabricates the FDA system S .

σastart

σb

σc

σd

τa

τb

τc

τd

σa is ({α}, {}, {}) τa is ({�β,�α}, {})
σb is ({}, {β}, {}) τb is ({�γ,�α}, {})
σc is ({}, {γ}, {}) τc is ({�β,�δ}, {�β,�δ})
σd is ({}, {δ}, {}) τd is ({�γ,�δ}, {�γ,�δ})

So the way we show that there is a way to have an FSM that
fabricates a system is to build an FSM where each state is a tu-
ple (s1(n), p(n), s2(n)), and each letter in the alphabet is a tuple
(a1(n), a2(n)), for some n in an execution. Then the transitions in
the FSM are defined by the action rules in the system. For this the-
orem, we are drawing on the fact that the ground action rules are
essentially propositional (i.e. there is only a finite number of terms
that can be used to ground the action rules).

Theorem 2. For each S = (Base,Rulesx, Selectx, Start), if S
is a finite FDA system, and c ∈ Start, then there is an FSM M such
that M fabricates S w.r.t. c.

By using FSMs, we can also consider questions about specific sys-
tems, such as: Is termination possible; Is termination guaranteed; Are
all states possible (i.e. reachable); And is a system minimal (i.e. are
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some states redundant)? So by translating a system into an FSM, we
can harness substantial theory and tools for analysing FSMs.

Whilst, we have shown that the FDA approach subsumes FSMs,
and how a finite FDA system, with a particular starting state, can be
modelled as an FSM, we need more than FSMs to better model infi-
nite executions and to capture non-finite FDA systems. For this, we
will turn to ω-automata and to temporal logics (including Gabbay’s
executable temporal logic [11]).

8 DISCUSSION

In this paper, we have presented a uniform way of presenting dia-
logical argumentation systems. The approach is based on a simple
executable logic. Each action rule has an antecedent that refers to the
current state of the dialogue, and a head that specifies the possible
actions that can be undertaken on the next state of the dialogue. This
uniform representation means that different dialogical argumenta-
tion systems can be compared more easily than before. Furthermore,
properties of them (such as termination, consistency, fairness, dead-
lock, etc) can be identified and used to classify different approaches.

In dialogue systems, a protocol specifies the moves that are al-
lowed by the participants. We can represent a protocol by an FDA
system SP . An FDA system S is compliant with a protocol SP when
each of the rules φ in Rulesx is more constrained than a rule φP in
RulesP

x (i.e. the condition of the φ entails the condition of φP and
every set of action units satisfying the head of φ satisfies the head of
φP ). Furthermore, the strategy of an agent x is encoded in the action
rules in Rulesx since the moves an agent wants to make, and un-
der what conditions, are specified by the conditions and heads of the
rules. Whilst the choice of selection function also affects the strategy
of an agent, we believe that only simple standard selection functions
should be used, and that using action rules for capturing the strategy
will be easier and more flexible to specify and better to analyse.

The FDA approach presented in this paper is the first proposal
that uses a simple logical formalism for specifying and comparing
diverse systems for dialogical argumentation. There have been few
other proposals for general frameworks. Situation calculus has been
used by Brewka [5] for a general framework. Situation calculus is
based on second-order logic which is a complex logic to use and to
reason with. The specifications are not based on the simple action
rules used in the FDA approach. Rather, the specifications are based
on second-order formulae that delineate the possible and necessary
dialogue acts. The situation calculus framework only considers the
public state, and so there is no consideration of private states. Finally,
given the form of the second-order specifications, it is unlikely that
it would be practical to execute the specifications.

General frameworks for dialogue games have been proposed by
Maudet and Evrard [16] and by Parsons and McBurney [18]. They
have both private and public aspects to the dialogue state, and di-
verse kinds of moves. They offer insights on issues concerning the
formalisation of specific dialogical argumentation systems. However,
they do not provide a formal definition of what constitutes a system
for dialogical argumentation. It is therefore unclear what counts as a
system and what does not. This means that it is difficult to identify
general properties of the framework, and it is difficult to consider
properties of specific classes of system.

In future work, we will systematically classify dialogical argumen-
tation systems in the literature, develop a richer understanding of the
role of protocols (extending for instance the proposals by Amgoud
et al [1]), identify classes of FDA system with good properties, and
generalize the FDA approach by considering uncertainty in states and

conditions for action rules that consider previous states.
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