
A Logic for Specifying Agent Actions
and Observations with Probability1

Gavin RENS a, Gerhard LAKEMEYER b and Thomas MEYER a

a Centre for Artificial Intelligence Research, University of KwaZulu-Natal, South Africa;
and CSIR Meraka, South Africa

b RWTH Aachen University, Informatik, Germany

Abstract. We propose a non-standard modal logic for specifying agent domains
where the agent’s actuators and sensors are noisy, causing uncertainty in action
and perception. The logic is multi-modal, indexed with actions; the logic is also
augmented with observation objects to facilitate knowledge engineers dealing with
explicit observations in the environment, and it includes a notion of probability. A
tableau method is provided for proving decidability of the proposed logic. It is our
conjecture that the tableau rules are complete with respect to the semantics. The
proof does not yet exist, however, we discuss the current approach of the proof and
provide some examples to motivate our conjecture.

Keywords. Logic, POMDP, stochastic actions and observations, domain specification,
tableau method

1. Introduction and Motivation

In the physical real world, or in complex engineered systems, things are not black-and-
white. We live in a world where there can be shades of truth and degrees of belief. Part of
the problem is that agents’ actuators and sensors are noisy, causing uncertainty in their
action and perception. Agents inhabiting such complex and uncertain environments have
to cope with the uncertainty. Thus we—agent designers—have to provide the agents with
the coping mechanisms. We refer to the real worlds in which robots live, and man-made
systems in which intelligent agents are deployed, as stochastic domains.

In order for robots and intelligent agents in stochastic domains to reason about ac-
tions and observations, they must first have a representation or model of the domain over
which to reason. For example, a robot may need to represent available knowledge about
its grab action in its current situation. It may need to represent that when ‘grabbing’ the
oil-can, there is a 5% chance that it will knock over the oil-can. As another example, if
the robot has access to information about the weight of an oil-can, it may want to rep-
resent the fact that the can weighs heavy 90% of the time in ‘situation A’, but that it is
heavy 98% of the time in ‘situation B’.

Logic-based artificial intelligence for agent reasoning is well established. In partic-
ular, a domain expert choosing to represent domains with a logic can take advantage of

1An earlier version of this logic has been presented at the Ninth International Workshop on Non-Monotonic
Reasoning, Action and Change (NRAC’11) in Barcelona, Spain, 2011 [1]

STAIRS 2012
K. Kersting and M. Toussaint (Eds.)
© 2012 The Authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-096-3-252

252

the progress made in this sub-field of cognitive robotics [2] to specify the dynamics of
stochastic domains.

Modal logic is considered to be well suited to reasoning about beliefs and chang-
ing situations [3,4,5,6]. Many popular frameworks for reasoning about action, employ or
are based on the situation calculus [7]. Reified situations make the meaning of formu-
lae perspicuous. However, the situation calculus seems too rich and expressive for our
purposes, and it would be desirable to remain decidable, hence the restriction to a modal
framework.

Partially observable Markov decision process (POMDP) theory [8,9,10,11,12] has
proven to be a good general framework for formalizing dynamic stochastic systems. A
POMDP model is a tuple 〈S,A,T,R,Ω,O,b0〉; S is a finite set of states the agent can be
in; A is a finite set of actions the agent can choose to execute; T is the function defining
the probability of reaching one state from another, for each action; R is a function, giving
the expected immediate reward gained by the agent, for any state and agent action; Ω is
a finite set of observations the agent can experience of its world; O is a function, giving
for each agent action and the resulting state, a probability distribution over observations;
and b0 is the initial probability distribution over all states in S.

Our goal is to combine modal logic with POMDP theory so as to model agents as
POMDPs, specifically for reasoning tasks in cognitive robotics. That goal-logic will be
called LUAP. This paper though, concerns work that is a step towards LUAP. Here we
present the Specification Logic of Actions and Observations with Probability (SLAOP),
a ‘sub-logic’ of LUAP. SLAOP is a modal logic with actions and observations as first-
class objects [13]. To establish a correspondence between POMDPs and SLAOP, SLAOP
must view observations as objects at the same semantic level as actions. SLAOP can
accommodate models of stochastic actions and observations via probabilities. The notion
of utility (for rewards) can also be expressed in SLAOP. With SLAOP, POMDP states
can be represented compactly, that is, an explicit enumeration of states is not required.
To some extent with SLAOP, and more so with LUAP, one will be able to reason about
aspects of POMDPs using theorem-proving tools (e.g., tableaux).

Whereas SLAOP is a language for specifying stochastic domains, LUAP will reason
with the domain specification written with SLAOP. An engineer using LUAP will be
able to specify POMDPs, including belief states; belief states cannot be specified with
SLAOP. Our aim for the future will be to provide an algorithm for updating belief states.
The belief update algorithm will be a core component of the proof system of LUAP, and
proving validity of formulae in the syntax of SLAOP will be an important task in the
belief update algorithm.

Although SLAOP uses probability theory, it is not for reasoning about probability;
it is for reasoning about (probabilistic) actions and observations. There have been many
approaches/frameworks for reasoning about probability, but most of them are either not
concerned with dynamic environments [14,15,16,17] or they are concerned with change,
but they are not actually logics [18,19,20,21]. Some probabilistic logics for reasoning
about action and change do exist [22,23], but they are not modal and lack some desirable
attributes, for example, decidability, a solution to the frame problem, non-deterministic
actions, or catering for sensing. There are some logics that come closer to what we desire
[24,25,26,27], that is, they are modal and they incorporate notions of probability, but
they were not created with POMDPs in mind and typically do not take observations as
first-class objects. On the other hand, there are formalisms for specifying POMDPs that

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability 253

employ logic-based representation [28,29,30]. But again, they do not employ modal logic
or they do not incorporate principals of cognitive robotics in a way that we would like to
see in a representation/specification language.

Imagine a robot that is in need of an oil refill. There is an open can of oil on the floor
within reach of its gripper. If there is nothing else in the robot’s gripper, it can grab the
can (or miss it, or knock it over) and it can drink the oil by lifting the can to its mouth
and pouring the contents in (or miss its mouth and spill). The robot may also want to
confirm whether there is anything left in the oil-can by weighing its contents with its
‘weight’ sensor. And once holding the can, the robot may wish to replace it on the floor.
In situations where the oil-can is full, the robot gets five units of reward for gabbing the
can, and it gets ten units of reward for a drink action.

The domain is (partially) formalized as follows. The robot has the set of (intended)
actions A = {grab,drink,weigh,replace} with expected meanings. The robot can per-
ceive observations only from the set Ω = {obsNil, obsLight, obsMedium, obsHeavy}.
Intuitively, when the robot performs a weigh action (i.e., it activates its ‘weight’ sensor)
it will perceive either obsLight, obsMedium or obsHeavy; for other actions, it will per-
ceive obsNil. The robot experiences its world (domain) through three Boolean features:
P= {full,drank,holding} meaning respectively that the oil-can is full, that the robot has
drunk the oil and that it is currently holding something in its gripper.

Given a formalization BK of our scenario, the robot may have the following queries:

• Is it so that the probability of perceiving that the oil-can is light is 0.7 when the
can is not full, and I have drunk the oil, and I am holding the can? That is, does
[obsLight | weigh]0.7(¬full∧drank∧holding) follow from BK?

• If the oil-can is empty and I’m not holding it, is there a 0.9 probability that I’ll
be holding it after grabbing it, and a 0.1 probability that I’ll have missed it?
That is, does (¬full∧¬holding)→ ([grab]0.9(¬full∧holding)∧ [grab]0.1(¬full∧
¬holding)) follow from BK?

In a previous paper [1], we introduced SLAOP and showed how one can specify
a stochastic domain by using the language of SLAOP, with the ‘oil-can scenario’ as a
running example. In this paper, we present some of the work done towards proving that
SLAOP is decidable, which would set it apart from first-order logics for reasoning about
action (including the situation calculus [7]) or reasoning with probabilities (including
E S P [26]). In other words, having a decidable formalism to reason about POMDP’s is
considered an asset and would set us apart from other more expressive logical formalisms
addressing action and sensing under uncertainty.

Section 2 presents the syntax and semantics of SLAOP. Section 3 presents the
tableau method and Section 4 provides examples of application of the tableau method.
Some concluding remarks are made in Section 5.

2. Specification Logic of Actions and Observations with Probability

2.1. Syntax

The vocabulary of our language contains four sorts of objects of interest:

1. a finite set of propositional variables (simply, propositions) P= {p1, . . . , pn},

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability254

2. a finite set of names of atomic actions A= {α1, . . . ,αn},
3. a finite set of names of atomic observations Ω = {ς1, . . . ,ςn},
4. a countable set of names Q= {q1,q2, . . .} of all rational numbers in Q.

The setting is multi-modal, in which we have modal operators [α], one for each
α ∈ A, and modal operators [ς | α]q, one for each pair in Ω×A.

Definition 2.1 Let α,α ′ ∈ A, ς ,ς ′ ∈ Ω, q,r,c ∈Q and p ∈P. The language of SLAOP,
denoted LSLAOP, is the least set of Φ defined by the grammar:

ϕ ::= p | � | ¬ϕ | ϕ ∧ϕ.

Φ ::= ϕ | ¬Φ | Φ∧Φ | [α]qϕ | [ς | α]qϕ | α = α ′ | ς = ς ′ | Reward(r) |Cost(α,c).

[α]qϕ is read ‘The probability of reaching a world in which ϕ holds after executing α ,
is equal to q’. [α] abbreviates [α]1 and 〈α〉ϕ abbreviates ¬[α]¬ϕ . [ς | α]qϕ can be read
‘The probability of perceiving ς in a world in which ϕ holds is equal to q, given α was
performed’. ¬[ς | α]0ϕ can be written as 〈ς | α〉ϕ and is read ‘It is possible to perceive
ς in a ϕ-world, given α was performed’. We may write [ς | α]ϕ instead of [ς | α]1ϕ .

The definition of a POMDP reward function R(a,s) may include not only the reward
value of state s, but it may deduct the cost of performing a in s. It will be convenient
for the person specifying a POMDP using SLAOP to be able to specify action costs
independently from the rewards of states, because these two notions are not necessarily
connected. To specify rewards and execution costs in SLAOP, we require Reward and
Cost as special predicates. Reward(r) can be read ‘The reward for being in the current
situation is r units’ and we read Cost(α,c) as ‘The cost for executing α is c units’.

Note that formulae with nested modal operators, like [·]q[·]qϕ, [·]q[·]q[·]qϕ , et cetera,
are not in LSLAOP. ‘Single-step’ or ‘flat’ formulae are sufficient to specify transition
and perception probabilities. The logic called LUAP, to be defined in future, will allow
an agent to query the probability of some propositional formula ϕ after an arbitrary
sequence of actions and observations. As usual, we treat ⊥,∨,→ and ↔ as abbreviations.

2.2. Semantics

Our semantics follows that of multi-modal logic K [31]. However, structures (alias, pos-
sible worlds models [32,33]) are non-standard. Standard modal logic structures are tuples
〈W,R,V 〉, where W is a (possibly infinite) set of states (possibly without internal struc-
ture), R is a binary relation on W , and V is a valuation, assigning subsets of W to each
atomic proposition [34,3, e.g.]. We shall say that modal logics—and their extensions—
with such standard structures, have point-based semantics.

As mentioned in Section 1, the development of SLAOP is to provide a logic that can
represent POMDPs for cognitive robotics. The addition of observation objects is one step
towards this goal; another important step is to set up a correspondence between states
in POMDP theory and worlds in the logic. That is, given a specification that uniquely
identifies a state, there should be a uniquely identifiable world in the structure of the
logic. Intuitively, when talking about some world w, we mean a set of features (propo-
sitions) that the agent understands and that describes a state of affairs in the world or
that describes a possible, alternative world. Hence, SLAOP does not have a point-based

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability 255

semantics: Its semantics has a structure of the form 〈W,R〉, where W is a finite set of
worlds such that each world assigns a truth value to each atomic proposition, and R is a
binary relation on W . Let w ∈ W and let w : P �→ {0,1} be a total function that assigns
a truth value to each proposition. Let C (conceivable worlds) be the set of all possible
functions w. We shall say that modal logics—and their extensions—with such structures,
have world-based semantics.

Definition 2.2 A SLAOP structure is a tuple S= 〈W,R,O,N,Q,U〉 such that

1. W ⊂C a non-empty set of possible worlds;
2. R is a mapping that provides an accessibility relation Rα : W ×W ×Q∩ [0,1] for

each action α ∈ A; Given some w− ∈W as the first component of a triple in Rα ,
we require that ∑(w−,w+,pr)∈Rα pr = 1; Also, if (w−,w+, pr),(w−,w+, pr′) ∈ Rα ,
then pr = pr′;

3. O is a nonempty finite set of observations;
4. N : Ω �→ O is a bijection that associates to each name in Ω, a unique observation

in O;
5. Q is a mapping that provides a perceivability relation Qα : O×W ×Q∩ [0,1]

for each action α ∈ A; Given some w+ ∈ W such that (w−,w+, pr′) ∈ Rα , it is
required that ∑(o,w+,pr)∈Qα pr = 1; Also, if (o,w+, pr),(o,w+, pr′) ∈ Qα , then
pr = pr′;

6. U is a pair 〈Re,Co〉, where Re : W �→Q is a reward function and Co is a mapping
that provides a cost function Coα : C �→Q for each α ∈ A;

Rα defines which worlds w+ are accessible via action α performed in world w− and the
transition probability pr ∈Q∩ [0,1]. Qα defines which observations o are perceivable in
worlds w+ accessible via action α and the observation probability pr ∈Q∩ [0,1].

Because N is a bijection, it follows that |O|= |Ω|. (We take |X | to be the cardinality
of set X .) The value of the reward function Re(w) is a rational number representing the
reward an agent gets for being in or getting to the world w. It must be defined for each
w ∈C. The value of the cost function Co(α,w) is a rational number representing the cost
of executing α in the world w. It must be defined for each action α ∈ A and each w ∈C.

Definition 2.3 (Truth Conditions) Let S be a SLAOP structure, with α,α ′ ∈ A, ς ,ς ′ ∈
Ω, q,r,c ∈Q. Let p ∈P and let ϕ be any sentence in LSLAOP. We say ϕ is satisfied at
world w in structure S (written S,w |= ϕ) if and only if the following holds:

1. S,w |=� for all w ∈W;
2. S,w |= p ⇐⇒ w(p) = 1 for w ∈W;
3. S,w |= ¬ϕ ⇐⇒ S,w �|= ϕ;
4. S,w |= ϕ ∧ϕ ′ ⇐⇒ S,w |= ϕ and S,w |= ϕ ′;
5. S,w |= α = α ′ ⇐⇒ α,α ′ ∈ A are the same element;
6. S,w |= ς = ς ′ ⇐⇒ ς ,ς ′ ∈ Ω are the same element;
7. S,w |= Reward(r) ⇐⇒ Re(w) = r;
8. S,w |=Cost(α,c) ⇐⇒ Coα(w) = c;
9. S,w |= [ς | α]qϕ ⇐⇒ (∀w′) if (∃pr)(w,w′, pr) ∈ Rα and S,w′ |= ϕ

then (N(ς),w′,q) ∈ Qα ;
10. S,w |= [α]qϕ ⇐⇒ (

∑(w,w′,pr)∈Rα ,S,w′|=ϕ pr
)
= q.

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability256

There should always be some observation (associated with an action) in a world,
given that action was performed to reach that world. If this were not so, an agent could
reach a world and become ‘unconscious’ due to having no observations. Conversely,
notice that if there is an observation in a world, there must have been an action that caused
the agent to be there. Therefore, it is required that the following set of axioms be stated in
any and all domain specifications employing SLAOP: {〈α〉ϕ ↔∨

ς∈Ω〈ς | α〉ϕ | α ∈A}.
A formula ϕ is valid in a SLAOP structure (denoted S |= ϕ) if S,w |= ϕ for every

w ∈W . ϕ is SLAOP-valid (denoted |= ϕ) if ϕ is true in every structure S. ϕ is satisfiable
if S,w |= ϕ for some S and w ∈W . The truth of a propositional formula is independent
of a SLAOP structure. We may thus write w |= ϕ instead of S,w |= ϕ when ϕ is a
propositional formula.

Let K ⊂LSLAOP. If, for all θ ∈K , |=ψ whenever |= θ , we say K logically entails
ψ (abbreviated K |= ψ). If K logically entails ψ and K contains a single sentence θ ,
then we omit the brackets and write θ |= ψ . If |= θ ↔ ψ , we say θ and ψ are logically
equivalent (abbreviated θ ≡ ψ).

3. The Tableau Method

In modal logics, tableau calculi are well suited as decision procedures for validity. If we
could design a tableau method and prove that it is sound and complete with respect to the
semantics and prove that the tableau method always terminates, then as a consequence,
SLAOP would be decidable. The tableau method we propose is adapted from Castilho,
Gasquet and Herzig [35]. It is based on a labeled formulae calculus. The necessary ter-
minology is given next.

The tableau calculus for SLAOP, with all its rules, is referred to as CSLAOP.
A labeled formula is a pair (n,ϕ), where ϕ is a formula and n is an integer called the

label of ϕ . A skeleton Σ is a binary relation Σ ⊆ A×N. Elements (α,n′) of the relation
are denoted α→ n′. A node N j

k is a pair 〈Γ j
k,Σ

j
k〉 with superscript j the branch index and

subscript k the node index, where Γ j
k is a set of labeled formulae and Σ j

k is a skeleton.
The initial node to which CSLAOP must be applied, that is, N0

0 , is called the trunk. A tree
T is a set of nodes. A tree must include N0

0 and only nodes resulting from the application
of tableau rules to the trunk and subsequent nodes. A branch B j(T) of some tree T is
the set of nodes with the same branch index j: B j(T) = {N j

k ∈ T | k = 0,1,2, . . .}.
When we say ‘...where x is a fresh integer’, we mean that x is the smallest positive

integer not yet used (for a label, branch index or node index, as the case may be) in the
current tree.

A tableau rule applied to node N j
k creates one or more new nodes; its child(ren). If it

creates one child, then it is identified as N j
k+1. If N j

k creates a second child, it is identified

as N j′
0 , where j′ is a fresh integer. That is, for every child created beyond the first, a new

branch is started. Node N j
k is a leaf node of tree T if there is no node N j

k′ in branch B j(T)
such that k′ > k. A node 〈Γ,Σ〉 is closed if (i,⊥) ∈ Γ for some i. It is open if it is not
closed. A branch is closed if and only if its leaf node is closed. A tree is closed if all of
its branches B0(T), . . . ,Bn(T) are closed, else it is open.

Let N j
k = 〈Γ j

k,Σ
j
k〉 be a leaf node. The tableau rules for SLAOP follow.

• A rule may only be applied to an open leaf node.

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability 257

• rule ⊥: If Γ j
k contains (n,Φ) and (n,¬Φ), then create node 〈Γ j

k ∪{(n,⊥)},Σ j
k〉.

• rule ¬: If Γ j
k contains (n,Φ), where Φ contains ¬¬, then create node 〈Γ j

k ∪
{(n,Φ′)},Σ j

k〉, where Φ′ is Φ without ¬¬.
• rule ∧: If Γ j

k contains (n,Φ∧Φ′), then create node 〈Γ j
k ∪{(n,Φ),(n,Φ′))},Σ j

k〉.
• rule ∨: If Γ j

k contains (n,¬(Φ∧Φ′)), then create node N j
k+1 = 〈Γ j

k∪{(n,¬Φ)},Σ j
k〉

and node N j′
0 = 〈Γ j

k ∪{(n,¬Φ′)},Σ j
k〉, where j′ is a fresh integer.

• rule =: If Γ j
k contains (0,c = c′) and in fact constants c and c′ do not refer to the

same constant, or if Γ j
k contains (0,c �= c′) and in fact constants c and c′ do refer

to the same constant, then create node N j
k+1 = 〈Γ j

k ∪{(0,⊥)},Σ j
k〉.

• rule Re: If Γ j
k contains (0,Reward(r)) and (0,Reward(r′)) such that r �= r′, then

create node N j
k+1 = 〈Γ j

k ∪{(0,⊥)},Σ j
k〉.

• rule Co: If Γ j
k contains (0,Cost(α,c)) and (0,Cost(α,c′)) such that c �= c′, then

create node N j
k+1 = 〈Γ j

k ∪{(0,⊥)},Σ j
k〉.

• rule ¬[ς]: If Γ j
k contains (0, [ς | α]qΦ) and (0,¬[ς | α]qΦ′) where Φ∧Φ′ �≡ ⊥,

create node 〈Γ j
k ∪{(0,⊥)},Σ j

k〉.
• rule [ς]q: If Γ j

k contains (0, [ς | α]qΦ) and (0, [ς ′ | α]q′Φ′) where Φ∧Φ′ �≡ ⊥,
then

1. if q �= q′, create node N j
k+1 = 〈Γ j

k ∪{(0,¬(ς = ς ′))},Σ j
k〉.

2. if q+q′ > 1, create node N j
k+1 = 〈Γ j

k ∪{(0,ς = ς ′)},Σ j
k〉.

• rule obs: If Γ j
k contains (0, [ς1 | α]q1Φ1),(0, [ς2 | α]q2Φ2), . . . ,(0, [ςm | α]qmΦm)

such that ςx is not the same as ςy for all x and y (1 ≤ x,y ≤ m and x �= y) and
∧m

i=1 Φi �≡ ⊥, then

1. if ∑m
i=1 qi = 1, then create node N j

k+1 = 〈Γ j
k ∪ {(0, [ς ′

1 | α]0Φ′),(0, [ς ′
2 |

α]0Φ′), . . . ,(0, [ς ′
m | α]0Φ′)},Σ j

k〉, where ς ′ ∈ Ω \ {Φz ∈ Ω | z = 1,2, . . . ,m}
and Φ′ is

∧m
i=1 Φi.

2. if ∑m
i=1 qi < 1, then create node N j

k+1 = 〈Γ j
k∪{(0,¬[ς ′

1 |α]0Φ′ ∨¬[ς ′
2 |α]0Φ′)∨

·· · ∨¬[ς ′
m | α]0Φ′)},Σ j

k〉, where ς ′ ∈ Ω \ {Φz ∈ Ω | z = 1,2, . . . ,m} and Φ′ is
∧m

i=1 Φi.
3. if

⋃n
i=1 ςi = Ω, then if ∑m

i=1 qi �= 1, create node N j
k+1 = 〈Γ j

k ∪{(0,⊥)},Σ j
k〉.

• rule → 〈α〉: If Γ j
k contains (0, [α]qΦ) for 0 < q ≤ 1, then create node 〈Γ j

k ∪
{(0,¬[α]¬Φ)},Σ j

k〉.
• rule → 〈ς〉: If Γ j

k contains (0, [ς | α]qΦ) for 0 < q ≤ 1, then create node N j
k+1 =

〈Γ j
k ∪{(0,¬[ς | α]0Φ)},Σ j

k〉.
• rule ♦: If Γ j

k contains (0,¬[α]Φ), then create node 〈Γ j
k ∪{(n,¬Φ)},Σ j

k ∪{0 α→
n}〉, where n is a fresh integer.

• rule �: If Γ j
k contains (0, [α]Φ) and Σ contains α→ n, then create node 〈Γ j

k ∪
{(n,Φ)},Σ j

k〉.
• rule rng: If Γ j

k contains (0, [α]qΦ) such that q < 0 or q > 1, then create node
〈Γ j

k ∪{(0,⊥)},Σ j
k〉.

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability258

• rule 1−q: If Γ j
k contains (0, [α]qΦ), then create node 〈Γ j

k ∪{(0, [α]1−q¬Φ)},Σ j
k〉.

• rule ¬[α]: If Γ j
k contains (0, [α]qΦ) and (0,¬[α]qΦ′) where q < 1, create node

〈Γ j
k ∪{(0,¬[α](Φ ↔ Φ′))},Σ j

k〉.
• rule [α]q: If Γ j

k contains (0, [α]qΦ) and (0, [α]q′Φ′), then

1. create node 〈Γ j
k ∪{(0, [α]¬(Φ∧Φ′)→ [α]q+q′(Φ∨Φ′))},Σ j

k〉.
2. create node 〈Γ j

k ∪{(0, [α](Φ → Φ′)→ [α]q′−q(Φ′ ∧¬Φ))},Σ j
k〉.

3. if q > q′, create node 〈Γ j
k ∪{(0,〈α〉(Φ∧¬Φ′))},Σ j

k〉.

• rule dne: If Γ j
k contains (0, [α]qΦ), (0, [α]q′Φ′) and (0, [α]q′′Φ′′), then

1. if Φ′′ ≡ Φ∧Φ′, then: if 0 ≤ q+q′ −q′′ ≤ 1, create node 〈Γ j
k ∪{(0, [α]q+q′−q′′

¬(¬Φ∧¬Φ′))},Σ j
k〉, else create node 〈Γ j

k ∪{(0,⊥)},Σ j
k〉.

2. if Φ′′ ≡ Φ∨Φ′, then: if 0 ≤ q+q′ −q′′ ≤ 1, create node 〈Γ j
k ∪{(0, [α]q+q′−q′′

(Φ∧Φ′))},Σ j
k〉, else create node 〈Γ j

k ∪{(0,⊥)},Σ j
k〉.

3. if Φ′ ≡ Φ∧ χ and Φ′′ ≡ Φ∨ χ for some χ �≡ Φ, then: if 0 ≤ q′+ q′′ − q ≤ 1,
create node 〈Γ j

k ∪{(0, [α]q′+q′′−qχ)},Σ j
k〉, else create node 〈Γ j

k ∪{(0,⊥)},Σ j
k〉.

If one has a tree with trunk N0
0 = 〈{(0,Ψ)}, /0〉, we’ll say one has a tree for Ψ. Note

that (n,Φ) �∈ Γ for n > 0 when Φ is a dynamic formula. Hence, in tableau rules explicitly
concerning dynamic formulae, the labeled formula ‘triggering’ the rule has label 0.

Remark 3.1 For rule Rl applicable to any labeled formula (n,Φ), if the rule says to
create a new node 〈Γ∪F,Σ〉 while F is already in Γ, then Rl may not be applied to (n,Φ).
Also, if rule ♦ has been applied to (0,♦Φ), don’t apply it to (0,♦Φ) again.

The above remark constrains rule application to prevent trivial re-applications of rules.
A branch is saturated if and only if any rule that can be applied to its leaf node has

been applied. If a tree for ¬Ψ is closed, we write � Ψ. If there is a tree for ¬Ψ, with a
saturated open branch, we write �� Ψ.

Theorem 3.1 (Soundness) If � Ψ then |= Ψ.

We proved soundness; the proof is omitted here. We conjecture that CSLAOP always termi-
nates, and although it does not seem difficult to prove, it is a work in progress. However,
the proof of completeness is difficult: it requires that a SLAOP structure be constructed
from the information in a tableau tree whenever the tree indicates that a model exists for
the input sentence—while the SLAOP structure must adhere to probability theory, given
the notions of probability expressed in the input sentence.

Conjecture 3.1 (Completeness) If |= Ψ then � Ψ. (Contrapositively, if �� Ψ then �|= Ψ.)

Let ψ = ¬Ψ. Then �� Ψ means that there is an open tree in a saturated tableau for ψ . It
thus suffices to construct for any open saturated tree for ψ ∈LSLAOP, a SLAOP structure
S in which there is a world w in S such that ψ is true in S at w.

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability 259

4. Examples

This section includes three examples of CSLAOP at work, all involving our oil-can sce-
nario. Limited space prevents us from providing a full specification of the scenario. We
assume that the full domain specification is contained by the agent’s background knowl-
edge BK. In particular, the following domain axioms, which are required in the example
proofs below, are in BK.

• [obsLight | weigh]0.7(¬full∧drank) gives the probability of weighing the oil-can
and finding that it is light in worlds where the can is not full and the oil has been
drunk,

• (full∧¬drank∧holding)→ ([drink]0.85(¬full∧drank∧holding)∧[drink]0.15(¬full
∧ ¬drank ∧ holding)) gives the probabilities of reaching the only two worlds
reachable from the world where full and holding are true and drank is false.

• holding → [drink]holding expresses that the agent doesn’t drop the oil-can when
drinking,

• (full ∧ ¬holding) → ([grab]0.7(full ∧ holding) ∧ [grab]0.2(¬full ∧ ¬holding) ∧
[grab]0.1(full∧¬holding)) is another specification of transition probabilities given
the can is full and the agent is not holding it when it grabs it,

• (full∧drank∧¬holding)→ [grab] drank expresses the agent’s belief that if it has
drunk the oil, then if it grabs the can, the agent will still think it has drunk the oil.

Please refer to our previous paper [1] for an explanation of domain specification using
SLAOP.

In these examples, it will be determined whether a sentence IC → ϕ is logically
entailed by BK, where ϕ is an arbitrary sentence of interest and IC is the agent’s initial
condition.

Tables 1, 2 and 3 depict the tableaux of the different examples. To shorten and clar-
ify the proofs, we shall use syntactic abbreviations, and we shall not show every rule
application, as long as the steps remain clear. The ‘Comment’ column mentions the rule
applied and the numbers in the ‘Comment’ column refer to the line to which the rule was
applied. That is, “rl. R�:x” means that rule R� was applied to a formula in line x. Also, in
the ‘Comment’ column, ”bk.” indicates that the sentence in that line is from BK.

Standard logical equivalences will be used to transform formulae into more ‘normal’
forms: “nf.: x” in the ‘Comment’ column means that ‘normal forming’ was applied to
line x. If there is not enough space in the ‘Comment’ column, the comment will be
written just adjacent to the applicable node.

Furthermore, the following abbreviations for constants will be used: grab := g,
drink := d, weigh := w, full := f , drank := d, holding := h, and obsLight := oL.

Table 1. Proof that BK |= (full∧drank)→¬[obsLight | weight]0.1¬full.

Line Γ & Σ Comment

1 (0, f ∧d), (0,¬¬[oL | w]0.1¬ f) trunk
2 (0, f ∧d), (0, [oL | w]0.1¬ f) rl.¬:1
3 (0, [oL | w]0.7(¬ f ∧d)) bk.
4 (0,¬(oL = oL) rl.[ς]q1:2,3
5 (0,⊥) rl.=:4

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability260

In the proof given in Table 1, the agent’s initial condition is expressed as (0, f ∧d).
Note however, that BK |= ι → ¬[obsLight | weight]0.1¬full for any initial condition ι .
This is because observation probabilities depend on the action executed and the world
reached, not the world in which the action was executed.

Table 2. Proof that BK |= (f ull ∧¬drank∧holding)→ [drink]0.15(f ull ∨¬drank).

Line Γ & Σ Comment

1 (0, f ∧¬d ∧h), (0,¬[d]0.15(f ∨¬d)) trunk
2 (0, f), (0,¬d), (0,h), (0,¬[d]0.15(f ∨¬d)) rl.∧:1
3 (0,(f ∧¬d ∧h)→ ([d]0.85(¬ f ∧d ∧h)∧ [d]0.15(¬ f ∧¬d ∧h))) bk.
4 (0,¬(f ∧¬d ∧h)∨ ([d]0.85(¬ f ∧d ∧h)∧ [d]0.15(¬ f ∧¬d ∧h))) nf.:3
5 (0,¬ f) (0,d) (0,¬h) (0, [d]0.85(¬ f ∧d ∧h)), (0, [d]0.15(. . .)) rl.∨,¬,∧:4
6 (0,⊥) (0,⊥) (0,⊥) (0, [d]0.15¬(¬ f ∧d ∧h)) rl.1−q:5
7 rl.⊥:2,5 rl.⊥:2,5 rl.⊥:2,5 (0,¬[d](¬(¬ f ∧d ∧h)↔ (f ∨¬d)) rl.¬[α]:1,6
8 (1,¬ f ∧d ∧h), (1, f ∨¬d ∨¬h), nf.& rl.♦:7

(1, f ∨¬d), d→ 1 (1,¬ f ∧d), d→ 1
9 (0,h → [d]h) bk.

...
...

(1,⊥), rl.⊥:8 (1,⊥) rl.⊥:8,9

Table 3. Proof that BK |= (f ull ∧drank∧¬holding)→ [grab]0.7(f ull ∧drank∧holding).

rl.⊥:14rl.⊥:12rl.⊥:13(1,⊥)rl.⊥:1315
rl.�:6(1,⊥)(1,⊥)(1,¬d), (1, f), (1,h), (1,d)(1,⊥)14
rl.∨:12

...(1,¬h), (1,h)(1,¬d), (1, f), (1,h)(1,¬ f), (1, f)13

(1,¬ f ∨¬h)

rl.∧,∨:11(1, f), (1,d), (1,h),(1,¬ f ∨¬d ∨¬h), (1, f), (1,h)12
rl.∧,∨:10(1,(f ∧d ∧h)∧¬(f ∧h)(1,¬(f ∧d ∧h)∧ (f ∧h)11
rl.♦:9(1,¬((f ∧d ∧h)↔ (f ∧h)),

g→ 110
rl.¬[α]:1,7(0,¬[g]((f ∧d ∧h)↔ (f ∧h))9

...

CommentΓ & ΣLine

continues in table belowrl.⊥:2,6rl.⊥:2,6rl.⊥:2,68
rl.∧:4(0, [g]0.7(f ∧h))(0,⊥)(0,⊥)(0,⊥)7
nf.& rl.∨,¬:5(0, [g] d)(0,h)(0,¬d)(0,¬ f)rl.⊥:2,4rl.⊥:2,46
bk.(0,(f ∧d ∧¬h)→ [g] d)(0,⊥)(0,⊥)5
nf.& rl.∨,¬:3(0, [g]0.7(f ∧h)∧ [g]0.2(¬ f ∧¬h)∧ [g]0.1(f ∧¬h)))(0,h)(0,¬ f)4
bk.(0,(f ∧¬h)→ ([g]0.7(f ∧h)∧ [g]0.2(¬ f ∧¬h)∧ [g]0.1(f ∧¬h)))3
rl.∧:1(0, f), (0,d), (0,¬h), (0,¬[g]0.7(f ∧d ∧h))2
trunk(0, f ∧d ∧¬h), (0,¬[g]0.7(f ∧d ∧h))1

CommentΓ & ΣLine

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability 261

5. Concluding Remarks

We introduced a formal language for specifying partially observable Markov decision
processes (POMDPs), specifically for robots that must deal with uncertainty in affection
and perceptions. The formal language is based on multi-modal logic and accepts basic
principals of cognitive robotics. We have also included notions of probability to represent
the uncertainty to represent POMDPs for the intended application. Beyond the usual
elements of logics for reasoning about action and change, the logic presented here adds
observations as first-class objects, and a means to represent utility functions. An approach
to specifying a robot and its environment was laid out elsewhere [1].

Our research thus far has shown that SLAOP’s tableau method is sound. Ultimately,
we want to prove that the method is decidable, however, this will depend on whether
it is complete and terminating. Proving completeness is difficult and has not yet been
achieved. Our approach for the completeness proof is via a tableau method for decid-
ing the validity of sentences. Proofs of validity, like those in the previous section, sup-
ports our intuition that SLAOP is complete. A secondary purpose for designing a tableau
method is as a starting point for designing an implementation of SLAOP.

Acknowledgement

Part of this research was done while the first author was in Germany on a DAAD (German
Academic Exchange Service) scholarship.

References

[1] G. Rens, T. Meyer, A. Ferrein, and G. Lakemeyer. A logic for specifying partially observable stochastic
domains. In S. Sardina and S. Vassos, editors, Proceedings of the Ninth International Workshop on
Non-Monotonic Reasoning, Action and Change (NRAC’11), pages 15–22, Melbourne 3000, Australia,
July 2011. School of Computer Science and Information Technology, RMIT University.

[2] H. J. Levesque and G. Lakemeyer. Cognitive Robotics. In B. Porter F. Van Harmelen, V. Lifshitz, editor,
The Handbook of Knowledge Representation, pages 869–886. Elsevier Science, 2008.

[3] G. Hughes and M. Cresswell. A New Introduction to Modal Logic. Routledge, New York, NY, 1996.
[4] A. Chagrov and M. Zakharyaschev. Modal Logic (Oxford Logic Guides, Vol. 35). Oxford University

Press, Oxford, England, 1997.
[5] P. Blackburn, M. De Rijke, and Y. Venema. Modal Logic. Cambridge University Press, Cambridge, UK,

2001.
[6] P. Blackburn, J. Van Benthem, and F. Wolter, editors. Handbook of Modal Logic, volume 3 of Studies in

Logic and Practical Reasoning. Elsevier, Amsterdam, The Netherlands / Oxford, UK, 2007.
[7] R. Reiter. Knowledge in action: logical foundations for specifying and implementing dynamical systems.

MIT Press, Massachusetts/England, 2001.
[8] K. Aström. Optimal control of Markov decision processes with incomplete state estimation. J. Math.

Anal. Appl., 10:174–205, 1965.
[9] R. Smallwood and E. Sondik. The optimal control of partially observable Markov processes over a finite

horizon. Operations Research, 21:1071–1088, 1973.
[10] G. E. Monahan. A survey of partially observable Markov decision processes: Theory, models, and

algorithms. Management Science, 28(1):1–16, 1982.
[11] W. Lovejoy. A survey of algorithmic methods for partially observed Markov decision processes. Annals

of Operations Research, 28:47–66, 1991.
[12] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and computa-

tional leverage. J. Artif. Intell. Res. (JAIR), 11:1–94, 1999.

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability262

[13] G. Rens, I. Varzinczak, T. Meyer, and A. Ferrein. A logic for reasoning about actions and explicit
observations. In Jiuyong Li, editor, AI 2010: Advances in Artificial Intelligence. Proceedings of the 23rd
Australasian Joint Conference, volume 6464 of Lecture Notes in Artificial Intelligence, pages 395–404,
Berlin/Heidelberg, December 2010. Springer-Verlag.

[14] F. Bacchus. Representing and Reasoning with Uncertain Knowledge. MIT Press, Cambridge, MA,
1990.

[15] R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability. Journal of the ACM, 41(2):340–
367, 1994.

[16] J. Y. Halpern. Reasoning about Uncertainty. The MIT Press, Cambridge, MA, 2003.
[17] A. Shirazi and E. Amir. Probabilistic modal logic. In Proc. of 22nd Natl. Conf. on Artificial Intelligence

(AAAI-07), pages 489–494. AAAI Press, 2007.
[18] D. Poole. Decision theory, the situation calculus and conditional plans. Linköping Electronic Articles in

Computer and Information Science, 8(3), 1998.
[19] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent programming

in the situation calculus. In Proceedings of the 17th National Conference on Artificial Intelligence
(AAAI-00) and of the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI-00),
pages 355–362. AAAI Press, Menlo Park, CA, 2000.

[20] B. Bonet and H. Geffner. Planning and control in artificial intelligence: A unifying perspective. Applied
Intelligence, 14(3):237–252, 2001.

[21] G. Rens. A belief-desire-intention architecture with a logic-based planner for agents in stochastic do-
mains. Master’s thesis, School of Computing, University of South Africa, 2010.

[22] F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy sensors and effectors in the
situation calculus. Artificial Intelligence, 111(1–2):171–208, 1999.

[23] L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati. Reasoning about actions with sensing under quali-
tative and probabilistic uncertainty. ACM Transactions on Computational Logic, 10(1):5:1–5:41, 2009.

[24] M. De Weerdt, F. De Boer, W. Van der Hoek, and J.-J. Meyer. Imprecise observations of mobile robots
specified by a modal logic. In Proc. of ASCI-99, pages 184–190, 1999.

[25] J. Van Diggelen. Using modal logic in mobile robots. Master’s thesis, Cognitive Artificial Intelligence,
Utrecht University, 2002.

[26] A. Gabaldon and G. Lakemeyer. E S P: A logic of only-knowing, noisy sensing and acting. In Proc.
of 22nd Natl. Conf. on Artificial Intelligence (AAAI-07), pages 974–979. AAAI Press, 2007.

[27] J. Van Benthem, J. Gerbrandy, and B. Kooi. Dynamic update with probabilities. Studia Logica,
93(1):67–96, 2009.

[28] C. Boutilier and D. Poole. Computing optimal policies for partially observable decision processes using
compact representations. In Proc. of 13th Natl. Conf. on Artificial Intelligence, pages 1168–1175, 1996.

[29] C. Wang and J. Schmolze. Planning with POMDPs using a compact, logic-based representation. In
Proc. of 17th IEEE Intl. Conf. on Tools with Artif. Intell. (ICTAI’05), pages 523–530, Los Alamitos, CA,
USA, 2005. IEEE Computer Society.

[30] S. Sanner and K. Kersting. Symbolic dynamic programming for first-order POMDPs. In Proc. of 24th
Natl. Conf. on Artificial Intelligence (AAAI-10), pages 1140–1146. AAAI Press, 2010.

[31] S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.
[32] S. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24(1):1–14, 1959.
[33] J. K. K. Hintikka. Knowledge and belief. Cornell University Press, Ithaca, NY, 2nd edition, 1962.
[34] B. Chellas. Modal Logic: an introduction. Cambridge University Press, Cambridge, MA, 1980.
[35] M. Castilho, O. Gasquet, and A. Herzig. Formalizing action and change in modal logic I: The frame

problem. Journal of Logic and Computation, 9(5):701–735, 1999.

G. Rens et al. / A Logic for Specifying Agent Actions and Observations with Probability 263

