
Exploring Metric Sensitivity of Planners
for Generation of Pareto Frontiers

Michal Sroka a, Derek Long b

a Michal.sroka@kcl.ac.uk Department of Informatics, King’s College London, UK.
b Derek.long@kcl.ac.uk Department of Informatics, King’s College London, UK.

Abstract. This paper explores how current planners behave when exposed to multi-
ple metrics, examining which of the planners are metric sensitive and which are not.
For the metric insensitive planners we propose a new method of simulating metric
sensitivity for the purpose of generation of diverse plans close to a pareto frontier.
It is shown that metric sensitive planners are good candidates for generating sets of
pareto optimal plans.
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1. Introduction

The problems we face and solve in practice are usually complex and it is often insufficient
to consider only one possible solution. Most of the state of the art planners nowadays
focus on delivering a single solution either fast or with a high quality. In order to be more
appealing to a decision maker (DM) who uses the planning system, it would be better to
construct a collection of very good plans from which the DM could choose the solution
to their problem.

Some of the current planning system offer a possibility to specify an objective func-
tion and then produce a plan which achieves the goal and also minimizes the objective
function. Problems, however, cannot be expressed and evaluated using a single objective
function because defining the whole set of constraints and objectives as a single function
is extremely difficult and in some cases impossible. To do so would require the DM to
specify explicitly the relationship, in the form of relative weights, between various as-
pects of the problem. The objective would have to balance relative costs of resources and
the rewards for different ways of achieving goals.

For example a manager deciding on how to ship a set of packages from a set of
locations to a different set of locations needs to evaluate the solutions in terms of cost
(the cheaper the better), risk (the safer the better), time (the faster the better), employee
satisfaction and so on. A typical manager will not be able to determine numerical weights
between the objectives and therefore combining them into a single objective function will
not yield optimal plans due to incorrect weights. We cannot simply say that our objective
= cost -risk + time + employee satisfaction, because in most problems the objectives are
not equally important.

One of the solutions to this problem is to find a set of pareto optimal plans well dis-
tributed across the pareto frontier and present them to the decision maker who can then
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easily make the trade-off between the solutions. Producing three different plans where
one requires employees to carry the packages to their destination, the second has pack-
ages transported on mechanical trolleys by employees, and the third uses a hired courier
to do all the job, is more informative for the decision maker. This approach helps him
make an informed decision without the need of specifying weightings between objec-
tives.

From the above example it is clear that it is very important to produce sets of plans
and not a single plan. This could be achieved using planners which are sensitive to the
change of objectives. These planners can be directed into different areas of a search space
using weights on the objective function. Metric sensitive planners are a crucial element
in generating well populated pareto frontiers of plans. It allows us to explore distinct
areas of the search space and find qualitatively different, in terms of metrics, plans. This
challenge is very interesting as it has not been widely explored. This paper explores the
extend to which the current planners are metric sensitive, and determines how current
planners respond to changes in the objectives. We also show how some of the metric
insensitive planners can be used to generate distinct solutions.

2. Background

A planner is a piece of software which for a given domain and a problem description
outputs a plan, or a set of plans which solves the given problem in the given domain. A
planning domain is usually described using PDDL [4]. Planning problems are described
using sets of propositions and numeric fluents. An example of the proposition is (on
A B) which, in the context of blocks-word, means that the block A is on the block B.
The planning problem usually describes a start state and the goal condition in a given
domain. The planner then outputs a sequence of actions which if applied take us from the
start state to a state satisfying the goal. The planning problem also contains an objective
function which is the main focus of this paper. The objective functions are different from
goal states because they do not need to be satisfied in order for the problem to be solved.
The plan can be awarded extra value if it satisfies conditions given by objectives, or if it
minimizes cost functions described in objectives.

Definition 1. An objective function for a plan, ρi, domain D and problem P, is a function
Θ(D,P)(ρi) which assigns a score to ρi. For a problem with many objective functions we
will denote them as Θk where k= 1...N where N is the number of objective functions.

The long term goal of this research programme is to generate a set of plans, where the
plans are all good quality, in terms of the objective functions, and significantly different
from each other.

By different plans we mean plans where a metric which we define later is larger
than a specific threshold. A good quality plan in terms of multiple objectives is one that
only few others can have better objective values. We would like to find plans such that
there are no other plans which are better in terms of all of the objectives. This set of
non-dominated plans is called a pareto frontier.

Definition 2. Plan Domination. Plan ρ0 dominates plan ρ1 if there exists an objective
function, Θi, such that Θi(ρ0) < Θi(ρ1) and for all other objective functions Θ j(ρ0) ≤
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Θ j(ρ1) In other words, the dominating plan is better in at least one objective function
and no worse in the rest.

Generating a pareto frontier is a known challenge and we discuss it in Section 3.3.
We would like to be able to generate the set of non-dominated and different plans

using an existing planner. It seems clear that the planner must be able to generate different
plans for the same problem with different objective functions. This requires the planner
to be metric sensitive.

Definition 3. A planner is metric sensitive if it generates different plans in response to
changes in the plan metric.

For the purpose of this paper we treat metric sensitivity as a binary property. A plan-
ner either is or is not metric sensitive. This can be tested by using the planner to generate
plans for the same domain and problem using different objective functions. If a change
in the objective function causes the planner to generate different solutions, and if these
solutions correlate with the changes in metrics, then the planner is metric sensitive. In
future research we will aim to identify a metric to measure how metric sensitive planners
are as this is an important property in terms of multi-objective planning.

One way to consider two plans to be similar (following [15]) is if they use the same
actions, visit the same states or share the same causal links. Where a causal link is a
tuple (a1, p, a2) where action a1 achieves proposition p which is a precondition of action
a2. The distance between two plans can be defined in terms of the degree of similarity
under one of these measures. Plans can then be considered qualitatively different if they
are sufficiently different under this measure. However, we focus on measuring the dis-
tance between plans using only the objective functions provided and combining them in
Euclidean distance which is defined later. This approach assesses plans directly on how
they can trade-off one metric to the other and find plans different in terms of this metrics.

Bias towards plans which appear different to the planner, but are essentially similar
to the decision maker, is addressed automatically by selecting appropriate objective func-
tions. For example, suppose we want to transport a package from location A to location
B, and we have two routes to choose, namely, via C1 and via C2, we assume that both
are equal in time and fuel consumption, as in Figure 1

Figure 1. (at FuelTruck A) (at ElectricTruck A) (at Driver A)(at Package A) Goal: (at Package B)

We can choose between two vehicles, a diesel vehicle and an electric vehicle. Here
are some example plans solving that problem:

P1 (embark driver diesel-truck), (load package diesel-truck) (drive diesel-truck
A C1), (drive diesel-truck C1 B), (unload package diesel-truck)

P2 (embark driver diesel-truck), (load package diesel-truck), (drive diesel-
truck A C2), (drive diesel-truck C2 B), (unload package diesel-truck)

P3 (embark driver electric-truck), (load package electric-truck), (drive electric-
truck A C1), (drive electric-truck C1 B), (unload package electric-truck)
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The difference between plans (1) and (2) in terms of states and actions (using
grounded actions) is significant. However, in terms of an objective function: (minimize
(+ time electricity-cost fuel-used)) they are both the same. If going via C1 makes a dif-
ference, and is more desirable, the decision maker should have added a statement like (*
-1 (visited C1)) to the objective function, which would then favor going via C1.

Definition 4. Distance between plans |ρ1ρ2| is an Euclidean distance in the space
described by the metrics.

|ρ1ρ2|=
√

Σn
i=0(Θi(ρ2)−Θi(ρ1))2 (1)

|ρ1ρ2| is the distance between plans ρ1andρ2 based on it objective functions Θi. Both
plans are evaluated using the same set of objective functions.

If we choose to use the distance measure as defined in Definition 4, with the single
objective function defined above, we would find that plan (1) is the same as (2) but very
different from (3). It is clear that having this definition really makes a difference since
now the DM is presented with a set of plans where a visible trade-off between resources
is made and, therefore, the DM can make an informed decision. Also, since the route of
the trucks does not affect our objective function, the decision on the route is abstracted
out from the problem for the DM. We could solve the same problem with an objective
function favoring a more interesting or less dangerous route, or a route passing by a
favorite book shop of the driver. This, in turn, would give an appropriate choice to the
driver and would abstract the unnecessary, for the driver, decision about whether to use
an electric or diesel truck.

3. Background - Related Work

3.1. Generating Sets of Plans

An approach to generating sets of plans where metric sensitivity was necessary is ex-
amined in [15] and [16]. A method of generating dDISTANTkSETs is presented, where
dDISTANTkSETs are sets of k different plans where each of the plans is distant from all
others by minimum distance d. Where the distance is measured in one of the 3 ways. 1)
based on Actions 2) based on Causal links or 3) based on states visited. Where a causal
link is a tuple <a1, p, a2> where action a1 achieves a proposition p which is a precondi-
tion of action a2. Authors approach is driven by the assumption that ‘the decision maker
can not provide a full description of their expectations [15]. Therefore the planner can
not produce a single plan which satisfies the decision maker, due to the lack of knowl-
edge. The outcome of the planning process in this case should be a set of different plans
(suggestions) which DM can use to make a decision. The base for this is the assumption
that the DM can easily assess ready plans, but not weights between the objectives. In
this research two planners are used, LPG-Numeric and GP-CSP; both exhibit a metric
sensitive behaviour. The output of the process is a set of plans separated by a minimum
threshold d. Integrated Convex Preference (ICP) is used to score the sets of plans. Where
ICP is given as:
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ICP(ρ∗) =
k

∑
i=1

∫ wi

wi−1

h(w)(w× tpi +(1−w)× cpi)dw (2)

For each plan from the set ρ∗ a weighted sum of time tpi and cost cpi of that plan is
calculated. w0 = 0 and wk = 1. For more details please refer to [15] Section 3.2.

The ICP score has been integrated into LPG and was used to drive it towards plans
different from already found. Using ICP in that form forces the planner to find multiple
different solutions.

However this does not address the issue of generating different pareto optimal so-
lutions in terms of objective functions. The stress is on diversity, the quality of some of
the solutions suffers, as demonstrated in Section 4.2.1 below. This is due to the fact that
each of the solutions in the set does not have to be optimal and, even though the planner
will automatically try to find best solutions, it will try to maximize diversity, the ICP
function, of the set and not the total quality of the set. When the good solutions which
it can find are all very close to each other, with regards to the metrics used, the planner
generates other solutions different to those found already but with poorer values under
the objective function.

According to the ICP metric a time is traded with cost, where time is the time it
takes to execute the plan and the cost is a cost of the plan. The cost of the plan represents
combined objective functions and the plan execution time is a metric which all planners
try to minimize automatically therefore this approach is similar to planning with one
objective function (cost), because a state of the art planners always try to minimize the
time span of the plan. Result of the paper is how a planner (LPG-metric in that case)
can trade-off plan length which is equivalent to the time and the plan cost, which is
equivalent to the aggregated objective function. In this paper we present a method of
planning without the need of explicitly specifying one objective function (cost) a-priori
which allows us to specify multiple objective functions and planner will automatically
present a trade-off between them.

3.2. Objective Functions

Objective functions were introduced into PDDL[4] from version 2.1 onwards. An exam-
ple of a metric specification is

(:metric minimize (+ (* 2 (fuel-used car)) (fuel-used truck))).
The idea of objectives was developed further in PDDL3 [6] where more sophisticated
ways of specifying preferences are described. A broader syntax from modal temporal
logic is introduced. Preferences on plan trajectory can be expressed using a combina-
tion of the following: (always f), (sometime f), (at-most-once f), (sometime after f g),
(sometime-before f g).

3.3. Generating a Pareto Frontier

Mathematical methods of calculating the pareto frontier are described in many papers,
for example [18], [10], [12] and [17]. In these the authors explore various approaches
to calculating the pareto frontier. Although those methods cannot be directly applied to
planning, we can benefit a lot by understanding them as many of the approaches can
be translated into the planning context. The methods are divided into three main cate-
gories, depending on when the knowledge about DM preferences is known. These cat-
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egories are: a priori articulation of preferences, a posteriori articulation of preferences,
no articulation of preferences. Methods surveyed in [12] include various weighting ap-
proaches, lexicographic method, bounded objective function, goal programming, phys-
ical programming (PP), normal boundary intersection (NBI), normal constraint method
(NC), genetic algorithms.

Among them the most interesting ones are Normal Boundary Intersection NBI and
Physical Programming PP. The reason why they are the most interesting in the context of
this paper is that they can be used to calculate an even distribution of points as in [14] and
[13]. The reason why most weighted methods do not work well, in terms of generating
an even distribution of points on the pareto frontier, is examined in [3] where issues with
concave solution sets are examined. Authors examine various cases of pareto frontier
shape (including both concave and convex) and point out cases where most weighted,
linear, methods cannot find points on concave parts of pareto frontiers.

Physical Programming [13] is the method which allows calculation of an even dis-
tribution of points across the pareto frontier. One of its benefits is that the decision maker
does not have to specify any weights between functions. The decision maker expresses
his preferences by giving bounds on resources within which he would like the resource
consumption or the price to be. For example a decision maker can say that using 100
units of fuel is ideal, between 100 and 120 is desirable, between 120 and 160 is accept-
able but undesirable and above 160 is unacceptable. PP uses this information, so the DM
is required to provide these bounds on resources. There are eight classes of criteria clas-
sification in PP, divided into two main subclasses: soft and hard constraints. For soft con-
straints we can use the following: smaller is better, larger is better, value is better, range
is better, which favours smaller, larger, exactly X, and any X within the range values
respectively. similarly for the hard constraints we have must be smaller, must be larger,
must be equal, must be in range. For each of the Soft classes the DM is required to spec-
ify six ranges of preferences: Ideal, Desirable, Tolerable, Undesirable, Highly Undesir-
able, Unacceptable. For the hard criteria only two ranges are defined: Acceptable and
Unacceptable. Then, based on these preferences, PP uses the Linear Physical Program-
ming Weight (LPPW) algorithm to compute weights. These weights are then used in a
new LP problem which tries to minimize the deviation from the most desirable ranges.
The actual algorithm for calculating these weights and then formulating the LP problem
is different for each of the classes of criteria.

It is important to note that in [14] Messac and Mattson describe a slightly different
way of using PP: Authors use equaly distributed weights, as opposed to using the method
of calculating PP weights from the original paper, in order to generate an even distribu-
tion of pareto points. This approach is similar to what we are examining in this paper, as
one of our approaches is to generate different weightings on objective functions and ask
planners to generate solutions, hoping that they will be in different areas of the search
space. A metric sensitive planner should be able to generate those solutions.

3.4. Presenting a Pareto Frontier

The presentation of a pareto frontier is also a challenge. Once all of the plans are gener-
ated and the trade-offs are known, the main concern is how to communicate the alterna-
tives to the DM in a clear way, allowing them to see the trade-offs and make appropriate
decisions. There has been a good progress in User Interface representation of solutions
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presented in [7] and [11], where authors are dealing with the multi-objective scheduling
problem for observations using space telescopes. The difficulty of presenting the distri-
bution of solutions starts as we introduce more and more dimensions. Dealing with vi-
sualization of up to three dimensional spaces is not very challenging, however, as the
dimensionality increases it is harder to display the results. The approaches taken include
projections of the pareto frontier onto lower dimensions and presenting them as plots or
histograms of objective values, or as explicit values. All this combined in a clear GUI
gives the DM a good understanding of the trade-offs involved and allows an informed
decision.

4. Experiments

4.1. Experiment Set Up

The experiments will use a series of state of the art planners which have been selected
based on their ability to work with numbers. We start by giving a brief description of the
planners used in the experiments.

4.1.1. LPG-Metric

LPG [5] is a local search, stochastic planner. It creates its search space based on a graph
with interleaved proposition and action layers called numerical action graph (NAG). Its
heuristic consists of two elements, search cost and execution cost. Where search cost is a
cost to resolve all inconsistencies created by inserting a new action estimated by solving
a relaxed NAG. Execution cost is the total cost of executing actions in the plan and it
represents plan quality. There are two weights on these two components which allow to
trade-off finding solution quickly or searching for a good quality solution, depending on
the need and constraints. LPG has been adopted in [15] to generate sets of plans. The
change is to use ICP measure inside its heuristic instead of the standard execution cost.

4.1.2. MetricFF

MetricFF [8] is an extension of FF planner [9]. As an extension to a delete relaxation,
removing all negative effects of actions, it treats all of the numerical effects as linear
keeping its lower and upper bound. Therefore if at some point x>2 becomes true, it
remains true until the end of the plan.

4.1.3. POPF

POPF [1] is a forward search planner which exploits some partial ordering of actions
to avoid searching all orderings. Which means it does not enforce a strict total ordering
on actions before the final stage of planning. For all facts and variables it keeps a list
of propositions it has to support in order to execute the plan. While expanding a node,
which is a partial-order plan it adds actions and creates new partial-order plans to which
we could get from the current one.
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4.1.4. LPRPG

LPRPG [2] uses relaxed planning graph (RPG) heuristics combined with linear program-
ming (LP) methods. It solves a number of LP for every decision it makes to calculate
bounds on resources and to improve its numeric reasoning. Thanks to solving the LP,
LPRPG has more precise information about bounds on resources than other planners and
therefore is designed for use in domains with numeric resource flaws.

4.2. Determining Metric Sensitivity of Planners

In these experiments we would like to evaluate a method of determining whether a plan-
ner is sensitive or insensitive to the change of metric. Our method is based on the defi-
nition of metric sensitivity as the ability to generate distinct solutions for a distinct ob-
jective functions. Following this definition we are going to run the planner asking it to
generate a plan for a given problem in a domain multiple times. Each run we are going
to change the objective function. After that, we are going to examine whether the plans
generated follow the same pattern of change as our objective function.

The domain that we use is a modified version of DriverlogNumeric. In this domain
we have the following objects: truck, driver and a package. We want to deliver packages
to their final destination using trucks which have to be driven by drivers. Available actions
are: load truck, unload truck, board truck, disembark truck, drive truck, walk. Where load
and unload the truck require a package and a truck to be at the same location, similarly
board and disembark truck requires a driver and truck to be at the same location, in
addition, disembark requires the driver to be inside the truck. Driving requires a driver
to be inside the truck, and the truck to be at the location where it is driving from. Walk
requires the person to be at the location where it starts from. The effects of these actions
are obvious.

Our extension of this domain includes changes like modifying single available truck
into two categories: electric and diesel truck, adding a courier who can carry packages
but only one at a time and walks much slower than trucks drive, representing a trade-off
between objective function and plan length.

Example objective function for this file is:

(:metric minimize (+
(* 4 (* (fuel-used) (fuel-used)))
(* 6 (* (electricity-used) (electricity-used)))

)

For the experiment we have generated 11 different objective functions as follows:

Θ = α ∗ (FuelUsed)+(1−α)∗ (ElectricityUsed)

The values for α are shown below the images. In Figure 2 for each objective function
LPG was re-run multiple times and each of the dot on the diagram presents a plan and its
position represents resources used by a plan after a single run. From Figure 2 it is clear
that, for various α , LPG changed its behaviour depending on the weights of the objective
function and, what is more, the change reflected the user’s intentions expressed in the
objective function. Therefore we can say that LPG is clearly a metric sensitive planner.
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α = 0.9 α = 0.8 α = 0.7 α = 0.6

α = 0.4 α = 0.3 α = 0.2 α = 0.1

Figure 2. Representation of results for multiple runs of LPG on sets of objectives. α defines the weighting
scheme (see text).

4.2.1. LPG Generating dDISTANTkSET

To compare the dDISTANTkSETs examined in [15] with the above results we have com-
pared many sets and the non dominated set of plans from the previous experiments. The
results can be seen in Figure 3.

Figure 3. Pareto frontier generated by LPG using different weights, as in Figure 2, compared to a dDISTAN-
TkSET which has plans connected in the order of them being found to illustrate how they are being ‘pushed’
away.

The dDISTANTkSET has been annotated with a line joining plans which have been
found in order. This gives a feeling for how the search progressed towards finding the
next solution. As we have noted before this method is trying to trade-off an aggregated
cost of a plan and the execution time, but it does not focus on finding optimal plans,
instead it finds a variety of plans. This drive to find different plans is reflected in lower
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quality of the plans as it is typically much easier to find different plans of a lower quality
further from the pareto optimal frontier, where it is difficult to find plans.

4.2.2. MetricFF, POPF, LPRPG

In Figure 4 we can see that MetricFF generates the same plan no matter what the weights
on objectives are. We also tried MetricFF with -O option, which emphasizes objectives,
however, it also only generated one plan. MetricFF plan consumed 220 units of electricity
and none of fuel and in the figure is represented by a mark on coordinates(220,0). The
same happened for LPRPG, which generated the same plan in terms of resources used.
When comparing the same plans in terms of actions used we could see differences and
the standard approach would consider this two plans as different. However to our DM
who is only concerned about resources used they are the same and therefore it is not
desirable to ask him to choose between this two.

Figure 4. One point representing all plans gen-
erated by metricFF, LPRPG and POPF2 for all
combinations of weights. In contrast to the whole
pareto frontier generated by LPG.

Figure 5. Sets of plans generated by previously
metric insensitive planners like metricff and LPRPG
using bounds on resources compared to metric sen-
sitive LPG.

4.3. How Metric Insensitive Planners Can Behave in a Metric Sensitive Way

Based on the previous experiment we have identified that some planners are metric insen-
sitive. Our work then focused on examining whether we can cause metricFF and LPRPG
to behave in a way which simulates being metric sensitive. The approach taken is to im-
pose bounds on resources it uses, including any of the lower or upper bounds on one or
multiple objectives/resources at the same time. By limiting the amount of resource the
planner could use, or by forcing it to use at least a certain amount of particular resource
we aim to push it to explore different areas of the search space. Because these bounds
are originating from metrics, if the planners behaviour changed it would mean its modi-
fied behaviour could be seen as metric sensitive. It is important to note that although we
say that the planner becomes metric sensitive, it does not generate different solutions for
different metric without translating these metrics into special bounds.

In this experiment we use lower bounds of minimum 0, 10, 20, 30, 40 and 50 units
on fuel and electricity and all of their combinations which gave us 36 different bounds.
Starting with (0,0) meaning use at least 0 fuel and 0 electricity units, then (0, 10), (0, 20)
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until (50, 50) meaning use at least 50 units of fuel and 50 units of electricity. We have
experimented with numerous other ways of setting the lower and upper bounds, however,
this method gave best results without a significant impact on the performance.

In Figure 5 we present a combined sets of results for planners which were unable
to generate good quality sets in a weighted approach with the results for pareto fron-
tier from LPG. MetricFF and LPRPG were given lower bounds on the resources which
forced them to use minimum amounts of each resources and therefore do the trade-off.
Combined results are presented in Figure 5.

It is clear that this approach of adding bounds on resources increased significantly
the quality of the results achieved by these planners. They are also comparable with the
plans found by LPG in the approach where multiple objectives were present.

4.4. How Metric Sensitivity Helps in Generating a Pareto Frontier

This experiment is meant to show whether metric sensitive planners can generate a well
populated approximation of the pareto frontier only by changing the weights on objective
functions. We have used the same domain and eleven problem files as before. By using
different weights we expect to see points in different areas of the search space, which
we think can form an approximation of the pareto frontier. For stochastic planners this
process can be repeated and the best solutions for each weight is taken.

In order to generate pareto frontier we have generated sets of plans for each of the
weights, merged the results together into a larger set visible on Figure 6 from which a
subset of non dominated solutions (Definition 2) was selected.

The resulting set can be evaluated in many ways. For example as proposed in [15] by
calculating and comparing the ICP values. At the moment we only focus on the method
of generating pareto frontier and we do not try to evaluate it.

in Figure 7 we present pareto frontiers which are generated by a strongly metric
sensitive planner, LPG, and by less sensitive, POPF, for comparison.

Figure 6. All plans generated by LPG using
weights on objectives and the pareto frontier.

Figure 7. Comparison of results from the same ex-
periment with weights between LPG and POPF.

5. Conclusion

As explained, metric sensitivity, as a key property of the planners, is a very important
aspect of multi objective planning. Although, there has been some work done in related
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areas, there is still large scope for developing more advanced metrics to assess quality
of results, quality of result sets and, most importantly, metric sensitivity of the planners.
In this paper we wanted to show how important metric sensitivity is, how it can be used
and how to evaluate whether a planner is or is not metric sensitive. It also turned out that
planners, even metric sensitive ones, are still biased towards giving high priority to the
plan length which is a built in metric in their heuristic.

In conclusion, we can say that LPG is the most metric sensitive planner among
those which we have examined. From experiment 4.4 it is clear that LPG can be used to
generate a good quality pareto frontier of plans, and what is more, this frontier is well
populated with the plans being distributed across the whole length of it.

Many planners which we expected to exhibit more metric sensitivity (MetricFF,
LPRPG and POPF), even though they turned out not to be metric sensitive, were able
to generate a well distributed set of solutions when applied using lower bounds on re-
sources. This is a novel idea and still needs more attention, however, it already produces
good results by adding the notion of metric sensitivity to the planners.
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