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Abstract. The agent programming language Golog features nonde-
terministic constructs such as nondeterministic branching. Given an
optimization theory the nondeterminism can be resolved optimally.
There are techniques that allow to derive an abstract first-order de-
scription of a value function which is valid across all possible domain
instances. The size of the domain may be unknown or even infinite. A
finite horizon is assumed, though. That is, although the value func-
tion makes no assumptions about the size of the domain, the plans
generated on the basis of the value functions are restricted to a cer-
tain length. In this paper we present a solution for this dilemma for a
specific class of programs. In particular, we present a solution that al-
lows to compute a representation of the value function for non-nested
loops without requiring any restrictions on the number of loop iter-
ations. A pleasing side effect is that our new representation of the
value function is usually smaller than the representations for fixed
horizons.

1 INTRODUCTION

The general problem we are concerned with, is that of finding an
optimal execution strategy (wrt a given optimality criterion) for a
program containing nondeterministic constructs. Assuming the agent
obtains a reward after executing an action, the problem can be solved
with the help of a value function which returns for every program the
sum of accumulated, discounted rewards. Then, the nondeterminism
in the program can be resolved by always opting for the choice which
maximizes the value function. In the context of the situation calculus
and Golog programs, it is possible to construct a first-order represen-
tation of the value function [1] which makes it possible to derive an
execution strategy which is optimal in all possible domain instances.
In particular, no assumptions about the size of the domain are made,
it may be unknown or even infinite. On the downside, that value func-
tion is specific to a horizon h which means that it only considers the
first h steps of the programs. So, on the one hand there is the poten-
tial to deal with arbitrarily sized domains but on the other hand the
execution strategies that can be derived from the value functions are
limited in length by the horizon. In cases where the program execu-
tion directly depends on the size of the domain this is particularly
limiting since for every horizon, no matter how large it is, a domain
instance can be found that requires a policy of greater length. Pro-
grams of this kind are for instance loops that iterate over all domain
objects.

The motivating observation for this work is that in some cases the
first-order representation of the value function for programs contain-
ing loops evolves in a predictable way when the horizon is increased.
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Consequently, we attempt to identify these patterns that allow to pre-
dict how the formulas evolve and encode them explicitly in the repre-
sentation of the value function. The result is that we can find a finite
representation of the value function for loops that does not require
a horizon. First-order binary decision diagrams, a variant of regu-
lar BDDs, are a beneficial data structure for representing first-order
value functions [9]. We propose an extension to FOBDDs which al-
lows for recurrent edges and show how these recurrent FOBDDs can
be used for the representation of value functions for certain kinds
of loops in a way such that a value can be determined if the loop
terminates after a finite but arbitrary number of iterations.

In Sections 2 and 3 we give a short introduction to the agent pro-
gramming language Golog and its underlying framework, the situa-
tion calculus, and show how for a given Golog program a first-order
description of the value function can be derived. The extension of
FOBDDs we propose is introduced in Section 4. There we also de-
scribe under what conditions such recurrent representations can be
found. Afterwards we discuss the limitations of our approach and
conclude in Section 5.

2 SITUATION CALCULUS AND GOLOG

The agent programs we consider in this paper are given in the agent
programming language Golog [6] which is built on top of the situa-
tion calculus [8]. It features the usual constructs such as conditionals
and loops but also nondeterministic constructs such as nondetermin-
istic branching (δ1 | δ2). Here, the agent may either continue with δ1
or with δ2. The situation calculus allows to reason about actions and
change and its actions are the primitives of Golog programs. For ev-
ery action A(�x) a precondition axiom Poss(A(�x), s) ≡ ΠA(�x, s) is
given. A situation is a history of actions, do(a, s) being the situation
reached after executing action a in situation s. S0 denotes the ini-
tial situation. Fluents represent properties of the domain which may
change from situation to situation. The dynamics of the fluents are
specified by so-called successor state axioms which are of the form
F (�x, do(a, s)) ≡ γ+

F (�x, a, s) ∨ F (�x, s) ∧ ¬γ−F (�x, a, s). By the re-
gression of a formula φ, denoted as R [φ], we mean φ with all oc-
currences of every fluent F (�t, do(A, s)) replaced by the right-hand
side of the respective successor state axiom, with �t substituted for �x
and A for a. A basic action theory D (BAT) contains among others
the precondition axioms Dap, the successor state axiom DSSA, and
a description of the initial situation DS0 .

Before a Golog program can be executed the nondeterminism
needs to be resolved. Given an optimization theory the optimal exe-
cution among all possible executions can be determined (cf. [4, 1]).
The optimization theory contains the definition of a reward function
rew(s) which assigns values to situations and a horizon. We assume
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rew(s) to be of the following form where the ri are numeric con-
stants:

rew(s) = r ≡ φrew
1 (s) ∧ r = r1 ∨ · · · ∨ φrew

l (s) ∧ r = rl (1)

In such a setting the semantics of a program can be viewed as the
execution of the first h steps of that program (where h is the horizon)
which maximizes the accumulated reward. 2

3 VALUE FUNCTIONS AND THEIR
REPRESENTATION

We adopt the approach of [1] which explicitly represents the value
function V δ

h (s). For a program δ and a horizon h, V δ
h (s) returns the

maximal accumulated reward for executing the first h steps of δ in s.
Since V δ

h (s) is piece-wise constant, it is especially well suited to be
given in the case notation [3]:

case[φi : vi | 1 ≤ i ≤ n]
def.
=

n∨
i=1

φi ∧ μ = vi (2)

where μ is a special variable that is reserved for the use within case
statements and must not be used anywhere else. The following macro
allows to embed a case statement in a formula without explicitly re-
ferring to μ:

v = case[φi : vi | 1 ≤ i ≤ n]
def.
= case[φi : vi | 1 ≤ i ≤ n] μv (3)

Case statements can be combined in different ways. Two are defined
by the ⊕-operator and the ∪-operator:

case[φi : vi | 1 ≤ i ≤ n]⊕ case[ψj : wj | 1 ≤ j ≤ m]
def.
=

case[φi ∧ ψj : vi + wj | 1 ≤ i ≤ n, 1 ≤ j ≤ m] (4)

case[φ1 : vi | 1 ≤ i ≤ n] ∪ case[ψj : wj | 1 ≤ j ≤ m]
def.
=

case[φ1 : v1, . . . , φn : vn, ψ1 : w1, . . . , ψm : wm] (5)

3.1 Value Functions for Programs

The construction of the case statement representing V δ
h (s) depends

on δ. For instance, if δ begins with a primitive action a (i.e., δ = a; δ′

for some δ′), then V δ
h (s) is constructed as follows:

V a;δ
h (s)

def.
=

{¬Poss(a, s) ∧ rCase(s)
} ∪

{
Poss(a, s) ∧ rCase(s)⊕ γ · R

[
V δ
h−1(do(a, s))

]}
(6)

rCase(s) denotes the case notation of the reward function rew(s)
(cf. Eq. 1). The above case statement differentiates situations in
which a is executable from those in which it is not executable. In the
former case the value is made up of the immediate reward and the
future reward discounted by γ. In the latter case only the immediate
reward is taken into account since the program cannot be executed
any further. A complete definition of V δ

h (s) can be found in [1].

2 Actually, the nondeterminism is resolved with the goal of maximizing the
reward as well as the probability of successfully executing the program. For
reasons of simplifying the presentation we ignore the latter.

0 1 2 · · · n · · · k

goLeft goRight

Figure 1. Hallway domain.

3.2 First-Order BDDs

A variant of binary decision diagrams (BDDs), called first-order
BDD (FOBDD), has been proposed in [9] as a data structure to repre-
sent case statements as V δ

h (s), for instance. Not only does this have
advantages from a representational point of view in comparison to
dealing with plain formulas, also many of the operations can be di-
rectly carried out on FOBDDs without changing the representation
back to plain formulas.

As for BDDs, every decision node in a FOBDDs has two chil-
dren, the high child and the low child. FOBDDs may have arbitrarily
many terminal nodes labeled with real-valued numbers. The decision
nodes of a FOBDD are associated with first-order formulas. Exam-
ples of FOBDDs can be seen in Fig. 2. From every FOBDD F a
case statement can be constructed. This case statement is denoted
by case[F ] and is constructed as follows: for every terminal node v,
add a formula φF

v with associated value v to the case statement. φF
v

is obtained by disjunctively combining the formulas corresponding
to all paths from the root node to v. Let x1, . . . , xt, v be such a path.
The corresponding formula is built by conjunctively combining the
formulas associated with the xi. If xi+1 is the low child of xi then
the negation of the formula associated with xi is taken. A FOBDD
F is said to represent a case statement case[φi : vi | 1 ≤ i ≤ n] if
there are n terminal nodes labeled v1, . . . , vn and |= φF

vi ≡ φi for
all 1 ≤ i ≤ n.

The FOBDDs representing V δ
h (s) are valuated wrt a BAT D and

a ground situation σ. Beginning at the root node of the FOBDD, it
is tested whether D |= φ(σ) where φ is the formula associated with
the root node. If the entailment holds the valuation is continued at the
high child otherwise at the low child. If a terminal node is reached its
value is returned.

3.3 Notation

In the following we make use of some abbreviations to keep the no-
tation concise. In particular these are:

ψ ∧ case[φi : vi | i ≤ n]
def.
= case[ψ ∧ φi : vi | i ≤ n] (7)

v + case[φi : vi | i ≤ n]
def.
= case[φi : v + vi | i ≤ n] (8)

v · case[φi : vi | i ≤ n]
def.
= case[φi : v · vi | i ≤ n] (9)

For a terminal node t of F case[F\t] is the case notation corre-
sponding to F but without the case with the value t.

For FOBDDs F and G and a terminal node t of F , F t
G is the

FOBDD that results from replacing the terminal node t with G. We
write v + F to denote that the value v is added to the value returned
when valuating F , and similar for v · F . For a substitution θ, F θ
means that θ is applied to the formulas associated with the decision
nodes of F .
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Figure 2. FOBDDs representing the value functions for at most one
iteration through the loop (left) and at most two iterations through the loop

(right), respectively.

4 RECURRENT DECISION DIAGRAMS

Let us consider a hallway-like domain as it is depicted in Fig. 1. The
space is divided into tiles which are numbered from 0 to k where k
is a constant. The agent can move to the adjacent tiles by means of
the actions goLeft and goRight . Assume the agent is executing the
following program which instructs it to either repeatedly go to the
left or to the right until it reaches either end.

(while pos �= 0 ∧ pos �= k do goLeft end |
while pos �= 0 ∧ pos �= k do goRight end )

(10)

In the context of an optimization theory the nondeterminism in the
program can be resolved optimally. In the example the agent needs
to determine whether repeatedly going to the right or to the left max-
imizes the value function and decide accordingly for the one or the
other branch. The agent receives a reward of +1 in situations where
it is either at position 0 or at position k; otherwise the reward is −1.
The discount factor is γ. For a given domain instance, that is, for a
known value for k, a horizon can be chosen such that it is guaran-
teed that the agent can reach one of the ends within the horizon. But
generally, if no particular value for k is assumed, it is not possible to
compute a solution with a given horizon. In a nutshell, the horizon
limits the domain instances for which a solution can be computed
to instances of a certain size. On the other hand it is quite simple to
specify a formula such that for every value of k the correct value for
each of the two branches is computed. For instance, if the agent is at
position n the value for going right is

k−n−1∑
i=0

γi · (−1) + γk−n · (+1). (11)

The problem though is that the pattern underlying this computation is
not made explicit in the representation of the value function V δ

h (s).
Let F1 be the left FOBDD depicted in Fig. 2 and F2 be the right

one. Let G1 be the highlighted sub-FOBDD of F1 and G2 be the
highlighted sub-FOBDD of F2. F1 and F2 represent the value func-
tions for the nondeterministic branch of the program above that in-
structs the agent to repeatedly go to the right for a horizon of 1 and
2, respectively (which corresponds to at most one or up to two iter-
ations through the loop). F2 is an extension of F1 in the sense that
one of the terminal nodes of F1, namely −1, is replaced with G2 in
F2. Additionally, G2 exhibits certain similarities to G1: the formu-
las associated with the decision nodes only differ in the value of the

pos(s) = 0

pos(s) = v

1

v ← k

v ← v− 1
〈−1, γ〉

Figure 3. Recurrent FOBDD representing the value function for
while pos �= 0 ∧ pos �= k do goRight end for any (finite) value of k.

functional fluent pos(s); the values of the terminal nodes of G2 are
the result of adding −1 to γ times the value of the corresponding ter-
minal node in G1. That is, the values of the terminal nodes of G2 are
obtained by applying the affine transformation defined by 〈−1, γ〉
on the values of the terminal nodes of G1. So, we see a certain pat-
tern here and if we construct FOBDDs F3, F4, F5, . . . according to
this pattern it can be confirmed that these are in fact representations
of the value function for h = 3, 4, 5, . . .. In particular, F3 would
be constructed by replacing the low child of the node labeled with
pos(s) = k − 1 in F2 with a FOBDD G3 which is similar to G2

only that it is now tested whether pos(s) = k − 2 and the terminal
nodes are obtained by one more application of the affine transforma-
tion 〈−1, γ〉 on the values of the terminal nodes of G2. The idea now
is to explicitly capture this pattern in a data structure representing
the value function. Therefore, we propose an extension of FOBDDs
called recurrent FOBDDs. Fig. 3 shows the recurrent FOBDD re-
sulting from implementing the observations about the evolution of
F2 wrt F1 made above.

Contrary to BDDs (and also FOBDDs) which are acyclic, recur-
rent FOBDDs allow for cycles. The formulas associated with the
nodes within loops have to mention special variables which are ini-
tialized upon the entry in the loop and updated every time a loop is
completed. Therefore, initialization as well as update rules are asso-
ciated with the incoming edges to those nodes which are entry points
to a loop: the initialization rule with the edges along the paths from
the root node and the update rules along all other of these edges.
Additionally, the latter edges are also annotated with an affine trans-
formation. Associating affine transformations with edges has already
been proposed in [10].

The valuation of recurrent FOBDDs is explained on the basis of
the recurrent FOBDD in Fig. 3. Let D be a BAT (containing a value
for k) and σ be a ground situation. If D |= pos(σ) = 0 then the value
+1 is returned. Otherwise the valuation moves on to the low child
and thereby initializes v to the value k. Next, it is determined whether
D |= pos(σ) = k, that is, every occurrence of v is replaced by its
current value k. If so, +1 is returned. Otherwise, v is decremented by
one, now having the value k− 1. If now D |= pos(σ) = k− 1 holds
a terminal node with the value +1 is reached. But since on the path
that the valuation followed there is an edge annotated with the affine
transformation 〈−1, γ〉 not +1 but −1 + γ · (+1) is returned. With
such a valuation strategy the recurrent FOBDD in Fig. 3 concisely
represents the value function for repeatedly going right until one of
the ends is reached for any (finite) value for any k. It is even smaller
than the FOBDD F2. A similar recurrent FOBDD can be constructed
representing the value function for repeatedly going to the left. Then,
for every possible (finite) value of k the values for both programs in
the current situation can be determined and the nondeterminism in
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the program above can be resolved.
In the following we argue why the method we used to construct

the recurrent FOBDD in the example above is correct in general.
First, we need to define what it means that one FOBDD is a variant
of another FOBDD. In the example above, we assumed that G2 is a
variant of G1.

Definition 1 A FOBDD F ′ is considered to be a variant of a
FOBDD F if

• F and F ′ are structurally identical, that is, F ′ can be obtained
from F by simply renaming the nodes and vice versa,

• the formulas associated with the nodes are either equivalent or
are similar (see below), and

• there exists an affine transformation 〈a, b〉 such that t′ = a +
b · t for all terminal node nodes t′ of F ′ and the corresponding
terminal nodes t in F .

Before two formulas can be tested for similarity we assume that
they are transformed into a form such that every functional fluent
f mentioned by the formula occurs in an expression of the form
f(�x, s) + cf = . . . (or f(�x, s) + cf > . . .) where the cf are numer-
ical constants. Then, two formulas φ1 and φ2 are considered similar
if they can be transformed into formulas of the form described above
and only differ in the cf ’s. For similar formulas φ1 and φ2 with nu-
merical constants c1f and c2f a formula φ̂ can be constructed by re-
placing every occurrence of the cf ’s with new variables vf . Then,
for substitutions θ1 = {vf/c1f} and θ2 = {vf/c2f} for the variables
vf it holds that φ1 = φ̂ θ1 and φ2 = φ̂ θ2. In the example above,
pos(s) = k and pos(s) = k − 1 would be transformed into the
equivalent formulas pos(s) + 0 = k and pos(s) + 1 = k. Then
pos(s) + v = k with the substitutions {v/0} and {v/− 1} is equal
to the former and latter formula, respectively.

What we intend to show now is that detecting such a pattern is ac-
tually sufficient to justify the existence of a recurrent FOBDD. That
is, it is correct to assume that the FOBDD continues to evolve accord-
ing to the identified pattern when the horizon is increased further. For
this, we proceed as follows. Theorem 1 shows that this is true for a
very limited case. Namely for the case where the body of the loop
only consists of a single primitive action and the FOBDD represent-
ing the value function for h+1 extends the FOBDD representing the
value function for h only at a single terminal node as it was the case
in the example above. Afterwards we show how these limitations can
be extended such that the claim also holds for loops whose bodies are
finite, deterministic programs and when the FOBDDs are extended at
multiple terminal nodes.

Theorem 1 Let δ = while φ do A end where A is a primitive action
and Fh and Fh+1 (h ≥ 1) be FOBDDs representing V δ

h (s) and
V δ
h+1(s), respectively. If Fh can be composed from FOBDDs F and

G, i.e. Fh = F t
G for a terminal node t of F , and there exists a

terminal node t∗ of G such that Fh+1 = Fh
t∗
G′ and G′ is a variant

of G then there exists a recurrent FOBDD representing the value
function for any finite number of iterations through the loop.

Proof sketch. As a general remark, if Fh and Fh+1 are of a form as
described above, this means that the (h + 1)st iteration through the
loop is only possible in situations where φFh

t∗ holds. Otherwise either
the preconditions for A are not given or the loop condition does not
hold either right now or after executing A up to h times.

V δ
h+1(s) is computed from V δ

h (s) like this:

V δ
h+1(s)

def.
=

{
φ[s] ∧ Poss(A, s) ∧ rCase(s)⊕

γ · R
[
V δ
h (do(A, s))

]}
︸ ︷︷ ︸

S1

∪

{
φ[s] ∧ ¬Poss(A, s) ∧ rCase(s)

}
︸ ︷︷ ︸

S2

∪

{
¬φ[s] ∧ rCase(s)

}
︸ ︷︷ ︸

S3

(12)

S2 and S3 are already present in V δ
h (s) (since h > 0) and therefore

these cases are represented by Fh and also by Fh+1. Thus, the “new”
cases φ

Fh
t∗ ∧ case[G′] have to stem from S1. G′ is a variant of G

and consequently there exists an affine transformation transforming
values of the terminal nodes of G to values of the corresponding
terminal nodes of G′. Looking at how the values are manipulated in
S1, this affine transformation has to be 〈r∗, γ〉, ∗ ∈ {1, . . . , l} (cf.
Eq. 1). Then, S1 can be decomposed as follows:

S1 =
{
φ[s] ∧ Poss(A, s) ∧ φrew

∗ (s) ∧

r∗ + γ · R
[
φF
t ∧ case[G]

]}
︸ ︷︷ ︸

=φ
Fh
t∗ ∧case[G′]

∪

{
φ[s] ∧ Poss(A, s) ∧ case[φrew

i : ri | i �= ∗]⊕

γ · R
[
φF
t ∧ case[G]

]}
∪

{
φ[s] ∧ Poss(A, s) ∧ rCase(s)⊕ γ · R [case[F/t]]

}

(13)

The cases in the first set are precisely the “new” cases φFh
t∗ ∧case[G′]

in V δ
h+1(s). The cases in the second set are all unsatisfiable: these

cases do not lead to new paths in Fh+1 (these are the cases in the
first set) and all the other paths in Fh+1 which are also in Fh imply
that either the preconditions of A do not hold or the loop condition
does not hold right now or after executing A up to h times (cf. initial
observation). The cases in the third set are already in V δ

h (s) (since
h ≥ 1).

Since G′ is a variant of G there has to be a FOBDD Ĝ such that
with appropriate substitutions θ = {vf/cf} and θ′ = {vf/c′f} for
all variables vf it holds that Ĝ θ = G and r∗ + γ · Ĝ θ′ = G′. The
formulas associated with the nodes of G′ result from regressing the
formulas associated with the nodes of G through A (cf. Eq. 13). Due
to the construction of V δ

h (s) the formula φ
Fh
t∗ uniquely determines

how the values of the fluents mentioned by the formulas associated
with the nodes of G change after executing A. Let this change be
described by a function τf . Then c′f = τf (cf ) and G′ = r∗ + γ ·
Ĝ {vf/τf (cf )}.

Similar to Eq. 12, V δ
h+2(s) can be split up into three case state-

ments S′1, S′2, and S′3 with S′2 = S2 and S′3 = S3. Consequently,
these are already contained in V δ

h+1(s). The case statement S′1 is
like S1 only that V δ

h (do(A, s)) is replaced by V δ
h+1(do(A, s). It can

be decomposed in a similar fashion as S1 (cf. Eq. 13) singling out
the case statement combining the reward case φrew

∗ (s) : r∗ with
the regression of the case statement φF

t ∧ φG
t∗ ∧ case[G′]. Know-

ing the structure of φ
Fh+1

t′∗
= φ

Fh
t∗ ∧ φG′

t′∗ (cf. Eq. 13) helps to

D. Beck and G. Lakemeyer / Representing Value Functions with Recurrent Binary Decision Diagrams142



make certain assumptions about the formulas in the case statement
mentioned in the previous sentence. Using these and the fact that
G′ = r∗ + γ · Ĝ {vf/τf (cf )} it can be concluded that this case
statement has to be of the form{

φ
Fh+1

t′∗
∧ γ · r∗ + γ2 · case[Ĝ {vf/τf (τf (cf ))]︸ ︷︷ ︸

=:case[G′′]

}}. (14)

That is, the regression leads to another application of τf and another
affine transformation 〈r∗, γ〉 on the values of case[Ĝ]. Since the re-
maining case in S′1 can be shown to be either unsatisfiable or already
present in V δ

h+1(s) for similar arguments as above, we have thereby

shown that Fh+1 t′∗
G′′ is actually a representation of V δ

h+2(s). Since h
can be arbitrarily chosen, the value functions for any horizon greater
than h can be represented by a FOBDD that is constructed according
to the identified pattern detected by comparing Fh and Fh+1.

A recurrent FOBDD representing the value function for any finite
number of iterations through the loop can then be constructed as fol-
lows:

1. Label every incoming edge to the root node of Ĝ in F t
Ĝ

with vf ←
cf .

2. Add an edge from t∗ in Ĝ to its root node and label it with the
update rules vf ← τf (vf ) and the affine transformation 〈r∗, γ〉.

�

The extension to cases where Fh+1 representing V δ
h+1(s) extends

Fh at several terminal nodes (i.e., Fh+1 = Fh
t1
G1

···
···

tn
Gn

) is straight-
forward as is the construction of the recurrent FOBDD. The idea
behind extending the scope of the theorem to loops over finite, de-
terministic programs is to replace every finite, deterministic program
occuring within a loop with a newly defined primitive action that be-
haves identically to the program it replaces. Then, Theorem 1 applies
again.

4.1 Emulating Deterministic Programs

Finite, deterministic programs are made up of primitive actions, test
actions, conditionals, and sequences. An action α emulates a finite,
deterministic program δ if α can only be executed in situations in
which δ can be completely executed; if executing α affects the fluents
in the same way as executing δ; and if the reward after executing
α is the same as the discounted, accumulated reward accrued while
executing δ.

We refrain from providing a complete account of actions emulat-
ing arbitratry finite, deterministic programs. Instead we introduce the
concepts by means of defining a new action emulating a sequence.
Assume the agent needs to assess the program

while pos �= 0 ∧ pos �= k do goRight; goRight end. (15)

The BAT needs to be extended to incorporate a new action α which
emulates goRight; goRight. In particular, a precondition axiom for
α is added expressing that α can only be executed if the sequence
can be legally executed:

Poss(α, s) ≡ Poss(goRight, s) ∧
R [Poss(goRight, do(goRight, s))] (16)

Further, the successor state axiom for the fluent pos,
pos(do(a, s)) = y ≡ φpos(y, a, s), is replaced by:

pos(do(a, s)) = y ≡ a = α ∧ pos(s) = y − 2 ∨
a �= α ∧ φpos(y, a, s) (17)

The definition of V δ
h (s) for the case where δ begins with a primitive

action needs be updated slightly. It becomes:

V a;δ
h (s)

def.
=

{
Poss(a, s) ∧ rCase(s)⊕

γκ(s) · R
[
V δ
h−κ(s)(do(a, s))

]}
∪

{
¬Poss(a, s) ∧ rCase(s)⊕

γκ(s) · R [rCase(do(a, s))]
}
.

(18)

The discount of future rewards is not constant but depends on κ(s).
The rewards obtained after executing goRight; goRight are dis-
counted by γ2 and so have to be the rewards obtained after executing
α. The function κ(do(a, s)) returns the correct exponent for the ac-
tion a in situation s. For goRight that is always 1 and for α it is
always 2. Corresponding axioms are added to the theory. In situa-
tions where the first goRight can be executed but not the second
one the agent still receives a reward after executing the first action.
Since α is intended to behave identically to the sequence, rewards
obtained by a partial execution of the seqeuence need to be consid-
ered. The changes made in V δ

h (s) to that respect (cf. last two lines
of Eq. 18) require to further change the definition of the reward func-
tion such that it returns 0 for a situation do(goRight, s) if goRight
is not executable in s in order to stay comparable to the old definition
of V δ

h (s) (cf. Eq. 6). The reward function then might be defined by
axioms of the form

rew(S0) = r ≡ Φrew(r, S0) (19)

rew(do(goRight, s)) = r ≡ Φrew
goRight(r, s). (20)

For the new action α the following axiom is added:

rew(do(α, s)) = r ≡
R[

Poss(α, s) ∧ r = rew(s) + γ · rew(do(goRight, s)) ∨
Poss(goRight, s) ∧ ¬Poss(goRight, do(goRight, s)) ∧

r = rew(s) ∨ ¬Poss(goRight, s) ∧ r = 0
]

(21)

Note that even with these changes the reward function as well as
V δ
h (s) can still be represented by case statements since κ(s) can be

given in the case notation.

Lemma 1 Let Dα be the BAT extended to include the new action α
as outlined above. Similar for Oα. Then

Dα ∪Oα |= ∀s. V goRight;goRight(s) = V α(s).

(We omitted the horizon since we are only interested in complete ex-
ecutions, i.e., for a horizon greater than 2.)

The recurrent FOBDD constructed according to Theorem 1 for the
program while pos �= 0∧pos �= k do α end is shown in Fig. 4. As a
consequence of Lemma 1 this recurrent FOBDD is also a representa-
tion of the value function for arbitrarily many iterations through the
loop of the program looping over the sequence of going right twice.

4.2 Limitations

Apart from the obvious limitation that our method can only handle
finite, deterministic programs within the loop, there are more subtle
limitations. For instance, the criteria that have to hold for F ′ being a
variant of F imply certain limitations. For one thing, F ′ can only be a
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pos(s) = 0

pos(s) = k

1

−1 + γ · 1

pos(s) = v

−1 + γ · (−1) + γ2 · 1

pos(s) = v − 1

v ← k − 1

v ← v − 2〈−1 + γ · (−1), γ2
〉

Figure 4. Recurrent FOBDD representing the value function for a loop
over going right twice.

variant of F if the differences between the formulas associated with
the decision nodes can be limited to numerical, functional fluents
having different values. Consequently, there have to be numerical,
functional fluents that change with every further iteration through the
loop. For another, how these values change underlies certain restric-
tions by itself. For example, if the value of a fluent f after executing
an action a would be set to the maximal value of g(x) for any x, then
this would not lead to a recurrent FOBDD.

5 CONCLUSIONS

Other areas of research which show interest in loops are for instance
program verification [2], algorithmic design [7], and a special disci-
pline in the area of planning which is concerned with finding plans
that contain loops [5]. In these areas it is usually of interest what
properties change respectively do not change when the loop is ex-
ecuted and whether or even after how many iterations it terminates
and what conditions do hold then. In that respect these interests are
different from ours: we are not interested in the invariants per se but
in the invariance with which the representation of the value functions
changes.

In [11] data structures similar to FOBDDs are used to represent
the value function for Relational Markov Decision Processes. Their
semantics though is defined wrt single interpretations (it is not based
on entailments as in our case) and the formulas associated with the
nodes have to be quantifier-free. It might be worthwhile to investi-
gate whether similar recurrent extensions can be integrated into their
approach.

We introduced an extension to FOBDDs that allows for recurrent
edges and showed that under certain conditions these recurrent FOB-
DDs can represent the value function for a loop program without the
limitations of a horizon: the value function provides a value in all
cases where after an arbitrary finite number of iterations the loop
terminates. For now, only finite, deterministic programs are allowed
within the loops. But we are currently working on extending this
approach to also allow for nondeterminism within the loop, thus in-
creasing the range of programs amenable to our approach. Finally,
another open question is how to handle nested loops.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their helpful comments
which helped to improve the quality of this paper.

REFERENCES

[1] D. Beck and G. Lakemeyer, ‘Decision-theoretic planning for golog
programs with action abstraction’, in Proceedings of the Ninth Inter-
national Workshop on Non-Monotonic Reasoning, Action and Change
(NRAC-11), pp. 39–46, (2011).

[2] S. Bensalem, Y. Lakhnech, and H. Saı̈di, ‘Powerful techniques for the
automatic generation of invariants’, in Proceedings of the 8th Interna-
tional Conference on Computer Aided Verification, CAV ’96, pp. 323–
335, (1996).

[3] C. Boutilier, R. Reiter, and B. Price, ‘Symbolic dynamic programming
for first-order MDPs’, in Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI-01), pp. 690–700,
(2001).

[4] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun, ‘Decision-
theoretic, high-level agent programming in the situation calculus’, in
Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence, pp. 355–362, (2000).

[5] H. Levesque, ‘Planning with loops’, in Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, volume 19,
pp. 509–515, (2005).

[6] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl, ‘GOLOG:
A logic programming language for dynamic domains’, The Journal of
Logic Programming, 31(1-3), 59–83, (1997).

[7] Y. Liu, S. Stoller, and T. Teitelbaum, ‘Strengthening invariants for ef-
ficient computation’, Science of Computer Programming, 41(2), 139 –
172, (2001).

[8] R. Reiter, Knowledge in action: logical foundations for specifying and
implementing dynamical systems, 2001.

[9] S. Sanner and C. Boutilier, ‘Practical solution techniques for first-order
MDPs’, Artificial Intelligence, 173(5-6), 748–788, (2009).

[10] S. Sanner and D. McAllester, ‘Affine algebraic decision diagrams
(aadds) and their application to structured probabilistic inference’, in
International Joint Conference on Artificial Intelligence, volume 19, p.
1384, (2005).

[11] C. Wang, S. Joshi, and R. Khardon, ‘First order decision diagrams for
relational MDPs’, Journal of Artificial Intelligence Research, 31(1),
431–472, (2008).

D. Beck and G. Lakemeyer / Representing Value Functions with Recurrent Binary Decision Diagrams144


