
A two-phase bidirectional heuristic search
algorithm1

Francisco Javier Pulido L. Mandow J.L. Pérez de la Cruz a

a francis,lawrence,perez@lcc.uma.es

Abstract. This work describes a new best-first bidirectional heuristic search algo-
rithm with two phases. The new algorithm is based on a critical review of the ba-
sic search reduction operations in previous algorithms like BS* or Switch-A*. The
general guideline is to let search fronts meet as close to midground as possible.
In a first phase, search is discontinued at nodes as soon as the opposite frontier is
met, terminating when one of the fronts runs out of open nodes. In a second phase,
unidirectional search is conducted from the discontinued nodes until an optimal so-
lution can be guaranteed. The new algorithm is tested on random instances of the
15-puzzle and on path-finding problems. A significant improvement in efficiency
is observed when compared with other bidirectional algorithms.

1. INTRODUCTION

Bidirectional search is an alternative to classical unidirectional graph search. It can be
applied in cases where the goal is known, and both predecessors and successors of a node
in the graph can be calculated.

Bidirectional blind best-first search is often considered a good alternative to blind
unidirectional search, achieving important reductions in search effort. However, the de-
velopment of efficient bidirectional heuristic search algorithms has proven to be a diffi-
cult task.

The general bidirectional heuristic search idea is to perform two A* searches in
opposite directions. This basic front-to-end approach has been developed in algorithms
like BHPA [1], BS* [2], or Switch-A* [3], which incorporate different techniques aimed
at balancing the search between the two directions, avoiding the repeated expansion of
nodes, or achieving a fast termination after the optimal solution has been found. Several
works have also explored the opportunity offered by these algorithms to dynamically
improve heuristic evaluations [3][4][5].

The belief that search fronts can pass each other without meeting until the very fi-
nal stages of the search (the so-called crossing missiles metaphor [1]) prompted the de-
velopment of front-to-front search algorithms. Rather than aiming at the goal from the
start node (and viceversa), each search front is aimed at meeting the front of the oppo-
site search. Representative algorithms include BHFFA [6][7] or d-node retargeting [8].
In general, these techniques achieved important reductions in the number of nodes con-

1This work is partially funded by / Este trabajo está financiado por:
Consejerı́a de Innovación, Ciencia y Empresa. Junta de Andalucı́a (España), P07-TIC-03018

STAIRS 2012
K. Kersting and M. Toussaint (Eds.)
© 2012 The Authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-096-3-240

240

sidered, but at the cost of increasing time requirements. Additionally, arguments were
presented against the missile metaphor [4]. Nevertheless, the development of perime-
ter search [9][10] achieved good results in certain domains, although limited to small
perimeters.

More recently, a single-frontier bidirectional search schema (SFBDS) has also been
proposed [11][12], which makes bidirectional search amenable to depth-first search tech-
niques. The effectiveness of the approach depends on the determination of adequate
jumping policies for different classes of problem domains. These eventually decide in
which direction to explore the state space at each step.

This paper proposes a new front-to-end best-first bidirectional heuristic search algo-
rithm. The new algorithm (2PBS*) divides the search into two phases. The first one lets
both search fronts meet naturally in a balanced way. Once a common line of encounter
has been clearly defined, the algorithm turns to unidirectional search in a second phase
in order to guarantee that an optimal solution is returned. The algorithm is evaluated in
two different problem domains (15-puzzle and path finding) and compared to previous
front-to-end algorithms.

The next section carries out a critical review of search reduction techniques used
in previous best-first front-to-end algorithms, and outlines the new algorithm. Section
3 presents the algorithm in detail and proves its admissibility. Section 4 describes the
experimental analysis and results. A discussion is presented in section 5. Finally, some
conclusions and future work are described.

2. REDUCTION TECHNIQUES IN BIDIRECTIONAL HEURISTIC SEARCH

The idea of a basic bidirectional heuristic search amounts to performing two A* searches
in opposite directions, as shown in the BHPA [1] and BS* [2] algorithms. However, a
number of problems have prevented bidirectional search from achieving the performance
gains expected by researchers. Research effort has been directed over the years towards
an adequate diagnosis of the workings of bidirectional search algorithms, as well as to
new algorithmic techniques to improve their performance.

One interesting feature of bidirectional search is that many of the effort-saving tech-
niques proposed over the years are heuristic in the deepest sense of the term. They can
perform very well in certain cases, and not so well in others. Particularly, it is frequently
possible to provide examples where a given technique saves search effort, as well as ex-
amples where the very same technique wastes search effort. Eventually, the value of the
proposed techniques has to be evaluated experimentally on average terms. This evalu-
ation is additionally complicated by the fact that bidirectional search can perform very
differently in different problem domains.

The first important decision in bidirectional search deals with the way the search
effort is distributed in both directions. It is generally acknowledged that the cardinality
criterion [1] is a good solution to the problem. Basically, this calls for searching in the
direction with fewer open nodes. The rationale is to let both search fronts grow approxi-
mately equally, and meet as close to midground as possible.

In his influential early work, Kwa [2] claimed that, if proper care is not taken, search
fronts can easily go through each other, duplicating search effort. Therefore, the BS* al-
gorithm incorporated several special operations (nipping, pruning, trimming, and screen-

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm 241

Figure 1. (1) Sample graph from nipping and pruning operations in BS*. (2) Search fronts meeting at node
n2. (3) Search fronts after nipping node n1 and pruning node n3.

ing) to avoid unnecessary exploration and prevent the repeated expansion of nodes in
both fronts.

Let us consider for example the case of nipping and pruning operations, which are
central to BS*. Let s and t denote the start and goal nodes of the search respectively. Let
the forward search proceed from s to t, and the backward search in the opposite direction.
Let us consider the graph depicted in Figure 1, and a BS* search situation where the
forward search has expanded nodes s and n1, while the backward search has expanded
only t. Both frontiers have already met at node n2 (second image in Figure 1). Let us
assume that the backward search selects for expansion nodes n2 and n1. When node n1 is
selected for expansion, BS* discontinues search at that node (nipping), since the optimal
path joining s and t through n1 has already been found. For the same reason, search can
also be discontinued in the forward search at n3 (pruning) (see the third image in Figure
1). However, reaching n1 in the backward direction also opened n4, which could trigger
additional expansions, at least until n2 is selected in the forward direction and nipping
and pruning come into action again. In other words, the relative benefits of nipping and
pruning may depend on the particular situation at hand.

While BS* clearly improved over the performance of BHPA, its performance was
still worse than that of A* in many cases. One of the most cited explanations for the poor
performance of BS* in some domains is the so-called crossing missiles metaphor, which
claims that bidirectional searches can pass through each other without meeting until the
final stages of the search. This could easily double the search effort when compared to
unidirectional search. This explanation leads to the development of front-to-front algo-
rithms, like perimeter search [9] or BIDA* [10], as opposed to traditional front-to-end
ones.

However, the analysis of Kaindl and Kainz [4] discredited the missiles metaphor and
claimed that the frontiers of bidirectional search meet quite early, putting the focus again
on front-to-end algorithms. According to these authors, the real problem would lie then
in the termination condition of the algorithm, which basically has to guarantee that the
optimal solution has been found. The new algorithm, Switch-A* [3], proposed switching
from bidirectional to unidirectional search as soon as search frontiers meet for the first
time. Earlier termination was expected to occur with this technique.

The directional switch idea is a clear abandonment of the cardinality criterion de-
scribed above. Although some improvements were reported over BS* [3], the idea was
later claimed to be less interesting than continued bidirectional search, due to its reduced

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm242

capability to properly exploit dynamically improved heuristics [5]. The experimental re-
sults presented in section 4 will show that early switching to an unidirectional search can
in fact be worse than BS* in certain cases.

This paper proposes a new front-to-end bidirectional heuristic search algorithm
based on a reconsideration of some of the above mentioned techniques, as well as on our
own experience with them over different problem domains.

Our research is guided by the well established heuristic that the best way to save
effort is to let search frontiers meet as close to midground as possible. To be precise,
we propose a two-phase algorithm. The first phase lets both frontiers meet naturally and
define a common line of encounter. During this phase, search is discontinued at each
frontier as soon as a node is open in both directions, therefore avoiding nipping and
prunning operations. Once the common line of encounter has been completely defined,
the second phase resorts to unidirectional search to guarantee that an optimal solution is
found. Therefore, the switch to unidirectional search is delayed until both frontiers have
had enough time to clearly define their midline of encounter.

3. A new approach: Two phase bidirectional heuristic search algorithm

This section sketches 2PBS*, a new search algorithm based on two different and consec-
utive phases. The first phase is bidirectional, while the second one is unidirectional. The
algorithm and its related notation are described below. Finally, admissibility is proved
for 2PBS*.

3.1. General overview

The key idea of 2PBS* is to improve efficiency exploiting two main ideas: perform-
ing bidirectional search until a common line of encounter is defined halfway between
both searches, and avoiding overlap between the search frontiers. Unlike previous bidi-
rectional algorithms, 2PBS* explicitly prevents any search to invade the open area of
the other one. Therefore, the new algorithm discontinues search at any open node n as
soon as it is found in both search trees. Such nodes are removed from the open sets, and
added to a common frontier list. Their eventual expansion is postponed to the second
(unidirectional) phase.

Bidirectional search (phase 1) terminates as soon as one of the open lists becomes
empty. At that point, the common frontier list defines the line of encounter between both
searches. A number of (possibly suboptimal) solutions have already been found at the
end of phase 1. Let Lmin be the cost of the best solution found so far.

The second search phase resorts to unidirectional search to guarantee that an optimal
solution is returned. The search direction that caused phase 1 to terminate (i.e. the one
that run out of open nodes) is selected for unidirectional search. Its open list is fed with
those nodes from the common frontier list that could possibly lead to a solution with cost
smaller than Lmin.

Let us consider the search direction that caused the first phase to terminate. If an ad-
missible search was conducted in this direction during the first phase (e.g. like A*), then
one of the paths that reaches the common frontier must be part of the optimal solution.
The second search phase restarts search from this direction in order to guarantee that an
optimal solution is finally returned.

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm 243

Figure 2. Termination possibilites in 2PBS* phase 2: 1) The solution s− n1 − t was found in phase 1.
2) Solution s− n1 − n2 − t is found after reopening n1, n2. 3) Solution s− n1 − n3 − t is found through
an open node n3.

There are several scenarios where this optimal path can be found. These can be easily
illustrated through a simple example. Let us consider a simple graph like the one shown
in Figure 2. Let us assume that search 1 denotes search from s to t, and search 2 from
t to s. In the first iteration, search 1 expands node s, adding n1 and n2 to its open list.
In the second iteration, search 2 expands t. Since n1 and n2 are already open in search
1, they are removed from both searches and added to the common frontier. On the other
hand, n3 remains open in search 2. The termination condition for the first phase is now
satisfied, since search 1 has run out of open nodes. Figure 2, illustrates the three possible
conceptual termination scenarios for the second phase of 2PBS*:

1. The optimal solution path is one of those already found, as shown in Figure 2 (1).
2. When the common frontier nodes are reinserted in search 1, an optimal path can

be found that goes from s through the frontier to t. Figure 2 (2) illustrates the
scenario in our example, where the optimal path goes from n1 to n2.

3. When the common frontier nodes are reinserted in search 1, an optimal path can
be found that goes from s to the frontier, and then to t through an open node of
search 2 (see Figure 2 (3)).

3.2. Notation

The following notation is used in the rest of this paper.

s, t Start node and goal node, respectively.
d Current search direction index; when search is in forward direction

(s → t) d=1 and d=2 when in backward (t → s).
d′ Index of opposite direction to the current search direction; 3-d.
successors(n) Successors of node n.
cd(m,n) Positive cost of the arc from m to n if d = 1, or from n to m if d = 2.
g∗d(n) Optimal path cost from s to n if d = 1, or from n to t if d = 2.
h∗
d(n) Optimal path cost from n to t if d = 1, or from s to n if d = 2.

f∗
d (n) g∗d(n) + h∗

d(n); Optimal path cost from s to t constrained to contain n.
gd(n), hd(n) Estimates of g∗d(n) and h∗

d(n), respectively.
fd(n) gd(n) + hd(n);
Lmin Cost of the least costly complete path found so far linking s to t.
λ cost of the optimal path from s to t.
TREEd Search tree used in direction d.

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm244

OPENd The set of open nodes in TREEd.
|OPENd| Number of nodes in OPENd.
closedd(n) Label to indicate if a node n is closed in search d.
FRONTIER Nodes belonging to TREE1 and TREE2 which will be transferred to

the second phase of the algorithm.
pd(n) Parent of node n in TREEd.
MeetingN Node where TREE1 met TREE2 and yielded the best complete path

found so far.

3.3. Pseudocode

TreeUpdate(TREE, OPEN, n2, n, g, f, d)
if n2 /∈ TREE then /* new node */

Add n2 to OPEN with a pointer to n.
gd(n2) ← g; fd(n2) ← f ; pd(n2) ← n

elseif g < gd(n2) then /* better path to n2 */
gd(n2) ← g; fd(n2) ← f ; pd(n2) ← n

endif

endTreeUpdate

UpdateFrontier (FRONTIER, OPEN’, n2, n, g, g2, f, d)
if ¬closedd′(n2) then /* bouncing */

if n2 /∈ FRONTIER then

Add n2 to FRONTIER
gd(n2) ← g; fd(n2) ← f ; pd(n2) ← n
if n2 ∈ OPEN’ then → Remove n2 from OPEN’

elseif g < g2 /* better path to the frontier node */
gd(n2) ← g; fd(n2) ← f ; pd(n2) ← n

endif

endif

endUpdateFrontier

UpdateLmin (TREE’, g1, g2, Lmin, MeetingN, n2)
if (n2 ∈ TREE’) ∧(g1 + g2 < Lmin) then

Lmin ← g1 + g2
MeetingN ← n2
Remove from OPEN1 and OPEN2 those
nodes with f-values ≥ Lmin /* trimming */

endif

endUpdateLmin

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm 245

1. INITIALIZATION:
Lmin ← ∞; g1(s) ← g2(t) ← ∅
f1(s) ← f2(t) ← h1(s); MeetingN ← nil
OPEN1 ← {s}; OPEN2 ← {t}; FRONTIER ← ∅

2. CHECK PHASE 1 TERMINATION:
If (OPEN1 = ∅ ∨OPEN2 = ∅), then Go to Search Phase 2.

3. CHOOSE SEARCH DIRECTION: Select the search direction index d according to the cardinality crite-
rion until the first encounter, and then according to the greater f-value criterion in OPENd.

4. SEARCH - PHASE 1 (Defining the encounter frontier):
n = best node from OPENd

Remove n to OPENd and label as closedd
foreach n2 ∈ successors(n) do

g ← gd(n) + cd(n, n2); f ← g + hd(n2)
if f < Lmin then /* screening */

if n2 ∈ TREEd′ then

UpdateFrontier (FRONTIER,OPENd′ , n2, g, gd(n2))
else

TreeUpdate (TREEd, OPENd, n2, n, g, f, d)
endif

UpdateLmin (TREEd′ , g1(n2), g2(n2), Lmin,MeetingN, n2)
endforeach

Go to 2 (Check phase 1 termination);

5. SEARCH - PHASE 2 (Exploring through the shared frontier):
if Open1 = ∅ then d ← 1 else d ← 2
foreach n ∈ FRONTIER do

if fd(n) < Lmin then Add n to OPENd

endforeach

repeat until Opend = ∅
n = best node from OPENd

Remove n to OPENd and label as closedd
foreach n2 ∈ successors(n) do

g ← gd(n) + cd(n, n2); f ← g + hd(n2)
if f < Lmin ∧ (n2 /∈ TREEd′ ∨ ¬closedd′ (n2)) then

TreeUpdate(TREE, OPEN, n2, n, g, f, d)
endif

UpdateLmin (TREEd′ , g1(n2), g2(n2), Lmin,MeetingN, n2)
endforeach

endrepeat

if Lmin = ∞ then no path exists
else the solution path with cost Lmin is:

(s, ..., p1(MeetingN),MeetingN, p2(MeetingN), ..., t).
endif

end.

3.3.1. Pseudocode description

The pseudocode os 2PBS* is divided into five steps. The first one is an initialization
of the variables needed for the search. In particular, OPEN1 is initialized with s, and
OPEN2 with t.

Bidirectional search spans steps 2 to 4. Step 2 checks for the termination condition
of bidirectional search and, in such case, starts unidirectional search (step 5). Step 3
determines search direction. If no solution has been found yet, the algorithm follows a

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm246

cardinality criterion (i.e. the search with the smallest open set is selected). Otherwise, a
maximin criterion is followed, i.e. the minimum f-value of each open list is calculated,
and the search with the largest minimum is selected.

Step 4 describes the core of the bidirectional search phase. The active search di-
rection d selects the best alternative n from its OPENd set, removing the node from
OPENd and labeling it as closedd. Each successor n2 of n is discarded if its f-value is
not smaller than (Lmin). When n2 belongs to TREEd′ , it is added to the FRONTIER
unless it is labeled as closedd′ (this occurs only when path n2 → n was discarded in
d’). Supposing that n2 does not belong to TREEd′ the usual A∗ search methodology
is followed, adding n2 to TREEd, when n2 is a new node, or improving its g-value in
TREEd if a shorter path has been found. If a new complete path s → t is found and the
cost of the complete path (s → n2)+ (n2 → t) is less than Lmin, then Lmin is updated.

Step 5 implements the unidirectional search phase. First, a search direction is se-
lected. This will be the one with empty OPENd. All nodes n from FRONTIER such
that fd(n) < Lmin will be re-added to OPENd. From here on, search is performed in
the traditional A∗ fashion, pruning unpromising nodes until OPENd becomes empty. A
solution path of cost Lmin is returned.

3.4. Properties

A sketch of the formal proof of the admissibility of 2PBS* is presented below. Our first
step is to show that 2PBS* will terminate when a path exists.

Lemma 3.1. 2PBS* terminates for finite graphs.
Proof: Follows a similar line of argument as in [13].

Lemma 3.2. Effort-saving techniques applied in 2PBS* do not discard nodes from any
optimal path P .
Proof: See [2] pag. 103.

Lemma 3.3. Bouncing, presented in function UpdateFrontier, ocurrs when a node n2 is
generated in TREEd and n2 was already closed in TREEd′ . Let us consider the node n
from which TREEd accesses n2. The node n is obviously a successor of n2 in TREEd′

and it had to be generated and eliminated by trimming or screening, but as shown in [2]
there is no optimal path through arc n− > n2 and it is safe to eliminate n2.

Corollary 3.4. Let sd be s if d = 1, otherwise t. Let sd′ be t if d = 1, otherwise s.
Let us assume an optimal path P = (sd, ..., ni, nj , ...sd′). When the first phase has ter-
minated and OPENd = ∅, a path from sd to ni has been generated in TREEd and
ni ∈ FRONTIER, as well as path from sd′ to nj has been generated in TREEd′ and
nj ∈ (FRONTIER ∪OPENd′).

Theorem 3.5. 2PBS* will terminate with the optimal path. Proof: Since 2PBS* behaves
like A* in the second phase and the search reduction techniques which we have already
demonstrated never prune a node along the optimal path, 2PBS* will terminate with the
optimal path.

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm 247

Node expansions Running time

A* 100 100

BS* 35.74 35.10

Switch-A* 36.57 35.07

2PBS* 33.39 29.42
Table 1. Average performance over 94 instances from the 15-Puzzle problem suite (results relative to A* in
%)

Node expansions Running time

BS* 100 100

Switch-A* 104.21 104.90

2PBS* 89.58 79.14
Table 2. Average performance over 99 instances from the 15-Puzzle problem suite (results relative to BS* in
%)

4. EMPIRICAL EVALUATION

The performance of the new algorithm (2PBS*) has been compared to those of A*, BS*,
and Switch-A* over two standard different domains. The first one is the problem suite
of 15-puzzle problems introduced by Korf [14] using the Manhattan-distance heuristic.
In this domain search fronts meet rather quickly and bidirectional algorithms frequently
report advantages over A* search. The second domain involves pathfinding problems in
a set of game maps available from the Hierarchical Open Graph (HOG) library2. This set
comprises 120 maps obtained from the fantasy popular roleplaying game Baldur’s gate
II: Shadows of Amn by Bioware Inc. scaled up to 512 × 512 grids. This is a standard
benchmark for discrete state spaces with impassable obstacles. Experiments considered
8-neighborhood grids and the octile-distance heuristic. We took 75 of the 120 maps and
considered 93160 problem instances with randomly generated start and goal locations. In
this kind of domain bidirectional search frequently performs worse than A*, and search
fronts frequently meet at the later stages of search.

The 15-puzzle problem suite was solved on a 2,6GHz AMD Opteron Processor with
64 Gbytes of RAM. Algorithm 2PBS* was able to solve the full 100-problem suite,
BS* and Switch-A* solved 99 problem instances, and A* only 94 problem instances
with the available memory and our lisp implementation in LispWorks 6.0.1. Table 1
summarizes the average performance of bidirectional search relative to A*, and Table
2 the average performance of Switch-A* and 2PBS* relative to BS*. Figure 3 shows
the time performance of the bidirectional search algorithms over the different problem
instances, ordered on increasing time for BS*.

Average results of A*, Switch-A*, and 2PBS* against BS* for the path finding prob-
lems are displayed in Table 3.

2http://code.google.com/p/hog2/

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm248

Figure 3. Time requirements for bidirectional search algorithms for the 99 problem instances of the 15-puzzle
(ordered by increasing time for BS*).

Iterations Running time

BS* 100 100

A* 91.22 71.77

Switch-A* 99.98 100.18

2PBS* 99.99 81.58
Table 3. Average performance on the pathfinding problems (results relative to BS* in %)

5. DISCUSSION

As expected, all bidirectional search algorithms outperform A* in the 15-puzzle prob-
lem suite. Two additional important results can be pointed out. In the first place, 2PBS*
achieves an improvement of over 20% in time performance over BS*. At the same time,
Switch-A* was found to perform worse than BS*, contrary to previous reported results
over a limited set of 56 problem instances, which reported a modest improvement of
around 6% of Switch-A* over BS* [3].

Figure 3 reveals the heuristic nature of the different effort-saving techniques of bidi-
rectional search algorithms. The vertical axis is shown in logarithmic scale in this figure.
While many problems are either difficult or easy for all algorithms, occasionally a given
problem can be oddly easy or difficult for a given algorithm when compared to the oth-
ers. At the same time, it is obvious that good or bad performance on the most difficult
problems can have an important impact on average results.

Figure 4 provides a deeper insight on the results obtained by BS*, Switch-A* and
2PBS*. This shows the time performance of the algorithms Switch-A* and BS* rela-
tive to 2PBS*, averaged over an increasing number of problem instances from the com-
plete problem suite (from just 1 up to 99 problems, as indicated in the horizontal axis).
Problems were ordered by difficulty for 2PBS* choosing first the easier problems. This
figure reveals how reports on sets of the easier problems can influence average results,
depending on the relative performance of BS* over these same difficult problems. The

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm 249

Figure 4. Performance of Switch-A* and BS* to 2PBS* averaged for an increasing number of 15-puzzle
problem instances (ordered by difficulty for 2PBS*).

availability of large amounts of memory makes it possible for the first time to provide
more precise comparisons over almost the entire problem set (99 problem instances).

Regarding the path finding problem set, the performance of the algorithms (in ex-
plored nodes and time) was found to depend largely on the tie-breaking rule. In this do-
main, many states achieve the same f(n) value in the open sets at the same time. It is
generally acknowledged that breaking ties in favor of nodes with larger g(n) value is
better for A*. The algorithms were run with this policy, as well as with an arbitrary order
of tie-breaking. The results were that BS* and A* perform 3.86% and 11.34% worse
with the arbitrary order respectively. However, Switch-A* and 2PBS* perform 2.8% and
20.56% better with the arbitrary order respectively. The results shown in Table 3 display
the best results for each algorithm.

The performance of BS* is (as could be expected) clearly worse than that of A*.
A* performs less expansions, and these seem to be performed even more efficiently. In
this domain Switch-A* performs slightly worse than BS*. The impact of switching from
bidirectional to unidirectional search is smaller in this domain, since the first solution
is typically found after 84.5% of the running time. The best time performance among
bidirectional search algorithms is clearly achieved by 2PBS*, though still worse than A*.

6. CONCLUSIONS AND FUTURE WORK

This paper introduces 2PBS*, a new best-first bidirectional heuristic search algorithm.
The algorithm is guided by the general principles of letting search effort to be equally
distributed between both fronts, and preventing these from overlapping. This is achieved
using a two-phase scheme that avoids classical operations like nipping and prunning. The
first phase exploits bidirectional search, and allows search fronts to define a common line
of encounter. The second phase turns to unidirectional search in order to guarantee an
optimal solution is returned.

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm250

The new approach is evaluated using a domain where bidirectional search has tra-
ditionally obtained good results (15-puzzle) and another where results are generally not
competitive over unidirectional search (path finding). Results show that the new algo-
rithm outperforms previous best-first front-to-end bidirectional search algorithms (BS*
and Switch-A*). The experimental evaluation also reveals that partial evaluations over
the standard 15-puzzle problem set can introduce important bias in the results. Also, the
choice of an adequate tie-breaking policy in path-finding can have a significant impact
in performnace results.

This paper has focused on a novel application of effort-saving techniques in bidi-
rectional search. A different avenue of research focuses on the opportunity offered by
these algorithms to dynamically improve the values of the heuristic evaluation function
f(n) = g(n) + h(n) used in each of the search fronts [4]. This can be done exploiting
the difference between the values of the heuristic estimates h(n) in one direction, and
the actual cost values g(n) of paths explored in the opposite direction. The general idea
has been applied to improve the performance of different bidirectional search algorithms,
like Max-switch-A* [3], Max-BS* or BiMax-BS∗

F . [5]. The evaluation of this general
technique in 2PBS* is an interesting subject for future work.

References

[1] I. Pohl, Bi-directional search, Machine Intelligence 6, 127-140, (1969).
[2] James B.H. Kwa, BS*: An admissible bidirectional staged heuristic search algorithm, Artif. Intell., 38,

95-109, (February 1989).
[3] Hermann Kaindl, Gerhard Kainz, Roland Steiner, Andreas Auer, and Klaus Radda, Switching from bidi-

rectional to unidirectional search, in Proceedings of the 16th international joint conference on Artificial
Intelligence - Volume 2, pp. 1178-1183, San Francisco, CA, USA, (1999). Morgan Kaufmann Publishers
Inc.

[4] Hermann Kaindl and Gerhard Kainz, Bidirectional heuristic search re-considered, J. Artif. Int. Res., 7,
283-317, (December 1997).

[5] Andreas Auer and Hermann Kaindl, A Case Study of Revisiting Best-First vs. Depth-First Search, in
ECAI, eds., Ramon Lopez de Mantaras and Lorenza Saitta, pp. 141-145. IOS Press, (2004).

[6] Dennis de Champeaux and Lenie Sint, An Improved Bidirectional Heuristic Search Algorithm., J. ACM,
177-191, (1977).

[7] Dennis de Champeaux, Bidirectional Heuristic Search Again, J. ACM, 22-32, (1983).
[8] George Politowski and Ira Pohl, D-Node Retargeting in Bidirectional Heuristic Search., in AAAI–84,

pp. 274-277, (1984).
[9] John F. Dillenburg and Peter C. Nelson, Perimeter Search, Artif. Intell, 65(1), 165-178, (1994).

[10] Giovanni Manzini, Artificial Intelligence BIDA*: an improved perimeter search algorithm, Artificial
Intelligence, 75, (1995).

[11] Ariel Felner, Carsten Moldenhauer, Nathan R. Sturtevant, and Jonathan Schaeffer, Single-Frontier Bidi-
rectional Search, in AAAI, (2010).

[12] Carsten Moldenhauer, Ariel Felner, Nathan R. Sturtevant, and Jonathan Schaeffer, Single-Frontier Bidi-
rectional Search., in SOCS10, pp. -1–1, (2010).

[13] Judea Pearl, Heuristics - intelligent search strategies for computer problem solving, Addison-Wesley
series in artificial intelligence, Addison-Wesley, 1984.

[14] Richard E. Korf, Depth-First Iterative-Deepening: An Optimal Admissible Tree Search, Artificial Intel-
ligence, 27, 97-109, (1985).

F.J. Pulido et al. / A Two-Phase Bidirectional Heuristic Search Algorithm 251

