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Abstract. Argumentation is a dynamic process. The enforcing
problem in argumentation, i.e. the question whether it is possible to
modify a given argumentation framework (AF) in such a way that a
desired set of arguments becomes an extension or a subset of an ex-
tension, was first studied in [3] and positively answered under certain
conditions. In this paper, we take up this research and study the more
general problem of minimal change. That is, in brief, i) is it possi-
ble to enforce a desired set of arguments, and if so, ii) what is the
minimal number of modifications (additions or removals of attacks)
to reach such an enforcement, the so-called characteristic. We show
for several Dung semantics that this problem can be decided by local
criteria encoded by the so-called value functions. Furthermore, we
introduce the corresponding equivalence notions between two AFs
which guarantee equal minimal efforts needed to enforce certain sub-
sets, namely minimal-E-equivalence and the more general minimal
change equivalence. We present characterization theorems for sev-
eral Dung semantics and finally, we show the relations to standard
and the recently proposed strong equivalence [9] for a whole range
of semantics.

1 Introduction

Argumentation theory is a vibrant research area in Artificial Intel-
ligence, covering aspects of knowledge representation, multi-agent
systems, and also philosophical questions (for a very good overview
see [10]). Dung’s abstract argumentation frameworks (AFs) [7] play
a dominant role in this area. In AFs arguments and attacks between
them are treated as primitives, i.e. the internal structure of arguments
is not considered. The major focus is on resolving conflicts. To this
end a variety of semantics have been defined, each of them specify-
ing acceptable sets of arguments, so-called extensions, in a particular
way.

Argumentation is an inherently dynamic process. It is, therefore,
rather surprising that the research on the dynamic behaviour of ab-
stract AFs has begun only quite recently. In [6] for instance, the im-
pact of additional arguments on the outcome (extensions) of an AF
was studied. Another representative work in this context is [9] where
the notion of strong equivalence (which holds between two AFs, if
they possess the same extensions w.r.t. all expansions) was intro-
duced and characterized. The underlying non-monotonicity makes
this field of research a non-trivial task.

In a recent paper, Baumann and Brewka [3] studied the so-called
enforcing problem. Imagine a multi-agent scenario where, given an
AF, an agent A wants another agent B to accept a particular set of
arguments E. An enforcement, intuitively, is a modification of the
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AF such that E is contained in an extension of the modified AF.
The paper specified necessary and sufficient conditions under which
enforcements are possible.

In this paper we go an important step further. We are not only
interested whether enforcements are possible, but also in the effort
needed to enforce a set of arguments. We will use a numerical mea-
sure for this effort, roughly corresponding to the number of modifi-
cations needed to transform the given AF into an AF in which E is
enforced.

Consider the following snapshot of a dialogue among agents A
and B. Assume it is A’s turn and his desired set of arguments
is E = {a1, a2, a3}. Furthermore, A and B are discussing under
preferred semantics, which selects maximal conflict-free and self-
defending sets of arguments.

a1 a2 a3

b1 b2 b3

c
jkj jkjklll
c b2 b3

d

?

Agent A may come up with new arguments which interact with the
old ones (adding attacks) and/or question old arguments or attacks
between them, respectively (deleting attacks). The minimal change
problem which we study in this paper can be formulated as follows:
What is the minimal number of modifications (of a specific type)
needed to enforce E, the so-called characteristic of E. In consider-
ation of the infinite number of possibilities to modify a given argu-
mentation scenario, the tricky thing about characteristics is to pro-
vide a local criterion which determines the minimal number. At the
end of the paper we will have formally proven that for the example
above this number equals 1 if we allow arbitrary modifications (for
example through questioning the self-attack of c), 2 if the deletion
of former attacks is forbidden (for example through introducing an
argument which attacks b2 and b3), and ∞ (i.e. it is impossible to
enforce E) if A only can come up with weaker arguments. These are
fresh arguments which do not attack previous arguments.

The term minimal change traditionally concerns belief change, in
particular belief revision (cf. the AGM approach [1]). Our investi-
gation shares some common ground with this area, in particular the
central role of theories or knowledge bases which are most similar to
the initial one. Nevertheless, there are important differences. First of
all, completely different formalisms are used, e.g. classical logic in
AGM and AFs here. Secondly, while belief revision aims at incorpo-
rating new beliefs, we are interested in enforcing already given but
not yet accepted sets of arguments through adding new information.
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A further interesting and important question is the mutual re-
placeability or similarity between AFs in the light of achieving
goals (i.e. enforcing desired sets). Without doubt being able to iden-
tify such similarities among argumentation scenarios is a big ad-
vantage for an agent. For instance, he may safely accept more
counterattacks to his arguments knowing that they do not make
it more difficult at all to reach his goals. How to decide whether
two AFs are mutually replaceable w.r.t. minimal changes? Con-
sider the following AFs which might stem from modeling the same
scenario but where the underlying notions of attack are differ-
ent or, putting it less abstract, the attack (a3, a1) is in question.

F ∶ a1 a2 a3 G ∶ a1 a2 a3

The frameworks F and G are on a par in a static, non-dynamical
sense since both possess the unique preferred extension {a2}. If we
assume that the agents desired set of arguments is E = {a1} the sit-
uation becomes different because although, F and G are equivalent
in the standard sense, the effort needed to getting a1 accepted is dif-
ferent. To be more precise, using the results presented in this paper it
can be verified that the characteristic of E w.r.t. arbitrary expansions
equals 1 in F and 2 in G. This leads us towards novel dynamic no-
tions of equivalence which guarantee equal minimal efforts needed to
enforce certain subsets, namely minimal-E-equivalence and the more
general minimal change equivalence.

Further motivations or theoretical and practical applications of our
work are the following:

● dialogue strategies: Given an abstract argumentation scenario, as-
sume that one agent reaches his goal if he enforces at least one of
several desired sets of arguments. With the help of characteristics
he may figure out which set is the closest one to being accepted
in the current scenario. Furthermore, he may develop strategies
which decrease or at least do not increase the characteristic.

● monotonic vs. non-monotonic behaviour: Argumentation is non-
monotonic. Since every extension possesses a characteristic of
zero, one may analyze and characterize dynamic scenarios where
former extensions or at least accepted arguments survive, i.e. the
characteristic remains zero. The characterization of monotonic
parts contributes to a better understanding of the inherent non-
monotonic formalism.

● implicit vs. explicit information: As demonstrated by the exam-
ple above, knowledge about the extensions alone does not make
explicit the implicit information w.r.t. minimal efforts needed to
enforce certain subsets. In this sense minimal change equivalent
AFs are insensitive to dynamics; in other words, they share the
same implicit information.

Our main contributions can be summarized as follows:

● Formalizing and characterizing the minimal change problem for
weak, strong, normal, arbitrary expansions as well as arbitrary
modifications for the stable, preferred, complete and admissible
semantics. The most remarkable result is that the characteristic
does not change if we switch simultaneously between strong, nor-
mal or arbitrary expansions and preferred, complete or admissible
semantics.

● For semi-stable semantics we show that its characteristic lies be-
tween the stable and preferred characteristic for all mentioned
modification types.

● We introduce the notions of minimal-E-equivalence and mini-
mal change equivalence between two AFs and provide charac-
terizations in case of stable, preferred, complete and admissible

semantics. Furthermore, we prove its relation to standard and
strong equivalence for a whole range of semantics satisfying cer-
tain abstract principles. Interestingly, minimal change equivalence
w.r.t. stable, semi-stable and preferred semantics implies standard
equivalence, whereas this is not the case for complete and admis-
sible semantics.

The paper is organized as follows. The Sect. 2 reviews the necessary
definitions at work in abstract argumentation frameworks. We then
introduce a pseudometric which lets us describe the minimal change
problem formally. Sect. 4, the first main part of this work, contains
the characterization theorems w.r.t. different classes of modifications.
Sect. 5, the second main part, introduces the novel equivalence no-
tions, provides characterization theorems and draws the relation to
standard and strong equivalence. Finally, in Sect. 6 we discuss re-
lated results and present our conclusions.

2 Background

An argumentation framework F is a pair (A,R), where A is a non-
empty finite set whose elements are called arguments and R ⊆ A×A
a binary relation, called the attack relation. The set of all AFs is
denoted by A . If (a, b) ∈ R holds we say that a attacks b, or b is
defeated by a in F . An argument a ∈ A is defended by a set A′ ⊆ A
in F if for each b ∈ A with (b, a) ∈ R, b is defeated by some a′ ∈ A′

in F . Furthermore, we say that a set A′ ⊆ A is conflict-free in F
if there are no arguments a, b ∈ A′ such that a attacks b. The set
of all conflict-free sets of an AF F is denoted by cf(F). We call
an argument isolated if it neither attacks an argument in F nor is
defeated by an argument in F . For an AF F = (B,S) we use A(F)
to refer to B and R(F) to refer to S. Finally, we introduce the union
of two AFs as expected, namely F ∪ G = (A(F) ∪ A(G),R(F) ∪
R(G).

2.1 Semantics

Semantics determine acceptable sets of arguments for a given AF F ,
so-called extensions. The set of all extensions ofF under semantics σ
is denoted by Eσ(F). For two semantics σ, τ we use σ ⊆ τ to indicate
that for any F ∈ A , Eσ(F) ⊆ Eτ(F). We consider here stable,
admissible, preferred, complete and semi-stable semantics [7, 5].

Definition 1 Given an AF F = (A,R) and E ⊆ A. E is a

1. stable extension (E ∈ Est(F)) iff
E ∈ cf(F) and each a ∈ A/E is defeated by some e ∈ E,

2. admissible extension (E ∈ Ead(F)) iff
E ∈ cf(F) and each e ∈ E is defended by E in F ,

3. preferred extension (E ∈ Epr(F)) iff
E ∈ Ead(F) and for each E′ ∈ Ead(F), E /⊂ E′,

4. complete extension (E ∈ Eco(F)) iff
E ∈ Ead(F) and for each a ∈ A defended by E in A, a ∈ E,

5. semi-stable extension (E ∈ Ess(F)) iff
E ∈ Ead(F) and for each E′ ∈ Ead(F), R+F(E) /⊂ R+F(E

′)
where R+F(E) = E ∪ {b ∣ (a, b) ∈ R,a ∈ E}.

2.2 Expansions

We recap the definitions of several expansions, firstly introduced by
[3]. These kinds of expansions will be our object of investigation
since they represent reasonable types of dynamic argumentation sce-
narios. For short, normal expansions add new arguments and possibly
new attacks which concern at least one of the fresh arguments. Strong
(weak) expansions are normal and only add strong (weak) arguments,
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i.e. the added arguments never are attacked by (attack) former argu-
ments. The study of weak expansions may seem be more of an aca-
demic exercise than a task with practical relevance. Being aware of
this fact, we want to emphasize that they might be relevant for Value
Based AFs where former arguments may possess higher values than
the further arguments and consequently cannot be attacked.

Definition 2 An AF F∗ is an expansion of AF F = (A,R) (for
short, F ≺ F∗) iff F∗ has a representation as (A∪A∗,R∪R∗), s.t.
at least one of them (A∗ or R∗) is not empty and A∗∩A = R∗∩R = ∅
holds. Such an expansion is called

1. normal (F ≺N F∗) iff
A∗ ≠ ∅ ∧ ∀ab ((a, b) ∈ R∗ → a ∈ A∗ ∨ b ∈ A∗),

2. strong (F ≺NS F
∗) iff

F ≺N F∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A ∧ b ∈ A∗)),
3. weak (F ≺NW F

∗) iff
F ≺N F∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A∗ ∧ b ∈ A)).

As usual we use F ⪯ F∗ to indicate that the equality case is in-
cluded, i.e. F ≺ F∗∨F = F∗ holds. The same applies to the specific
kinds of expansions.

2.3 Strong and Standard Equivalence

The simplest kind of equivalence between two AFs is to have the
same extensions. This term of equivalence is in correspondence with
a non-dynamical, static argumentation scenario. All queries w.r.t.
credulous or skeptical accepted arguments are answered identically.
In this sense both are mutually replaceable.

Definition 3 Two AFs F and G are equivalent to each other w.r.t. a
semantics σ, in symbols F ≡σ G, iff they posses the same extensions
under σ, i.e. Eσ(F) = Eσ(G) holds.

Standard equivalence of two AFs is not sufficient for their mu-
tual replaceability in dynamic argumentation scenarios. That means,
possessing the same extensions does not guarantee to share the same
acceptable sets of arguments w.r.t. all expansions. This kind of equiv-
alence, so-called strong equivalence, was recently introduced and
characterized by Oikarinen and Woltran [9] and is defined as follows.

Definition 4 Two AFsF and G are strongly equivalent to each other
w.r.t. a semantics σ, in symbolsF ≡σ⪯ G, iff for each AFH,F∪H ≡σ

G ∪H holds.

3 The (σ,Φ)-characteristic

In [3] (Theorem 4) it is shown that whenever a set C is conflict-free in
an AF F we may add one additional argument a and n = ∣A(F)/C ∣
attacks so that the union of C and {a} is an extension of the con-
structed AF. Furthermore it is emphasized there, that in special cases
the enforcement of a desired set C may be reached with less addi-
tional attack relations. This is exactly the question we have studied
in this paper and which we call the minimal change problem. This
means we are not only interested in whether enforcements are possi-
ble, but also in a minimal distance between the former argumentation
scenario and the resulting one.

3.1 A pseudometric d on A

To formalize the minimal change problem we have to introduce a
numerical measure which indicates how far apart two argumentation
scenarios are. We decided to count only added and removed attacks

for a simple reason: the very nature of argumentation is the treatment
of conflicting arguments. Adding or removing an isolated argument
does not contribute at all to solving or increasing a given conflict,
i.e. the conflicting information remains the same. This means, the
decrease or increase of a conflict is directly linked to upcoming or
disappearing attacks. The following definition takes this idea into ac-
count and can be formalized by the well-known symmetric difference
AΔB =def (A/B) ∪ (B/A).

Definition 5 The distance between two AFs F and G is a natural
number defined by the following function

d ∶ A ×A → N (F ,G) ↦ ∣R(F)Δ R(G)∣ .

The following proposition states that the class of all AFs A together
with the above defined distance d constitute a pseudometric space.
Remember that in pseudometric spaces two distinct elements may
have distance zero.

Proposition 1 (A , d) is a pseudometric space.

The distances between the following three AFs are: d(F ,G) = 2,
d(G,H) = 5 and d(F ,H) = 3.

F ∶

a

b

c

G ∶

a

b

c

H ∶

a

b

c

d

e

3.2 The minimal change problem (formally)

Now we are prepared to describe the minimal change problem
formally. We define therefore a function, the so-called (σ,Φ)-
characteristic2. The σ indicates the considered semantics and Φ de-
scribes the possible modifications.

Definition 6 Given a semantics σ, a binary relation Φ ⊆ A ×A and
an AF F . The (σ,Φ)-characteristic of a set C ⊆ A(F) is a natural
number or infinity defined by the following function

NFσ,Φ ∶ ℘(A(F)) → N∞

C ↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, ∃C ′ ∶ C ⊆ C ′ and C ′ ∈ Eσ(F)
k, k =min{d(F ,G) ∣ (F ,G) ∈ Φ,NGσ,Φ(C) = 0}
∞, otherwise.

Since d is a pseudometric there is an unlimited number of AFs G
which possess distance k to a given AF F . This means there is no
brute-force-method to determine the characteristic of a given set C ⊆
A(F).

The following proposition constitutes a first relation between dif-
ferent characteristics if certain subset properties between the consid-
ered semantics and/or the kinds of modifications are fulfilled.

Proposition 2 Let σ, τ be semantics and Φ,Ψ binary relations over
A , s.t. σ ⊆ τ and Φ ⊆ Ψ. For any AF F , NFσ,Φ ≥ N

F
τ,Ψ.

It is well-known that the considered semantics satisfy the follow-
ing subset relation, st ⊆ ss ⊆ pr ⊆ co ⊆ ad. Hence, we obtain the
following corollary.

Corollary 3 For any AF F and any binary relation Φ over A ,

NFst,Φ ≥ N
F
ss,Φ ≥ N

F
pr,Φ ≥ N

F
co,Φ ≥ N

F
ad,Φ.

2 If the semantics σ and the modification type Φ are clear from the context (or
unimportant) we only refer to characteristic. The same holds for the later
defined value functions and novel terms of equivalence.
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A similar result may be obtained for different kinds of modifications
(compare Def. 2). Note that strong and weak expansions are incom-
parable, i.e. there is no subset relation between them. U denotes the
universal relation over A , i.e. U = A ×A .

Corollary 4 For any AF F and any semantics σ,

NFσ,⪯N
W
,NFσ,⪯N

S
≥ NFσ,⪯N ≥ N

F
σ,⪯ ≥ N

F
σ,U .

The following proposition strengthens the result of Corollary 4. It
shows that the preferred, complete and admissible characteristics co-
incide.

Proposition 5 For any F and any binary relation Φ over A ,

NFst,Φ ≥ N
F
ss,Φ ≥ N

F
pr,Φ = N

F
co,Φ = N

F
ad,Φ.

4 Determining the characteristic: value functions

The characteristic is a precisely defined numerical value, but as yet
we have not provided any means to actually compute this value. This
is the question we address in the following three subsections. The
significant challenge here is to define a function whose values are
equal to the considered characteristics and, furthermore, whose val-
ues can be established in a finite number of steps based on rather
simple properties of the underlying AF.

4.1 The (σ,⪯NW )-value

The first characteristics we are interested in are characteristics w.r.t.
weak expansions. This means, what is the minimal number w.r.t. the
distance d if only the addition of weaker arguments, i.e. arguments
which do not attack previous arguments, is allowed. It turns out that
there are only two possibilities, namely either a desired set C is al-
ready contained in an extension, i.e. the characteristic equals zero, or
C is not enforceable, i.e. the characteristic equals infinity.

Definition 7 Given an AF F . The (σ,⪯NW )-value (σ ∈ {st, ad}) of
a set C ⊆ A(F) is zero or infinity defined by the following function

V F
σ,⪯N

W
∶ ℘(A(F)) → {0,∞}

C ↦
⎧⎪⎪
⎨
⎪⎪⎩

0, ∃C′ ∶ C ⊆ C ′ and C ′ ∈ Eσ(F)
∞, otherwise.

Theorem 6 For any AF F and any semantics σ ∈ {pr, co, ad},

NFst,⪯N
W
= V Fst,⪯N

W
and NFad,⪯N

W
= V Fσ,⪯N

W
.

Interestingly, semi-stable semantics does possess values between
zero and infinity and is therefore not adequately characterized by the
(st,⪯NW ) or (ad,⪯NW ) values. Consider the following AFs F and G.

F ∶ a1 a2 a3 G ∶ a1 a2 a3b

The (st,⪯NW ) - value of {a1} equals infinity since there are no
supersets which are stable extensions in F . In case of admissible
semantics we deduce V F

ad,⪯N
W
({a1}) = 0 since {a1} is admissible in

F . Furthermore, {a1} and all its proper supersets are not semi-stable.
This means, NF

ss,⪯N
W
({a1}) ≠ 0. The weak expansion G of F shows

that NF
ss,⪯N

W
({a1}) ≤ 2 since {a1} is semi-stable in G.

4.2 The (σ,⪯NS )-value

How does the situation change if we consider strong expansions?
Since the class of strong expansions provides the possibility to at-
tack or defend former arguments there should be a greater range of

the characteristics than in case of weak expansions. We will see that
this is indeed the case. Furthermore, we will show that the strong
expansion characteristics are a lower bound for their corresponding
weak expansion terms. Quite surprisingly, we were able to show that
the characteristics of arbitrary expansions as well as normal expan-
sions coincide with the strong expansion characteristic. This means,
the additional feature of arbitrary extensions in contrast to strong ex-
pansions, namely bringing into play new attacks between existing ar-
guments or new attacks from old argument to new arguments, is use-
less in the sense of achieving a lower value for the minimal change
problem.

Now let’s start with a first approximation for the characteristics
w.r.t. strong expansions. As a by-product of Theorem 4 in [3] we
state the following upper bound.

Corollary 7 Given an AF F and a set C ∈ cf(F). For any seman-
tics σ ∈ {st, ss, pr, co, ad},∞ > ∣A(F)/C ∣ ≥ NF

σ,⪯N
S
(C).

This means, whenever a set C is conflict-free we may enforce C in
finitely many steps. The following AFs F and G show that we may
stay below the upper bound ∣A(F)/C ∣.

F ∶ a1 a2 a3

a5a4

G ∶ a1 a2 a3

a5a4b

Consider the set C = {a2, a4}. The upper bound ∣A(F)/C ∣ equals
3. One may check that C ∪ {b} ∈ Est(G). Since G is a strong expan-
sion of F and d(F ,G) = 1 it follows that NF

st,⪯N
S
(C) ≤ 1.

Inspired by the example above we give the following strong ex-
pansion values. We use R+F(C) for C ∪ {b ∣ ∃c ∈ C, (c, b) ∈ R(F)}
and analogously, R−F(C) for C ∪ {b ∣ ∃c ∈ C, (b, c) ∈ R(F)}.

Definition 8 Given an AF F . The (σ,⪯NS )-value (σ ∈ {st, ad}) of a
set C ⊆ A(F) is a natural number or infinity defined by the following
function

V F
σ,⪯N

S
∶ ℘(A(F)) → N∞

C ↦min ({∣σ(F ,C ′)∣ ∣ C ⊆ C ′ and C ′ ∈ cf(F)} ∪ {∞}) ,

where ad(F ,C′) = R−F(C
′)/R+F(C

′) and
st(F ,C ′) = A(F)/R+F(C

′).

As a direct consequence of the definition above we may state that the
weak expansion value is greater than or equal to the strong expansion
value.

Corollary 8 For any AF F and any semantics σ ∈ {st, ad},
V F
σ,⪯N

W
≥ V F

σ,⪯N
S

.

The following theorem shows that the stable value and admissible
value adequately determine the strong expansion characteristics for
stable or preferred, complete and admissible semantics, respectively.
Furthermore, this characteristic does not vary if we shift from strong
expansions to normal or strong expansions and vice versa.

Theorem 9 For any AF F , any semantics σ ∈ {pr, co, ad} and any
Φ ∈ {⪯,⪯N ,⪯NS }, N

F
st,Φ = V

F
st,⪯N

S
and NFσ,Φ = V

F
ad,⪯N

S
.

A valuable side-effect of the theorem above is that we have now clar-
ified the relation between the classes of weak and strong expansions
in case of stable, preferred, complete and admissible semantics. Re-
member that there is no subset relation between them since they are
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completely different concepts. Nevertheless, the following proposi-
tion states that the weak expansion characteristic is greater than or
equal to the strong expansion characteristic for the considered se-
mantics. Here is the whole picture.

Proposition 10 For any AF F and any semantics σ ∈
{st, pr, co, ad}, NF

σ,⪯N
W
≥ NF

σ,⪯N
S
≥ NFσ,⪯N ≥ N

F
σ,⪯ ≥ NFσ,U .

Let’s have a look at semi-stable semantics.
Consider therefore the following two AFs.

F ∶ a1 a2

a3 a4

G ∶

b

a1 a2

a3 a4

The (st,⪯NS ) - value of C = {a1} in F equals 2 since first, a3 and
a4 are unattacked by C and second, there is no conflict-free superset
of C. In case of admissible semantics we have R+F(C)/R

−
F(C) = ∅

and hence V F
ad,⪯N

S
({a1}) = 0. Since C is not semi-stable and

does not have proper and conflict-free supersets in F we conclude
NF

ss,⪯N
W
({a1}) ≠ 0. Consider now the strong expansion G of F .

One may easily check that C ∪ {b} is semi-stable in G. Hence,
NF

ss,⪯N
S
(C) = 1. This means, neither the stable value nor the admis-

sible value adequately determine the semi-stable characteristic w.r.t.
strong expansions.

4.3 The (σ,U)-value

Now let’s turn to arbitrary modifications, i.e. in contrast to arbitrary
expansion we even allow deleting attacks between previous argu-
ments. What consequences does this have for the minimal change
problem? As a first and important difference we will show that any
desired set of arguments may be enforced by a finite manipulation i.e.
the (σ,U)-characteristic has to be finite for all considered semantics.
The following proposition gives us an upper bound.

Proposition 11 Given an AF F and a set C ∈ A(F). For any
semantics σ ∈ {st, ss, pr, co, ad}, ∞ > ∣R(F) ∩ (C ×C)∣ +
∣A(F)/C ∣ ≥ NFσ,U(C).

Inspired by the proposition above we present the following defini-
tions which adequately determine the characteristics w.r.t. arbitrary
modifications

Definition 9 Given an AF F . The (σ,U)-value (σ ∈ {st, ad}) of a
set C ⊆ A(F) is a natural number defined by the following function

V Fσ,U ∶ ℘(A(F)) → N

C ↦min ({∣R(F)↓C′ ∣ + ∣σ(F ,C ′)∣ ∣ C ⊆ C ′ ⊆ A(F)}) ,

where R(F)↓C′ = R(F) ∩ (C′ ×C′).

Theorem 12 For any AF F and any semantics σ ∈ {pr, co, ad},
NFst,U = V

F
st,U and NFσ,U = V

F
ad,U .

The following AFs prove that the (ss,U)-characteristic is not
adequately characterized by the (st,U)- or (ad,U)-values.

F ∶ a1 a2 a3 a4 G ∶ a1 a2 a3 a4

The (st,U)-value of {a1} equals 2 because first, ∣R(F)↓{a1,a2}∣+
∣st(F ,{a1, a2})∣ = 2 and second, there is no other superset C of

{a1}, s.t. ∣R(F)↓C ∣+∣st(F ,C)∣ < 2. In case of admissible semantics
we deduce V F

ad,⪯N
W
({a1}) = 0 since {a1} is admissible in F . On the

other hand NFss,U({a1}) ≠ 0 since {a1} and all its proper supersets
are not semi-stable. The AF G shows that NF

ss,⪯N
W
({a1}) = 1 since

{a1} is semi-stable in G and d(F ,G) = 1.

4.4 Summary of Results

The following table gives a comprehensive overview over results pre-
sented in this section. Note that the values may shrink from above to
below and from left to right.

⪯NW ⪯NS ,⪯N ,⪯ U

V F
st,⪯N

W
V F
st,⪯N

S
V Fst,U

V F
ad,⪯N

W
V F
ad,⪯N

S
V Fad,U

NFσ,Φ

st

pr, co, ad

5 Minimal Change Equivalence

Strong equivalence between two AFs guarantees their mutual re-
placeability for any dynamic scenario without loss of information.
In contrast to taking into account any dynamic scenario we are inter-
ested in an equivalence notion which corresponds to the very nature
of a dispute where (counter)arguments are put forward with the ob-
jective to convince the participants of a certain opinion E. Two AFs
are called minimal-E-equivalent if the minimal effort needed to en-
force E is the same for both. If minimal-E-equivalence holds for
every subset E of the AFs in question we call them minimal change
equivalent. Here are the formal definitions.

Definition 10 Two AFs F and G are

1. minimal-E-equivalent (in symbols: F ≡σ,EΦ G) or
2. minimal change equivalent (in symbols: F ≡σ,MC

Φ G),

w.r.t. a semantics σ and a binary relation Φ ⊆ A ×A iff

1. E ⊆ A(F) and NFσ,Φ(E) = N
G
σ,Φ(E) and

2. for any E, s.t. E ⊆ A(F) or E ⊆ A(G), NFσ,Φ(E) = N
G
σ,Φ(E).

A few properties are clear by definition: First, minimal change
equivalence guarantees sharing the same arguments (in contrast to
minimal-E-equivalence) and second, minimal change equivalence
implies minimal-E-equivalence for all subsets E.

In the following subsections we are interested in characterization
theorems for the introduced equivalence notions as well as their re-
lation to standard and strong equivalence.

5.1 Characterizing Minimal Change Equivalence

In Sect. 4 we proved that the introduced value-functions adequately
determine the corresponding characteristics and, therefore, the min-
imal change problem. Now we take advantage of this work. The
value-functions provide us with a procedure for deciding whether
two AFs are minimal change equivalent or not since they are based
on local criteria of the underlying AF and thus can be established in
a finite number of steps.

Due to the limited space we only present a characterization for
stable and admissible semantics w.r.t. weak and strong expansions as
well as arbitrary modifications. Note that the characterizations w.r.t.
the other semantics and modifications discussed in section 4 are im-
plicitly given.
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Theorem 13 Let σ ∈ {st, ad} and Φ ∈ {⪯NW ,⪯NS ,U}. For any AFs
F and G,

1. F ≡σ,EΦ G iff E ⊆ A(F) and V Fσ,Φ(E) = V
G
σ,Φ(E),

2. F ≡σ,MC
Φ G iff for any E, s.t. E ⊆ A(F) or E ⊆ A(G),

V Fσ,Φ(E) = V
G
σ,Φ(E).

The following AFs exemplify the novel equivalence notions.

F ∶ a1 a2 a3 F ′ ∶ a1 a2 a3

G ∶ a1 a2 a3 G′ ∶ a1 a2 a3 a4

The AFs F and G are minimal change equivalent w.r.t. pre-
ferred semantics and strong expansions, i.e. F ≡pr,MC

⪯N
S

G. This

can be seen as follows: First, V F
pr,⪯N

S
({a1}) = V G

pr,⪯N
S

({a1}) =

V F
pr,⪯N

S
({a3}) = V G

pr,⪯N
S

({a3}) = 1, second, V F
pr,⪯N

S
({a2}) =

V G
pr,⪯N

S

({a2}) = V F
pr,⪯N

S
(∅) = V G

pr,⪯N
S

(∅) = 0 and finally, all other

sets E ⊆ {a1, a2, a3} do not possess conflict-free supersets in F
or G and thus take the value infinity. Similarly, one can show that
F ′ ≡pr,{a1,a2}

⪯N
S

G′.

5.2 Relation to Strong and Standard Equivalence

In this subsection we study the relation between minimal change
equivalence and strong or standard equivalence in general, i.e. rather
than considering specific semantics we provide our results for a
whole range of semantics satisfying certain abstract principles.

To get the first insight into the relations consider again the minimal
change equivalent AFs F and G. One main result in [9] is that strong
equivalence is immediately linked to the existence of self-loops, in
particular it collapses to syntactic equivalence in case of self-loop
free AFs. This means, F and G are not strong equivalent which indi-
cates that minimal change equivalence is possibly weaker than strong
equivalence. The following theorem shows that the assertion holds
for any semantics σ which satisfy that strong equivalent AFs have to
share the same arguments. Let us call this property regularity.3

Theorem 14 For any AFs F , G, any regular semantics σ and any
binary Φ ∈ {⪯,⪯N ,⪯NS ,⪯NW }, F ≡

σ
⪯ G ⇒ F ≡

σ,MC
Φ G.

Since extensions possess a characteristic of zero, one might expect
minimal change equivalence to imply standard equivalence. How-
ever, it turns out that this implication does not hold in general but
can be shown for semantics satisfying I-maximality [2]. For short,
I-maximality is fulfilled, if no extension can be a proper subset of
another one.

Theorem 15 For any AFs F , G, any semantics σ satisfying I-
maximality and any binary Φ ∈ {U ,⪯,⪯N ,⪯NS ,⪯NW },F ≡

σ,MC
Φ G ⇒

F ≡σ G.

Remember that stable, semi-stable and preferred semantics satisfy
I-maximality whereas complete and admissible does not. We want
to conclude our study with two AFs showing that we cannot drop
the I-maximality criterion in Theorem 15. It can be checked that
F ≡co,MC

⪯ G. Furthermore, F /≡co G since {a4} ∈ Eco(G) and
{a4} ∉ Eco(F).
3 Note that regularity is a very weak criterion. One can imagine that for

reasonable defined semantics it is always possible to find an AF H, s.t.
Eσ(F ∪H) ≠ Eσ(G ∪H) if A(F) ≠ A(G). All considered semantics in
[9] satisfy regularity.

F ∶ a1 a2 a3 a4 G ∶ a1 a2 a3 a4

6 Related Work and Conclusions

We studied the minimal change problem in the context of Dung’s ab-
stract AFs. We defined the so-called characteristics which represent
the problem formally. We then provided value functions which ad-
equately determine the corresponding characteristics. Furthermore,
we introduced and characterized minimal-E-equivalence and min-
imal change equivalence for certain classical semantics. Finally,
we clarified the relation between minimal change and strong or
standard equivalence w.r.t. semantics satisfying regularity and/or I-
maximality.

There are a number of natural directions in which this research
can be further pursued. For instance, a detailed classification of dif-
ferent kinds of changes w.r.t. the set of extensions if new information
is added. A preliminary study (one argument, one interaction) is to
be found in [6]. Since accepted arguments and therefore extensions
possess a characteristic of zero a change of the outcome corresponds
to a change of characteristics and thus can be analyzed by using the
introduced value-functions. For the same reason, another important
problem in dynamic argumentation is closely related to our study,
namely the determination of the status of an argument. Since com-
puting the justification state of an argument from scratch each time
new information is added is very inefficient the possibility to reuse
some previous computations would be a great advantage. Some re-
sults in this line of research (compare [3, 8]) show that reusing is
possible if the considered semantics satisfy the directionality crite-
rion, introduced in [2].

On a final note, our results and/or introduced techniques can con-
tribute to solve open problems addressed in several works dealing
with dynamics. In [4] for instance the authors say: “Moreover, ...,
we are interested in questions about the change needed to change an
argument from being accepted to rejected, or vice versa.” or slightly
different versions like in [6], “How to make the minimal change to
a given argumentation framework so that it has a unique non-empty
extension?”.
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