
An O(n log n) Bound Consistency Algorithm for the
Conjunction of an alldifferent and an Inequality between a

Sum of Variables and a Constant, and its Generalization
Nicolas Beldiceanu1 and Mats Carlsson2 and Thierry Petit3 and Jean-Charles Régin4

Abstract. This paper gives anO(n log n) bound-consistency filter-
ing algorithm for the conjunction alldifferent(V0, V1, . . . , Vn−1) ∧
f(V0)⊕ f(V1)⊕ · · · ⊕ f(Vn−1) ≤ cst , (V0, V1, . . . , Vn−1, cst ∈
N

+), where (N,⊕) is a commutative group, f is a unary func-
tion, and both ⊕ and f are monotone increasing. This complexity
is equal to the complexity of the bound-consistency algorithm of the
alldifferent constraint.

1 Introduction

Since the early days of constraint programming it has been part of
the folklore to try to capture the interaction of two constraints in or-
der to perform more deduction. This was for instance done in [1]
for a linear constraint for which all variables should be assigned dis-
tinct values.5 In this context, a better evaluation of the minimum and
maximum values of a linear term was suggested, since assigning all
variables to their minimum (resp. maximum) value leads to a poor
bound which totally ignores the alldifferent constraint. More re-
cently, it has been quoted that such patterns can be directly captured
by a global constraint such as global cardinality with costs [2]
(see the Usage slot of this constraint in [3]). However using
global cardinality with costs for this purpose is not memory and
time effective (i.e., we need to introduce a cost matrix and the worst
case time complexity of the algorithm is O(n(m + n log n)) where
n is number of variables, and m the sum of domain sizes). Moti-
vated by these facts, this paper provides a generic bound-consistency
(i.e., a filtering algorithm ensures bound-consistency for a given con-
straint C if and only if for every variable V of C there exists at least
one solution for C such that V can be assigned to its minimum value
V (resp. maximum value V) and every other variable U of C is as-
signed to a value in [U,U] [4]) filtering algorithm for the conjunction
alldifferent(V0, V1, . . . , Vn−1)∧f(V0)⊕f(V1)⊕· · ·⊕f(Vn−1) ≤
cst (V0, V1, . . . , Vn−1, cst ∈ N

+), where:

• Vi (0 ≤ i < n) is a variable taking its value in a given fixed
interval [Vi, Vi].

• alldifferent(V0, V1, . . . , Vn−1) is a constraint enforcing variables
V0, V1, . . . , Vn−1 to be assigned distinct integer values.

1 Mines de Nantes, France, email: Nicolas.Beldiceanu@mines-nantes.fr
2 SICS, Sweden, email: Mats.Carlsson@sics.se
3 Mines de Nantes, France, email: Thierry.Petit@mines-nantes.fr
4 3S, CNRS, University of Nice-Sophia Antipolis, email: Jean-
Charles.Regin@unice.fr

5 Note that the same problem arises also when the linear constraint is replaced
by a more general arithmetic constraint.

• (N,⊕) is a commutative group, where in addition ⊕ is monotone
increasing, (∀ p, q1, q2 ∈ N

+ : q1 > q2 ⇒ p ⊕ q1 > p ⊕ q2).
⊕−1 denotes the inverse operation.

• f is a monotone increasing function (q1 > q2 ⇒ f(q1) > f(q2)).

Example 1 As an illustrative example, consider ten variables
V0, V1, . . . , V9 which respectively take integer values in intervals
[1, 8], [2, 5], [3, 4], [3, 4], [2, 5], [1, 16], [7, 12], [7, 16], [9, 16],
[12, 16]. Assume that, given these ten variables, we have the follow-
ing conjunction of constraints:

1. alldifferent(V0, V1, . . . , V9) ∧
∑9

i=0 V
2
i ≤ 500,

2. alldifferent(V0, V1, . . . , V9) ∧
∏9

i=0 Vi ≤ 4717500.

For each of these conjunctions, a bound-consistency algorithm would
respectively narrow6 the domains to:

1. V0 ∈ [1, 8], V1 ∈ [2, 5], V2 ∈ [3, 4], V3 ∈ [3, 4], V4 ∈ [2, 5], V5 ∈

[1,10], V6 ∈ [7,11], V7 ∈ [7, 11], V8 ∈ [9,11], V9 ∈ [12, 14].

2. V0 ∈ [1, 6], V1 ∈ [2, 5], V2 ∈ [3, 4], V3 ∈ [3, 4], V4 ∈ [2, 5], V5 ∈

[1,10], V6 ∈ [7, 8], V7 ∈ [7, 8], V8 ∈ [9, 9], V9 ∈ [12,13]. The
details leading to this pruning will be given in Figure 1.

The main question addressed by this paper is how such filtering can
be done efficiently with a generic algorithm that is parametrized by a
binary operation ⊕ and a monotone increasing function f . Section 2
provides an O(n log n) bound-consistency filtering algorithm for
such a pattern, where n is the number of variables. Motivated by the
common pattern of combining alldifferent with multiple arithmetic
constraints, Section 3 introduces the alldifferent arith constraint. It
shows how to reuse and enhance the filtering algorithm introduced in
Section 2 in order to partially take into account initial holes as well
as fixed variables. Finally, Section 4 evaluates alldifferent arith .

2 Bound Consistency for a Conjunction of an
alldifferent and a linear inequality Constraints

Assuming each variable has no holes in its domain, this section pro-
vides:

1. A priority rule for computing the minimum cost matching for the
special case where ⊕ is the sum operator and f the identity func-
tion.

2. A discussion how the same priority rule can be used when (N,⊕)
is a commutative group, f is a unary function, and both ⊕ and f
are monotone increasing.

3. An O(n log n) algorithm implementing this priority rule.

6 Domain reductions are shown in bold.

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-145

145

4. An O(n log n) filtering algorithm that achieves
bound-consistency for a conjunction of an
alldifferent(V0, V1, . . . , Vn−1) constraint and an arithmetic in-
equality constraint of the form ⊕i∈I,I⊆{0,1,...,n−1}f(Vi) ≤ cst .

2.1 Minimum Cost Matching

This section provides a priority rule for computing a variable-value
assignment using distinct values and minimizing the sum of all the
variables (i.e., a minimum cost matching). Values are traversed in in-
creasing order, a value being assigned to the still unassigned variable
with the smallest maximum. Groups of consecutive values that do
not belong to any variable are skipped.

Priority Rule. We consider the variable-value graph G =
((V,∪D(V)), E) where V = {V0, . . . , Vn−1} is a set of variables,
∪D(V) the union of domains of variables in V , and E a set of edges.
An edge e belongs to E iff the three following conditions hold: (1)
one extremity of e is a variable Vi ∈ V , and (2) the other extremity
of e is a value v ∈ ∪D(V), and (3) the value v is in the domain of Vi.
Note that our variable-value graph is convex since each domain

consists of one single interval of consecutive values. Taking advan-
tage of convexity usually allows to get a better complexity, for in-
stance for a maximum matching in a bipartite graph; see [5].

Definition 1 (var-perfect matching) Given a variable-value graph
G = ((V,∪D(V)), E), a var-perfect matching is a subset M of E
of size |V| = n such that there is no pair of edges in M having an
extremity in common.

Definition 2 Given a subset X of variables V = {V0, . . . , Vn−1}
and an integer value prev , we define:

• cur(X ,prev) = minv∈∪D(X)∧v>prev (v), i.e., the smallest value
in ∪D(X) greater than prev .

• Xcur (X ,prev) = {Vi ∈ X s.t. cur(X ,prev) ∈ D(Vi)}, i.e., the
set of variables in X having value cur(X , prev) in their domains.

• Xmax
cur (X , prev) = {Vj ∈ Xcur (X , prev) s.t. Vj =

minVi∈Xcur (Vi)}, the subset of variables in Xcur (X ,prev) with
the smallest maximum value.

• Vcur (X ,prev)=Vj , Vj∈X
max
cur (X ,prev), s.t.

j=minVi∈X
max

cur (X ,prev)(i), the smallest index of the variables in
Xmax

cur (X , prev).

Notation 1 Given a subset M ⊆ E and value v ∈ ∪D(V), we note
v∈̇M iff v is the extremity of at least one edge in M .

Without loss of generality, the next theorem assumes that
there exists a var-perfect matching in G. Its existence can be
checked in practice by using the polynomial feasibility condition of
alldifferent (V0, V1, . . . , Vn−1).

Theorem 1 Given a variable-value graph G = ((V,∪D(V)), E)
such that there exists at least one var-perfect matching, the minimum
value of

∑
vj ∈̇M

vj among all maximum matchings M of G can be
obtained by the following inductive function h taking three parame-
ters, (i) a set of variables X initialized to V = {V0, . . . , Vn−1}, (ii) a
set of edges M , initially empty, and (iii) a value prev initialized to
min(∪D(V)) − 1:

• If X = ∅ then h(X ,M, prev) = 0.

• Otherwise:

h(X ,M, prev) = cur(X , prev) +

h(X \{Vcur (X , prev)}, M∪{(Vcur (X , prev), cur(X ,prev))},

cur(X , prev))

Proof 1 We prove by induction that (p1) the current set M is a
matching, (p2) M is such that there exists a var-perfect matching
M ′ of G such that M ⊆ M ′ and M ′ minimizes

∑
vj ∈̇M

′ vj , (p3) h
is the sum of values in M , (p4) prev is the largest value extremity of
an edge in M . Initially at step k = 0, M = ∅ and h = 0, the four
properties p1, p2, p3 and p4 are obviously true. We now assume that
the four properties are true for any |M | = k (k < n) and prove that
they remain true for |M | = k + 1. Before updating the parameters
of h, prev equals the largest value extremity of an edge in M . Thus,
by Definition 2, cur(X , prev) is the smallest possible value for a
variable in X greater than values that are extremities of some edges
in M : adding {(Vcur (X , prev), cur(X ,prev))} to M preserves the
fact that M is a matching (so p1 is satisfied) and setting prev to
Cur(X, prev) satisfies p4. By construction, adding cur(X , prev) to
h leads to satisfaction of Property (p3). With respect to Property (p2),
by Definition 2 we know that Vcur (X , prev) is the variable minimiz-
ing the size of interval [cur(X , prev), (Vi)] among all the variables
Vi ∈ X such that cur(X , prev) can be assigned to Vi. Consider
the integer p ≥ 0 such that cur(X ,prev) = Vcur (X , prev) − p. If
p = 0, all Vi’s in Xcur (X , prev) except Vcur (X ,prev) have a max-
imum value in their domain greater that cur(X ,prev) since there
exists at least one var-perfect matching in G. If p = 1 the existence
of a var-perfect matching in G guarantees that there is at most one
variable V ′cur �= Vcur such that V ′cur = Vcur . In this case, adding
Vcur or V ′cur is equivalent, while adding any other variable would
lead to a contradiction with Property (p2) at the next step (in the
other case, selecting the variable with the smallest interval does not
decrease the number of possible extended matchings). This reason-
ing can be generalized by recurrence to any p. Thus, selecting Vcur

guarantees that the number of var-perfect matchings M ′ of G such
that M ⊆ M ′ and M ′ minimizes

∑
vj ∈̇M

′ vj is strictly positive. �

2.2 Validity of the Priority Rule: General Case

Given:

1. (N,⊕) a commutative group where ⊕ is monotone increasing,
2. f a monotone increasing function,
3. a set of integer variables V = {V0, V1, . . . , Vn−1} subject to

alldifferent(V0, V1, . . . , Vn−1),

a matching containing all variables V0, V1, . . . , Vn−1 minimizing
f(V0) ⊕ f(V1) ⊕ · · · ⊕ f(Vn−1) can be obtained, when it ex-
ists, by using the priority rule introduced in Theorem 1. First note
that, given a permutation σ of {0, 1, . . . , n − 1}, since (N,⊕)
is a commutative group, we have that ⊕i∈{0,1,...,n−1}f(Vi) =
⊕i∈{0,1,...,n−1}f(Vσ(i)). Now since both ⊕ and f are monotone
increasing, the values minimizing ⊕i∈{0,1,...,n−1}Vi also minimize
⊕i∈{0,1,...,n−1}f(Vi).

N. Beldiceanu et al. / An O(n log n) Bound Consistency Algorithm146

2.3 Implementing the Priority Rule

Alg. 1 provides an implementation of the priority rule described in
Theorem 1, which achieves a time complexity of O(n log n) by us-
ing a heap for incrementally maintaining the set of candidate vari-
ables for which the minimum value is less than or equal to the max-
imum of (1) the previously matched value plus one, and (2) the min-
imum value of the not yet matched variables. Variables are extracted
from this heap by increasing maximum value.

1: function min cost matching(n, V0..n−1, cst , ⊕, e⊕, f) :
int
n : number of variables of the alldifferent,
V0..n−1 : variables that must be assigned distinct values,
cst : maximum allowed minimum cost of the matching,
⊕ : aggregation operator,
e⊕ : neutral element of the aggregation operator ⊕,
f : monotone increasing function applied to each vari-

able of V0..n−1.
2: Vs0 , Vs1 , . . . , Vsn−1

← V0, V1, . . . , Vn−1 sorted by increasing
minimum value

3: h ← empty heap of indices of var. sorted by increasing maxi-
mum value of var.

4: i ← 0; o� ← e⊕;minval ← Vs0 − 1;
5: for j = 0 to n− 1 do
6: minval ← max(minval + 1, Vsj)

7: while i < n ∧ Vsi ≤ minval do insert si in h; i ← i+1 end
while

8: indj ← extract variable index with smallest maximum value
from h

9: o� ← o� ⊕ f(minval)
10: if o� > cst ∨minval > Vindj

then return cst + 1 end if
11: return o�

Algorithm 1: return the minimum cost of the matching if it exists
and is less than or equal to cst , return cst + 1 otherwise.

2.4 Filtering Algorithm

Definition 3 Given V a set of variables, aHall interval is an interval
[l, u] of values such that there is a set V[l,u] ⊆ V of cardinality u −
l + 1 whose domains are contained in [l, u].

Blocks of a Minimum Cost Matching. The bound-consistency
filtering algorithm of alldifferent [6, 7, 8] adjusts the minimum and
maximum values of the variables of V \ V[l,u] with respect to a Hall
interval [l, u]. Given a minimum cost matching, consisting of a se-
quence of variable-value pairs, computed by Alg. 1, and assuming the
filtering wrt. Hall intervals was already done, this section introduces
the notion of block of variables. The intuition behind is that vari-
ables of the same block are in fact equivalent wrt. the filtering related
to the arithmetic constraint f(V0)⊕ f(V1)⊕ · · · ⊕ f(Vn−1) ≤ cst .
The notion of block will permit evaluating the new cost of a mini-
mum matching under the hypothesis that a variable is assigned an-
other value, without computing from scratch a new minimum cost
matching. Before defining a block, let us first introduce some nota-
tion and let us recall the property achieved by the bound-consistency
algorithm of alldifferent . This property will be needed to show that
our filtering algorithm reaches the fix point in one single step. Af-
ter applying bound-consistency on the variables of an alldifferent

constraint, Property 1 holds:

Property 1 Given a Hall interval [l, u], for any variable whose
range intersects [l, u] without being included in [l, u], its minimum

value (resp. maximum value) is located before (resp. after) the Hall
interval.

Notation 2 Let indk (0 ≤ k < n) denote the index of the kth vari-
able selected by Alg. 1. Let vk denote the value assigned to variable
Vindk

by Alg. 1.

Definition 4 A block is a set of consecutive variable-value pairs
(Vindp , vp), . . . , (Vindq , vq) (p ≤ q) that were computed by Alg. 1
such that the three following properties are satisfied:

i) (Vindp , vp) is the beginning of the block, that is ∀i ∈ [p, q] :
Vindi

≥ vp.
ii) (Vindq , vq) is the end of the block if all variables after Vindq

have their minimum value greater than vq ,
iii) � ∃j ∈ [p+ 1, q] such that ∀i ∈ [j, q] : Vindi

≥ vj .

Intuitively this definition means that i) the minimum value of the
variables matched in a block B is greater than or equal to the min-
imum value that can be assigned to the variables of the block B,
that ii) that the block is maximum, and iii) that there is no other in-
cluded sub-block.
Letm denote the number of blocks of the minimum cost matching

computed by Alg. 1. lowb and upb respectively denote the first and
last variables of block b in ind0..n−1. first b and lastb respectively
denote the smallest and largest matched values of block b.

Example 2 The sequence of (variable,value) pairs corresponding to
the minimum cost matching of the example in the introduction is
(V0, 1), (V1, 2), (V2, 3), (V3, 4), (V4, 5), (V5, 6), (V6, 7), (V7, 8),
(V8, 9), (V9, 12). The sequence is decomposed into the following
blocks:

BLOCK 0: (V0, 1), (V1, 2), (V2, 3), (V3, 4), (V4, 5), (V5, 6)
(i.e., low0 = 0, up0 = 5, first0 = 1, last0 = 6); V0 is not the
end of block 0 since V5 = 1, but V5 is the end of block 0 since
V6, V7, V8, V9 are all greater than 6, the value matched to V5),

BLOCK 1: (V6, 7), (V7, 8) (i.e., low1 = 6, up1 = 7, first1 = 7,
last1 = 8),

BLOCK 2: (V8, 9) (i.e., low2 = 8, up2 = 8, first2 = 9, last2 = 9),

BLOCK 3: (V9, 12) (i.e., low3 = 9, up3 = 9, first3 = 12, last3 =
12).

Theorem 2 shows how to directly compute the cost of the mini-
mum matching under the hypothesis that we reassign a variable to a
value that is different from the one that was assigned in the original
minimum cost matching by Alg. 1.

Notation 3 Given a value v, let nextv denote the smallest un-
matched value greater than or equal to v. Given a block b (0 ≤
b < m) and a value v that is not matched to a variable of block b, let
hb(v) denote the minimum cost of the matching under the hypothesis
that a variable of block b is assigned to value v.

Theorem 2 Given as computed by Alg. 1: a matching M of mini-
mum cost o�, a variable Vindi

(0 ≤ i < n) belonging to block b,
and its matched value vi, the minimum cost of the matching under
the assumption that Vindi

is assigned a value ui different from vi
(assuming alldifferent has at least one solution with Vindi

= ui) is:

1. If ui is a value that belongs to the block containing variable Vindi
,

the cost is left unchanged, i.e. is equal to o�.
2. Otherwise, the new cost hb(ui) is computed by first subtracting

from o� the largest matched value of block b, and then adding the
smallest unmatched value, nextui

, greater than or equal to ui,
i.e., hb(ui) =

(
o� ⊕−1 f(lastb)

)
⊕ f(nextui

).

N. Beldiceanu et al. / An O(n log n) Bound Consistency Algorithm 147

Proof 2 The proof is done in two steps: (1) after removing variable
Vindi

(i.e., unassigning variable Vindi
from value vi, the new min-

imum cost matching M ′ can be obtained by compressing the block
b containing value vi in such a way that the largest value of block
b becomes unmatched (i.e., by using ⊕−1 for removing from M the
contribution of lastb), (2) after reintroducing variable Vindi

and as-
signing it to value ui the new minimum cost matching M ′′ can be
obtained by using ⊕ for adding to M ′ the contribution of the small-
est unmatched value greater than or equal to ui. Step (1). Let b be
the block of consecutive variable-value pairs containing value vi. If
vi is the largest value of block b we are done, i.e., the largest value
lastb of block b is now unmatched. Otherwise, by Condition (iii) of
the definition of a block (see Definition 4), we know that there exists
at least one variable Vindi′

of block b, that was matched to a value
v′i greater than value vi, that could possibly be matched to value vi.
So we match Vindi′

to vi and continue in a similar way reorganiz-
ing block b until the largest value of block b becomes unmatched.
Step (2). First, assume that ui corresponds to an unmatched value
of the matching obtained at the end of Step 1 (i.e., the matching ob-
tained after unassigning variable Vindi

). Then we are done, since we
can directly match Vindi

to ui. Second, assume that ui corresponds
to a matched value that belongs to a block b′ distinct from b. Since,
by hypothesis, alldifferent has a solution where Vindi

is assigned
value ui, and since, by hypothesis, no variable of alldifferent has a
hole in its domain, we know that we necessarily will have to use an
unmatched value that is greater than the largest value lastb′ of block
b′. Since we want to minimize the cost of the new matching, we take
the smallest unmatched value. �

Filtering wrt. a Maximum Cost. The filtering algorithm
consists of three phases: (1) It performs bound-consistency on
alldifferent(V0, V1, . . . , Vn−1) alone, using a standard bound-
consistency algorithm.(2) It computes the minimum cost o� of the
matching and fails if this cost is greater than cst . This is achieved by
using Alg. 1. (3) Finally, Alg. 2 removes those values v from the do-
main of the variables of block b (0 ≤ b < m) such that hb(v) > cst .
In order to adjust the maximum value of each variable of a

block b (0 ≤ b < m), we need to identify the largest value v

such that hb(v) ≤ cst . We look for the largest value v such that(
o� ⊕−1 f(lastb)

)
⊕ f(nextv) ≤ cst . By isolating nextv we get

nextv ≤ f−1
(
cst ⊕−1

(
o� ⊕−1 f(lastb)

))
. This is tantamount to

finding the largest value v such that nextv is less than or equal to a
given threshold and can be done in total O(m) time over the blocks.

Example 3 Figure 1 provides the minimum cost function associated
with the last example introduced in the introduction. We use the block
information provided in Example 2. The filtering wrt. the different
blocks is:

• For the block b = 3 we have t =
⌊

4717500
4354560

12

⌋
= 13 (t is un-

matched) and we adjust the maximum value of V9 to max = 13.

• For the block b = 2 we have t =
⌊

4717500
4354560

9

⌋
= 9 (t is unmatched)

and we adjust the maximum value of V8 to max = 9.

• For the block b = 1 we have t =
⌊

4717500
4354560

8

⌋
= 8 (t is the last

matched value of block 1) and we adjust the maximum values of
V6, V7 to max = 8.

• For the block b = 0 we have t =
⌊

4717500
4354560

6

⌋
= 6 (t is the last

matched value of block 0) and we adjust the maximum values of
V0, V1, V2, V3, V4, V5 to max = 6.

1: proceduremin cost matching filter(n, m, V0..n−1, cst , o
�,

⊕, f, ind0..n−1, low0..m−1, up0..m−1, first0..m−1,
last0..m−1)
n : number of variables,
m : number of blocks of the minimum cost matching,
V0..n−1 : variables that must be assigned distinct values,
cst : maximum allowed min. cost of the matching,
o� : min. cost of the matching returned by Alg. 1,
⊕ : aggregation operator,
f : monotone increasing function applied to each

variable of V0..n−1,
ind0..n−1 : variable indices in the order they are considered

by the priority rule,
low0..m−1 : first variable of a block in ind0..n−1,
up0..m−1 : last variable of a block in ind0..n−1,
first0..m−1 : first matched value of the variables of a block,
last0..m−1 : last matched value of the variables of a block.

2: i ← m− 1 // each iteration prunes the maximum value of all variables of
block b (0 ≤ b < m)

3: for b = m− 1 downto 0 do
4: found ← false; t ← �f−1

(
cst ⊕−1

(
o� ⊕−1 f(lastb)

))
�;

5: while ¬found do
6: if (i = m− 1 ∧ t > lasti) ∨ (i > 0 ∧ last i−1 < t ∧ t <

first i) then
7: found ← true;max ← t;
8: else if i > b ∧ last i−1 < first i − 1 ∧ t ≥ first i then
9: found ← true;max ← first i − 1;
10: else if i = b then
11: found ← true;max ← last i;
12: else
13: i ← i− 1
14: for j = lowb to upb do
15: adjust maximum of Vindj

tomax

Algorithm 2: third step for achieving bound-consistency for the con-
junction.

Theorem 3 Bound-consistency for the conjunction
alldifferent(V0, V1, . . . , Vn−1)∧f(V0)⊕f(V1)⊕· · ·⊕f(Vn−1) ≤
cst is directly obtained after applying the three phases of the filter-
ing algorithm (i.e., applying bound-consistency for alldifferent (in
O(n log n)), computing a minimum cost matching, filtering wrt. a
maximum cost) one time, in O(n log n) time complexity.

Proof 3 From Theorem 2 and Phase 3 of the algorithm, any bound
v of a variable in V0, V1, . . . , Vn−1 satisfies hb(v) ≤ cst. We prove
that these three phase are complete (i.e., we do not need to recall
any filtering algorithm). We show that filtering wrt. a maximum cost
(1) neither removes all solutions from alldifferent , (2) nor causes the
bound-consistency filtering of alldifferent to perform more filtering.
(1) follows from the fact that Alg. 1 already computes a solution for
the conjunction. Now for proving (2), we distinguish three cases:

1. If filtering wrt. a maximum cost decreases the maximum value of
a variable to an unmatched value (i.e., a value that does not be-
long to any block), then no new Hall interval is created; since the
bound-consistency filtering of alldifferent is linked to Hall inter-
vals, no further filtering can occur from such domain reductions.

2. If filtering wrt. a maximum cost decreases the maximum value of
a variable to a matched value and does not create any new Hall
interval, then again no further filtering can occur.

3. If filtering wrt. a maximum cost decreases the maximum value of
a variable V to a matched value v and creates a new Hall interval,
then we have the following situation: V and v belong to the same
block b, and v is its largest value; furthermore, variables of block b
had their maximum values decreased to the largest value of block
b. We successively show that this new Hall interval cannot change
the minimum or maximum value of any variable: (i) By construc-

N. Beldiceanu et al. / An O(n log n) Bound Consistency Algorithm148

98VV 76VV 54VV 32VV 10V

=5

=0

=6

=1

0

0

0

0

up

low

last

first

hypothesis that a variable of
block b is assigned value v

: minimum product w.r.t. the

Vmatching
cost
minimum

o*=4354560

cost of minimum product matching: o*=1*2*3*4*5*6*7*8*9*12=4354560
B

LO
C

K
 3

B
LO

C
K

 2

B
LO

C
K

 1

B
LO

C
K

 0

Hall intervals

7741440

6773760

6289920

5322240

4838400

16 values12987654321 1514131110

<4717501
4717440

5080320

5443200

5806080

5987520

7076160

7257600

7620480

7983360

8164800

8709120

9434880

10160640

10886400

11612160

m
in

im
um

 p
ro

du
ct

 o
f t

he
 v

ar
ia

bl
es

 o
f t

he
 a

lld
iff

er
en

t

up

low

last

first first

last

low

up up

low

last

first=7

=8

=6

=7

1

1

1

1

2

2

2

2

3

3

3

3

=9

=9

=8

=8

=12

=12

=9

=9

value per

h3 (v)

h (v)2

1h (v)

h (v)0h (v)b

maximum

block (6, 8, 9 and 13)

(4354560/12)*14

(4354560/12)*16

initial domain (in black) and filtering (in red)

]]]]

the same block

next unmatched value

maximum value in (4354560/6)*10

(4354560/6)*11

(4354560/6)*13

(4354560/6)*14

(4354560/6)*15

(4354560/6)*16

(4354560/8)*10

(4354560/8)*11

(4354560/8)*13

(4354560/8)*14

(4354560/8)*15

(4354560/8)*16

(4354560/9)*10

(4354560/9)*11

(4354560/9)*13

(4354560/9)*14

(4354560/9)*15

(4354560/9)*16

(4354560/12)*13

(4354560/12)*15

13

9

8

8

66

:7..12

:2..5

:3..4

:3..4

:2..5

:1..8

V

V

V

V

V

V

V

V

V

V :7..16

:9..16

:12..16

:1..160

1

2

3

4

5

6

7

8

9

Figure 1. Minimum cost functions hb(v) (0 ≤ b < 4) associated with the 4 blocks of the minimum cost matching of V0 ∈ [1, 8] ∧ V1 ∈ [2, 5]∧
V2 ∈ [3, 4] ∧ V3 ∈ [3, 4] ∧ V4 ∈ [2, 5] ∧ V5 ∈ [1, 16] ∧ V6 ∈ [7, 12] ∧ V7 ∈ [7, 16] ∧ V8 ∈ [9, 16] ∧ V9 ∈ [12, 16] ∧ alldifferent(V0, V1, . . . , V9) ∧∏9

i=0 Vi ≤ 4717500; matched values of the minimum cost matching are shown in bold on the values axis; red points of hb(v) (0 ≤ b ≤ 3) are infeasible
points wrt. the limit 4717500; firstb and lastb (0 ≤ b ≤ 3) denote the first and last matched values of block b, while lowb and upb (0 ≤ b ≤ 3) denote the
index of the first and last variables of block b; consequently, the maximum value of variables of blocks 0, 1, 2 and 3 are respectively set to 6, 8, 9 and 13 (note

that assigning 13 to V9 is still feasible since it leads to a cost of 4354560/12 × 13 = 4717440 ≤ 4717500).

tion of the blocks, the variables whose minimum value may belong
to this new Hall interval necessarily belong to the same block b.
Pruning their minimum value to a value that is greater than the
largest value of block b would lead to a contradiction, since the
maximum value of the variables of block b were decreased to the
largest value of block b. (ii) After filtering wrt. the maximum cost,
no variable of a block b′ preceding block b can have its maxi-
mum value decreased to a value of block b. Consequently, even if
a new Hall interval was created in block b, it cannot contain the
maximum values (obtained after applying line 15 of Alg. 2) of the
variables belonging to blocks that are located before b.

Phases 1 and 2 have a time complexity in O(n log n), while Phase 3
has a O(n) complexity. �

3 The alldifferent arith Constraint

Rather than just providing a global constraint for directly handling
the conjunction alldifferent(V0, V1, . . . , Vn−1)∧ f(V0)⊕ f(V1)⊕
· · · ⊕ f(Vn−1) ≤ cst , we came up with the following global
constraint alldifferent arith(V, C), where V is a set of variables
{V0, V1, . . . , Vn−1} that must be assigned distinct values in N+, and

C is a set of arithmetic constraints of the following forms:

(
∑
Ui∈U

U⊆V

Ui) oi Wi, (
∑
Ui∈U

U⊆V

U
2
i) oi Wi, (

∏
Ui∈U

U⊆V

Ui) oi Wi,

where oi is one of the operators ≤, ≥ or =, and Wi is a con-
stant or a variable. Even if we cannot enforce bound-consistency for
alldifferent arith in polynomial time when oi is the equality, com-
ing up with this constraint is motivated by the following reasons:
Some benchmarks (e.g., magic squares, hexagons, cubes, bimagic
squares) involve an alldifferent constraint together with arithmetic
constraints. Each arithmetic constraint is an equality between a left
hand side, corresponding to a sum, and a variable, such the left hand
side only mentions a subset of variables of the alldifferent . This
constraint also occurs in sum coloring of graphs [9].
We provide for alldifferent arith the three filtering options:
A first option, called GBC , where only bound-consistency is used.
A second option, called GBCF , where we also ignore: (1) val-

ues that initially do not belong to any domain of the variables of
alldifferent , and (2) all already fixed variables of alldifferent .
A third option, named GAC , where we also perform arc-

consistency on alldifferent .

N. Beldiceanu et al. / An O(n log n) Bound Consistency Algorithm 149

Alg. 1, and 2 can be easily extended in order to take into account
variables that were fixed, as well as all values that could not be ini-
tially assigned by any variables. Note that by Property 1, after the
bound-consistency algorithm of alldifferent is completed, the min-
imum and maximum value of each not yet fixed variable does not
equal any fixed variable. Nor does it equal any value that was ini-
tially removed from all domains.

n RBC RAC CBC CAC GBC GBCF GAC

g-2 36.6/1239005 0.04/1207 0.05/0 0.04/0 0.01/0 0.01/0 0.01/0
g-4 –/– 0.16/3615 0.05/0 0.05/0 0.01/0 0.0/0 0.02/0
g-5 5.53/174385 0.03/428 0.04/0 0.06/0 0.01/0 0.01/0 0.01/0
g-6 –/– 1.27/40700 0.04/0 0.03/0 0.0/1 0.01/1 0.01/1
g-7 29.7/1235358 0.16/4413 0.04/0 0.04/0 0.01/20 0.01/20 0.01/4
g-8 –/– –/– 0.04/0 0.05/0 0.01/18 0.01/18 0.01/8
g-9 121.0 61.0 0.05/0 0.06/0 0.01/15 0.01/15 0.02/11

/3824084 /1542016
g-10 –/– 4.12 0.06/0 0.04/0 0.01/4 0.0/4 0.01/3

/109090 0.06/0
g-11 –/– –/– 0.05/0 0.06/0 9.22 8.62 0.02/175

/176985 /178916
g-12 –/– 0.75/19168 0.06/0 0.05/0 0.01/9 0.01/9 0.01/6
g-13 –/– –/– 0.06/0 0.07/0 0.01/12 0.01/12 0.01/0
g-14 –/– –/– 0.05/0 0.07/0 0.01/33 0.01/33 0.01/42
mix2-23 3.92/95479 0.02/230 0.04/0 0.04/0 0.01/0 0.01/0 0.01/0
mix-23 2.56/69671 0.02/288 0.05/0 0.04/0 0.01/0 0.0/0 0.01/0
g-1 –/– 17.6 0.11/0 0.09/0 0.02/0 0.01/0 0.03/0

/373852
g-2 –/– 258.0 0.08/0 0.11/0 0.02/32 0.02/32 0.02/5

/6181267
g-3 –/– –/– 0.09/2 0.1/2 0.02/26 0.02/26 0.02/18

n RBC RAC CBC CAC GBC GBCF GAC

6 0.15/66 0.15/66 3.6/21 3.57/21 0.18/25 0.17/21 0.18/21
7 –/– –/– –/– –/– 267.0 224.0 227.0

/49827 /34659 /34657
8 –/– –/– 197.0/1775 202.0/1773 23.9/2406 22.2/1806 21.8/1806
9 –/– –/– 166.0/195 173.0/195 –/– 5.14/195 5.0/195
n RBC RAC CBC CAC GBC GBCF GAC

8 0.0/26 0.01/26 0.04/2 0.02/2 0.01/6 0.0/5 0.0/5
9 0.01/264 0.02/264 0.16/63 0.16/63 0.02/175 0.01/90 0.01/90
10 0.1/1280 0.11/1280 1.03/329 1.04/329 0.14/889 0.07/403 0.06/403
11 0.75/6593 0.7/6593 9.69/2097 9.88/2097 1.05/3970 0.62/2349 0.4/2349
12 33.0 34.1 –/– –/– 64.5 45.7 29.1

/217318 /217318 /170336 /124053 /124053
n RBC RAC CBC CAC GBC GBCF GAC

0.03/56 0.02/56 0.21/15 0.23/15 0.01/23 0.02/15 0.02/15
n RBC RAC CBC CAC GBC GBCF GAC

0.0/2 0.0/2 0.01/2 0.0/2 0.0/0 0.01/0 0.0/0

Table 1. Benchmark results, from top to bottom: Kakuro, Magic Square,
Golomb, Magic Hexagon, and Magic Product. Column 1 gives the instance.
Each cell shows CPU time in seconds/backtracks, or –/–, if it timed out.

4 Evaluation

In order to evaluate our filtering algorithm, we select a number
of benchmarks which mix alldifferent and sum, or product, con-
straints. Unless otherwise stated, variables were assigned using the
order in which they were passed to alldifferent arith and di-
chotomic search for assigning each variable. For these benchmarks
we performed the following evaluations:

• First, with a standard model where the alldifferent and the arith-
metic constraints are stated separately. We test two variants, one
where bound-consistency is used for alldifferent [8], and one
where arc-consistency is used for alldifferent [10]. These two
variants are respectively called RBC and RAC .

• A second model that adds to the standard model a
global cardinality with costs constraint [2] for each linear

equality. The cost matrix of global cardinality with costs is
defined in such a way that each assigned value v has cost v. These
two variants are respectively called CBC and CAC .

• A third model using one single alldifferent arith constraint and
its three options GBC , GBCF , GAC .

We experimented our constraint with the Kakuro benchmark and
some problems of the CSPlib: Magic square and variants, Magic
Hexagon, and Golomb.7 We used SICStus Prolog 4.2 on a quad core
2.8 GHz Intel Core i7-860 machine with 8MB cache per core, run-
ning Ubuntu Linux (using only one processor core). A time-out limit
of 5 CPU minutes was given. Table 1 summarizes the results.
Using global cardinality with costs (options CBC and CAC)

leads to a smaller number of backtracks in all the benchmarks, at a
price of a slowdown up to 35 times compared to the fastest method.
This was expected since, on the one hand, the filtering algorithm of
global cardinality with costs is very heavy, and on the other hand
it performs arc-consistency8 as opposed to bound-consistency.
The new methods presented in this paper, i.e., GBC and GBCF ,

usually lead to the fastest answer. Taking into account the fixed vari-
ables (GBCF) sometimes allows to reduce the time by a factor of
two compared to GBC . However, performing in addition full arc-
consistency (i.e., GAC) usually does not pay off, except for one in-
stance of Kakuro as well as for Golomb.

5 Conclusion

We have provided a generic O(n log n) bound-consistency filtering
algorithm for handling the conjunction V0, V1, . . . , Vn−1 ∈ N

+∧
alldifferent(V0, V1, . . . , Vn−1)∧f(V0)⊕f(V1)⊕· · ·⊕f(Vn−1) ≤
cst , where ⊕ and f have given properties. We have evaluated these
new methods on a number of benchmarks. A challenging question
is whether a combination of this filtering algorithm and dedicated
heuristics could solve open instances of the bimagic square problem.

REFERENCES
[1] J.-L. Laurière. A language and a program for stating and solving com-

binatorial problems. Artificial Intelligence, 10(1):29–127, 1978.
[2] J.-C. Régin. Cost-based arc consistency for global cardinality con-

straints. Constraints, 7(3–4):387–405, 2002.
[3] N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint cat-

alog, 2nd ed. (rev. a). Technical Report T2012-03, SICS, 2012.
[4] C. Bessière. Constraint propagation. In F. Rossi, P. van Beek, and

T. Walsh, editors, Handbook of CP, chapter 3. Elsevier, 2006.
[5] N. Lipski and F. P. Preparata. Efficient algorithms for finding maxi-

mum matchings in convex bipartite graphs and related problems. Acta
Informatica, 15:324–346, 1981.

[6] J.-F. Puget. A fast algorithm for the bound consistency of alldiff con-
straints. In Proc. AAAI, pages 359–366. AAAI Press, 1998.

[7] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and
simple algorithm for bounds consistency of the alldifferent constraint.
In Proc. IJCAI, pages 245–250, 2003.

[8] K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of
the sortedness and the alldifferent constraint. In Proc. CP, volume 1894
of LNCS, pages 306–319. Springer-Verlag, 2000.

[9] Mohammad R. Salavatipour. On sum coloring of graphs. Discrete Appl.
Math., 127:477–488, May 2003.

[10] J.-C. Régin. A filtering algorithm for constraints of difference in CSP.
In Proc. AAAI, pages 362–367, 1994.

[11] P. Galinier, B. Jaumard, R. Morales, and G. Pesant. A constraint-based
approach to the Golomb ruler problem. In Proc. CPAIOR, 2001.

7 For Golomb we combine the essential alldifferent constraint on all the
deltas with the redundant linear constraints on the deltas [11].

8 More precisely, it performs arc-consistency independently for the ≤ side
and the ≥ side of the equality, but not for the conjunction of the two sides.

N. Beldiceanu et al. / An O(n log n) Bound Consistency Algorithm150

