
Set-Labeled Diagrams
for CSP Compilation

Alexandre NIVEAU a, Hélène FARGIER b and Cédric PRALET c

aCRIL–Université d’Artois, F-62307 Lens Cedex, France
b IRIT–Université Paul Sabatier, F-31062 Toulouse Cedex 9, France

cOnera—The French Aerospace Lab, F-31055, Toulouse, France

Abstract. Knowledge compilation structures such as MDDs have been
proposed as a way to compile CSPs, to make requests tractable online,
in cases where solving is not possible. This paper studies the interest in
relaxing two assumptions usually imposed on MDDs, static ordering and
read-once property, using a new compilation structure called Set-labeled
Diagrams, which are compiled by tracing the search tree explored by a
CSP solver. The impact of read-once and static ordering is assessed by
simply playing on the variable choice heuristics used during search in
the CSP solver.

1. Introduction

Constraint Satisfaction Problems (CSPs) offer a powerful framework for repre-
senting a great variety of problems, e.g. planning or configuration problems. Dif-
ferent kinds of requests can be posted on a CSP, such as extraction of a solution
(the most classical request), strong consistency of the domains, addition or re-
traction of new constraints (dynamic CSP), counting of the number of solutions,
and even combinations of these requests. For instance, the interactive solving of
a configuration problem amounts to a series of (unary) constraints additions and
retractions while maintaining the strong consistency of the domains, i.e. each
value in a domain is involved in at least one solution.

Most of these requests are NP-hard. They must however sometimes be ad-
dressed online. A possible way of solving this contradiction consists in represent-
ing the set of solutions of the CSP as a Multivalued Decision Diagram [1,2,3],
i.e. as a graph whose nodes are labeled by variables and whose edges represent
assignments of the variables. In such diagrams, each path from the root to the
sink represents a solution of the CSP. They allow several operations, like those
previously cited, to be achieved in time polynomial w.r.t. the size of the diagram.
This size can theoretically be exponentially higher than the one of the original
CSP, but it remains low in many applications. Indeed, as they are graphs, MDDs
can take advantage of the (conditional) interchangeability of values and save space
by merging identical subproblems. As a matter of fact, decision diagrams have
been used in various contexts, e.g. in product configuration [4], in recommender
systems [5], or, in their original Boolean form, in planning [6,7] and diagnosis [8].

STAIRS 2012
K. Kersting and M. Toussaint (Eds.)
© 2012 The Authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-096-3-216

216

Up to our knowledge, these works always consider read-once and ordered
graphs, that is, graphs such that variables are not repeated along a path, and such
that the order in which variables are encountered along a path is fixed (x cannot
appear before y in one path and after y in another path). However, this is not a
requirement for many applications; as for the Boolean case, it has been shown [9]
that OBDDs can often be advantageously replaced by FBDDs (free BDDs), that
are read-once, but not ordered. In this paper, we use the language of Set-labeled
Diagrams [10], which generalize MDDs by relaxing both requirements.

Note that we do not consider using MDDs to encode single constraints and
use them for CSP-solving purposes. In this case, requests are mainly propagation.
What we want is to compile the solution set of a whole CSP, in order to answer
to a series of online requests.

The goal of this paper is to study a method of compilation of set-labeled
diagrams, namely applying Huang and Darwiche’s “DPLL with a trace” [11] to a
CSP solver. We present a generic compilation algorithm for building set-labeled
diagrams while benefiting from constraint programming techniques available in
CP engines. With this compilation algorithm, relaxing the “ordered” or “read-
once” assumptions depends on the choice of variable choice and branching heuris-
tics to be used during the search by the CP engine. We study different possible
heuristics and present experimental results, obtained with our implementation of
the algorithm on the Choco solver [12].

The paper is organized as follows: We present in Section 2 the formal frame-
work of Set-labeled Diagrams, that generalize MDDs. Then in Section 3, we de-
scribe our compilation algorithm. Section 4 contains details about the heuristics
we used, and the results of our experiments.

2. Set-labeled Diagrams

2.1. Structure and Semantics

We first give a very general definition of set-labeled diagrams, and restrict it
afterwards to a specific framework.

Definition 1 (Set-labeled diagram). Let V be a set of variables, and let E be a set
of sets. A set-labeled diagram (SD) is a directed acyclic graph with at most one
root and at most one leaf (the sink). Non-leaf nodes are labeled by a variable of
V. Each edge is labeled by a set in E .

This definition contains no requirements on nodes’ and edges’ labels. SDs
thus generalize a number of structures representing solution sets, such as BDDs
[13] (binary decision diagrams, using Boolean variables and E =

{{⊥}, {�}}),
MDDs [14,1,15,3] (multivalued decision diagrams, using discrete variables and E
a set of singletons), and interval automata [16] and interval diagrams [17] (with
E a set of intervals).

In the following, we restrict our framework to that of MDDs: variable domains
are finite parts of �. However, contrary to MDDs, edges are not labeled with
singletons but with finite sets of �. We introduced these restricted set-labeled

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation 217

diagrams in a previous work [10]. Note that we consider explicitly enumerated
sets; the use of sets does not allow us to save space (the point is actually to
define a new structural restriction, namely focusingness). SDs are nonetheless
more general than MDDs, notably because variable ordering and repetition along
a path are not restricted, but also because they can be non-deterministic: label
sets of edges going out of a given node need not be disjoint. We call deterministic
SDs, dSDs.

Definition 1 allows the graph to be empty (no node at all) or to contain only
one node (together root and sink). Figure 1 gives an example of an SD.

x

y
z

y

z(2)
z

x(3)

t

x

y(1)

y(1)

{3, 4}

{1}{0}
{0}

{0, 1, . . . 8} {0, 1, . . . , 10}

{15}(5)
{7, 8}

{2, 7}
{3}(4)
{6}(4) {1}

{1, 4}

{1}{1, 3, 6}
{0}

{0}

Figure 1. An example of non-reduced SD. Variable domains are all {0, 1, . . . , 10}. As for reduc-
tion properties [10]: The two nodes marked (1) are isomorphic; node (2) is stammering; node (3)

is undecisive; the edges marked (4) are contiguous; edge (5) is dead.

We use the following notation: For x ∈ V, Dom(x) denotes the domain
of x. We suppose that V is totally ordered, and that in a set denoted X =
{x1, . . . , xk} ⊆ V, variables are sorted in ascending order. Then Dom(X) denotes
Dom(x1)× · · · ×Dom(xk), and

#—x denotes an X-assignment of variables from X,
i.e. #—x ∈ Dom(X). Last, #—x |xi

denotes the value assigned to xi in
#—x . The cardinal

of a set S is denoted |S|.
Let ϕ be a set-labeled diagram, N a node and E an edge in Γ; we denote

Var(ϕ) the set of all variables mentioned in ϕ; Root(ϕ) the root of ϕ and Sink(ϕ)
its sink; ||ϕ|| the size of ϕ, i.e. the sum of the cardinalities of all labels in ϕ plus the
cardinalities of the variables’ domains; Var(N) the variable labeling N ; Lbl(E)
the set labeling E; and Var(E) the variable labeling the source of E.

An SD is a compact representation of a Boolean function over discrete vari-
ables. This function is the interpretation of the set-labeled diagram:

Definition 2 (Semantics of an SD). Let ϕ be an SD, and X = Var(ϕ). The
interpretation of ϕ is the function [[ϕ]], from Dom(X) onto {⊥,�}, and defined
as follows: for every X-assignment #—x , [[ϕ]](#—x) = � if and only if there exists
a path p from the root to the sink of ϕ such that for each edge E along p,
#—x |Var(E) ∈ Lbl(E).

We say that #—x is a model of ϕ whenever [[ϕ]](#—x) = �. Mod(ϕ) denotes the
set of models of ϕ. ϕ is said to be consistent if and only if Mod(ϕ) �= ∅.

Note that the interpretation function of the empty SD always returns ⊥,
since it contains no path from the root to the sink. Conversely, the interpretation
function of the one-node SD always returns �, since in the one-node SD, the only
path from the root to the sink contains no edge.

Like BDDs, SDs can be reduced in size (potentially by an exponential factor)
without changing their semantics, as addressed in a previous work [10]. This is
done notably by the merging of isomorphic nodes, that is, nodes rooting identical

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation218

subgraphs. For space reasons, we do not detail reduction operations; they are
nonetheless hinted in Figures 1 and 2.

Contrary to the case of MDDs, deciding whether an SD is consistent is not
tractable [10]. One of the reasons is that the sets restricting a variable along a path
can be disjoint, which implies that this path is not associated with any model. It
is thus necessary to check each path of an SD before being able to decide of its
consistency. To avoid this, a possibility is to consider SDs in which sets related to
a given variable can only shrink along a path. We call this property focusingness;
it is illustrated in Figure 2. Focusingness generalizes the “read-once” property
defined for free BDDs: if no path in the SD uses a variable twice, the automaton
is trivially focusing.

x
t(ND)

z(2
′)

z

y(1
′)

x(ND)

y

y

{2, 7}

{0}

{3, 6}(4′)
{1}

{0, 1, . . . , 8}

{1}(NF)

{7, 8}(†)
{1, 4}

{1, 3, 6}
{0}

{0}

{3, 4}

Figure 2. In this SD, all edges are focusing but the one marked (NF) (it is not included in the one
marked (†)), and all nodes are deterministic but the ones marked (ND). This SD is the reduced
form [10] of the SD presented in Figure 1: isomorphic nodes marked (1) have been merged into

node (1′), stammering node (2) has been collapsed into node (2′), contiguous edges marked (4)

have been merged into edge (4′), and undecisive node (3) and dead edge (5) have been removed.

Definition 3 (Focusing and read-once SD). A focusing edge in a set-labeled dia-
gram ϕ is an edge E such that all edges E′ on a path from the root of ϕ to the
source of E such that Var(E) = Var(E′) verify Lbl(E) ⊆ Lbl(E′).

A focusing set-labeled diagram (FSD) is an SD containing only focusing edges.
A a set-labeled diagram ϕ is read-once (RSD) iff it contains no path p such

that two nodes along p are labeled by the same variable.

We refer to as dFSD (resp. dRSD) an SD both deterministic and focusing
(resp. read-once). Finally, we can impose an order on the variables encountered
along the paths, and recover MDDs in their practical acceptation1 [14,1,3].

Definition 4 (Ordered SD). Let X be a set of variables and < be a total order on
X. An SD is said to be ordered w.r.t. < iff for each couple of nodes (N,M) such
that N is an ancestor of M , it holds that Var(N) < Var(M).

A dSD ordered w.r.t. < is called an MDD<. The language MDD is the union
of all MDD< languages.2

Before going on to the compilation section, let us stress here that further
information about the SD family, including a knowledge compilation map (results
about relative succinctness of languages and their support of various requests)
can be found in a previous paper [10].

1The original definition of MDDs requires neither determinism nor ordering. Nevertheless,
papers resorting to these structures work only with ordered and deterministic MDDs; that is
why we abusively designate ordered dSDs as MDDs.

2A language is a set of graph structures, fitted up with an interpretation function. We denote
SD the language of SDs, dSD the language of dSDs, and so on.

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation 219

3. Compilation Algorithm: Choco with a Trace

3.1. State of the Art

Knowledge compilation is a domain that is mainly investigated from the theoret-
ical point of view. A few compilers have been implemented, mainly in the case of
Boolean domains, i.e., their inputs are Boolean functions over Boolean domains.
Let us cite the OBDD packages (Buddy [18] and CUDD [19]) and the more recent
DPLL with a trace proposed by [11]. The first series of packages compiles any
elementary formula (and elementary constraint) as a (Boolean) decision diagram,
and incrementally combines the resulting graphs through AND operations. It is
always possible to go from multivalued domains to Boolean ones, using a Boolean
encoding of the domains of the CSP [2]; nevertheless, it has been experimentally
shown [20] that on real-world instances (namely configuration problems), MDDs
are often smaller than log-BDDs.

The drawback of this kind of method is that it can generate intermediate data
structures, that are space consuming and can even be exponentially larger than
the final decision diagram. A second approach has been proposed with Huang
and Darwiche’s DPLL with a trace algorithm [11] for SAT compilation. The lat-
ter, which has proven very efficient in practice, builds decision diagrams (and
d-DNNFs) by tracing the search tree of a DPLL algorithm enumerating all solu-
tions of a CNF. This idea has been adapted in [21] to build approximate MDDs
(i.e. MDDs whose model set is an approximation of the solution set of the input
CSP) tracing a depth-first search algorithm. A similar technique is used in [22],
where AND/OR MDDs (MDDs with AND nodes) are built following the trace of
an AND/OR search.

All the preceding approaches use a predetermined variable order (in the case
of AOMDDs, this is a tree order). We will relax this assumption here: the choice of
the next variable to branch on can be done dynamically, depending on an heuris-
tics. We present here a general description of our algorithm, that we implemented
on top of the Choco CSP solver [12].

3.2. General description

Let C = (X,C) be a CSP defined by a set of constraints C over a set of variables
X. Extending DPLL with a trace principles from the Boolean domain to the in-
teger domain, we introduce mechanisms for building dFSDs by tracing the search
tree of a CSP solver. The approach corresponds to Algorithm 1. It is implemented
on top of the Choco CSP solver [12] and provides us with a Choco with a trace
algorithm. Main function SD-Builder(C, Xa) takes as input a constraint net-
work C and the set of variables Xa currently assigned in C. It returns a compiled
representation of the set of solutions of CSP C, in the form of a dFSD. The initial
call is SD-Builder(C0, ∅) with C0 the initial CSP to be compiled.

3.2.1. Standard Search

The standard part of procedure SD-Builder(C, Xa) is a generic depth-first
search able to enumerate the set of all solutions of CSP C. It behaves as fol-

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation220

lows: function Propagate first applies constraint propagation to the input con-
straint network C, in order to remove inconsistent values from the variables’
domain; if the reduced CSP obtained is consistent (no empty domain), (a)
function Choose unassigned var selects an unassigned variable x, (b) function
Divide domain partitions the current domain of x into several non-empty dis-
joint subsets, and (c) the main search procedure is called successively on each
of the subproblems defined by the partition. Any implementation of functions
Propagate, Divide domain, and Choose unassigned var available in existing
CSP solvers can be used at that point.

Algorithm 1 SD-Builder(C, Xa): returns a set-labeled diagram that represents
the solution set of constraint network C. Xa is the set of currently assigned vari-
ables.
1: Propagate(C)
2: k := Compute key(C, Xa)
3: if there is an entry for the key k in the cache then
4: return the SD corresponding to key k in the cache

5: if C is proven inconsistent then

6: return the empty graph

7: if Xa = X (all variables of C are assigned) then

8: return the sink-only graph

9: Ψ := ∅

10: x := Choose unassigned var(C)
11: R := Divide domain(C, x)
12: for all r ∈ R do
13: X ′

a ← Xa

14: if r is reduced to a singleton then
15: X ′

a ← X ′
a ∪ {x}

16: let ψr := SD− Builder(C|Dom(x)←r, X
′
a)

17: Ψ := Ψ ∪ {ψr}
18: let node N := Get node(x,Ψ)
19: let ϕ be the graph rooted at N
20: store ϕ at the key k in the cache

21: return ϕ

3.2.2. Additions for Compilation

Some additions are made to the basic algorithm in order to build a dFSD rep-
resenting the set of solutions of the initial CSP. These additions are framed in
Algorithm 1. The basic idea is to compute a trace of the search tree using different
mechanisms:

Internal node. Let n be an internal node in the search tree; this node is associated
with a current CSP denoted C(n); let x be the unassigned variable chosen at
node n and let R be the partition of Dom(x) computed to branch on the domain
of x (one branch per element in the partition); the idea is that the exploration

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation 221

associated with each subdomain r ∈ R returns an SD ψr; this SD represents the
set of solutions of subproblem C(n)|Dom(x)←r obtained by reducing the domain of
x to r; the set of solutions of CSP C(n) over X \Xa is then an SD ϕ(n) whose
root is labeled by x and which contains, for each r ∈ R such that ψr is not the
empty SD, an arc from the root to ψr.

In procedure SD-Builder(C, Xa), diagram ϕ(n) is obtained via call
Get node(x, {ψr | r ∈ R}). In particular, function Get node checks whether dia-
gram ϕ(n) (or a diagram isomorphic to it) already exists in the so-called unique
node table [23]; this table contains all SD nodes created during search; if there
exists an isomorphic diagram, it is directly returned; otherwise, node ϕ(n) is
created and added to the unique node table.

Leaf node. When n is a leaf node of the search tree, it corresponds either to a
solution or to a dead-end; in the former case, the algorithm returns a sink-only SD
(Line 8), to represent that any assignment of the current problem is a solution;
in the latter, it returns an empty SD (Line 6).

Caching. The two previous points suffice to get a compiled dFSD representing
the set of solutions of the initial CSP. We additionally maintain a cache during
search to avoid equivalent subproblems to be re-explored. More precisely, each
time a subproblem C is solved, a cache key k(C) (function of the current domains
of variables) together with the SD node produced for that subproblem are stored
(Line 20). Then, prior to computing any new subproblem C′, we compute its key
k(C′) and check whether it is already present in the cache (Lines 2–3); if yes, we
directly return the SD associated with cache key k(C′) (Line 4). The key is a list of
the current domains of all variables that are either not assigned yet, or involved in
constraints not yet satisfied in the current subproblem (sometimes called universal
or entailed constraints). It has been proven [24] that all subproblems sharing such
a key have the same solution set.

3.2.3. Structure of the SDs Obtained

The set-labeled diagrams returned by Algorithm 1 always satisfy the focusing
property. Indeed, the variables’ domains are systematically reduced, either by
domain splitting or by constraint propagation. The set-labeled diagrams returned
are also always deterministic, since function Divide domain computes a partition,
hence containing only disjoint subsets of the considered domain.

However, depending on the branching and variable-choice heuristics (i.e. on
functions Divide domain and Choose unassigned var), resulting dFSDs may
differ:

• We obtain dRSDs if Divide domain splits the domain into singletons, that
is, if the algorithm enumerates each possible value during the search. On
the contrary, a dichotomic branching search (splitting each current domain
in two) will result in non read-once dFSDs.

• We obtain MDDs if Choose unassigned var follows a static ordering; but
using heuristics to guide variable choice (like MinDomain) will often lead to
non-ordered dFSDs.

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation222

3.3. Heuristics

We now detail the alternatives we considered for Choose unassigned var.

3.3.1. Standard Heuristics

We used the following standard CSP branching heuristics: Min-domain, which

chooses the variable with the smallest domain; and Dom/WDeg, which choses

the variable minimizing the ratio |Dom(x)|/ deg(x), where deg(x) is the number

of constraints x is involved in (the constraints being weighted according to the

conflicts) [25]. We also considered a Random heuristics, which chooses a random

variable.

3.3.2. Constraint Graph–Based Heuristics

We used heuristics based on the constraint graph of the CSP, in which each

variable is linked to another if and only if there exists a constraint involving them

both. For a given variable x, we denote N(x) the set of variables that are linked

with x in the graph.

Algorithm 2 Next var(O) chooses the next variable, given a current order O =
{o1, . . . , ok}.
1: if O = ∅ then
2: return Argmaxx∈X |N(x)|
3: let x := Argmaxx∈X\O HS(x)
4: add x as the last value of order O
5: return x

The following heuristics are based on the scheme presented in Algorithm 2,

varying the criterion HS(x). They have been introduced in [26]. Intuitively, we try

to group together variables that are strongly related, hoping that it could limit

the number of edges. For HBW, HS(x) = max1≤i≤|O|,oi∈N(x)|O| − i (it chooses a

neighbor of o1 first, then of o2, etc). For HSBW, HS(x) =
∑

1≤i≤|O|,oi∈N(x)|O|− i

(it chooses a neighbor of the first chosen variables). Last, for MCSInv, HS(x) =

|N(x) ∩O| (it chooses the variable most linked to those already chosen).

3.3.3. Cache-Based Heuristic

We implemented an heuristics aiming at maximizing the use of the cache. The

idea is that a variable choice leading to already treated subproblems limits the

number of new nodes. It is executed as follows: for each unassigned variable x,

we count the number nnew(x) of branching values for which it will be necessary

to open a new search node (that is, it does not lead to a cached subproblem or

to an inconsistent one). We then choose the variable x minimizing nnew(x), using

HBW to break ties. We call this heuristics MaxHashUse.

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation 223

3.3.4. Static and Dynamic Versions

MinDom, Dom/Wdeg and MaxHashUse are always dynamic: they generally lead
to non-ordered dFSDs. As for HBW, HSBW, and MCSInv, it is possible to com-
pute a static order prior to the solving, and thus obtain MDDs, or to let the vari-
able choice be dynamic, by using an up-to-date version of the contraint graph, in
which constraints being entailed in the current problem are not considered. We
call DynHBW, DynHSBW, and DynMCSInv the corresponding heuristics that
do not compute a static order, and we also consider DynRandom.

4. Experiments

We considered the following problems in our experiments on our “Choco with
a trace” compiler. ObsToMem is a reconfiguration problem; it represents a con-
troller managing connections between the observation device and the mass mem-
ory of a satellite. Drone is a planning problem, in which a drone must achieve
different goals on a number of zones in limited time. NQueens is the standard
CSP representing the “n queens” problem. Last, Star is the CSP representing
the problem of coloring a star graph (a center variable linked to other variables
independant from each other).

Let us recall beforehand that heuristic efficiency is here estimated with respect
to the size of the resulting graph (as defined in 2.1), and not to the time needed
to find the first solution, as it is often the case in constraint programming. Thus,
we do not expect classically “good” heuristics and domain-splitting functions to
be particularly efficient.

4.1. Variable Choice Heuristics

DynMCSInv

Dom/WDeg

MaxHashUse

DynHBW

MinDom

DynHSBW 1 2 3

0

2

4

6

·104

nd

si
z
e

ObsToMem

2 4 6 8

0

0.5

1

·104

nb of zones for each action

si
z
e

Drone, given time=30

Figure 3. Comparison between the dynamic heuristics for ObsToMem and Drone.

Wefirst compare the different variable choice heuristics, setting Divide domain

to split the domains into singletons, and thus always obtaining dRSDs. Since
some of them have no static version, we only compare the dynamic ones. Results
about Drone and ObsToMem can be found in Figure 3; for NQueens and Star,
all heuristics gave very similar results.

Random is not included here (but is in the next section) to improve readability
of the graphs, because it does far worse than the other heuristics.

It is interesting to notice that MinDom seems to be the best heuristics for
ObsToMem, but is far worse than the others for Drone. Dom/WDeg is not really

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation224

interesting in any of our problems. Among the heuristics based on the variable
graph, HBW seems to be the best. MaxHashUse is not bad, but does not out-
class HBW (on which it is based); it seems that looking only one step ahead to
maximize the use of the cache is not sufficient (we choose the best variable w.r.t.
the next node, and open less new subgraphs; but these subgraphs are bigger).

4.2. Comparison between Static and Dynamic Orders

Random

DynRandom

DynHBW

HBW

1 2 3

0

1

2

3

·105

nd

si
z
e

ObsToMem

2 4 6 8

0

2

4

6

·104

nb of zones for each action

si
z
e

Drone, given time=30

0 5 10

0

2

4

·105

number of queens

si
z
e

N-Queens Problem

5 10

0

0.5

1

·104

number of variables

si
z
e

Star-CSP

Figure 4. Comparison between the static and dynamic versions of HBW and Random. DynRan-
dom results are not shown for Star, since they are far worse than the others (the size of the
resulting dRSD exceeds 100,000 for 7 variables).

2 4 6 8

500

1,000

1,500

nb of zones for each action

si
z
e

Drone, given time=30

HSBW

DynHSBW

DynHBW

HBW

Figure 5. Comparison between the static and dynamic versions of HBW and HSBW for the
Drone problem.

Let us now compare results obtained by using static and dynamic versions
of a given heuristics, with the same domain splitting as in the previous section:
we respectively obtain MDDs and dRSDs. Results for HBW (the best heuristics
in the previous section) and Random can be found on Figure 4. We see that
DynRandom is far worse than its static counterpart; indeed, using a static order,
we increase the probability of getting isomorphic nodes. Results for DynHBW are
better than static HBW for the real-world problems, but it is not the case for the
smaller ones (for NQueens, the resulting MDDs are even smaller than the dRSDs).

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation 225

However, this highly depends on the heuristics and on the problem considered;
on Figure 5, we see that for the Drone problem, while DynHBW and DynHSBW
coincide, their static versions are either better (HSBW) or worse (HBW).

4.3. Influence of the Domain-Splitting Function

HBW Dicho

DynHBW Enum

DynHBW Dicho

HBW Enum

2 4 6 8
0

1,000

2,000

nb of zones for each action

si
z
e

Drone, given time=30

5 10

0

0.5

1

1.5

·104

number of variables

si
z
e

Star-CSP

Figure 6. Comparison between the dichotomic and enumerating domain-splitting functions.

We now show to what extent the choice of the domain-splitting function af-
fects the resulting graph. Using the enumerating domain-splitting function (that
splits the domain into singletons) allows to compile dRSDs, whereas the di-
chotomic one (that splits the domain in two parts) allows to compile dFSDs. Re-
sults can be found on Figure 6; they are better in the first case. This does not
imply that dRSDs are always smaller than equivalent dFSDs, but that our heuris-
tics seems to be particularly adapted to the compilation of dRSDs. A method
allowing to efficiently compile pure, non-read-once dFSDs is still to be found.

5. Conclusion

In this paper, we introduced set-labeled diagrams, that generalize MDDs by re-
laxing the properties of ordering, read-once and determinism. We presented an
algorithm able to compile various kinds of deterministic SDs (dFSDs, dRSDs
and MDDs), applying the idea of “DPLL with a trace” to a CSP solver. We
showed how the choice of certain search parameters (variable-choice heuristics and
domain-splitting function) affects the structure of the resulting dSD. Using our
implementation of the compiler, based on the Choco CSP solver, on two real-world
problems and two standard CSPs, we presented experimental results about the
ifluence of these search parameters. Our results show that none of our variable-
choice heuristics outclasses the others for all problems; a dominating heuristics is
still to be found. They also show that our heuristics seem to be interesting only
for compiling read-once diagrams.

Future work includes further study of variable-choice heuristics, especially of
MaxHashUse. More generally, we want to think about some ways to efficiently
compile non-read-once dFSDs and non-deterministic SDs. It should also be in-
teresting to add “AND” nodes in the language, which would allow to compare
static-order AOMDDs with dynamic-order ones.

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation226

References

[1] Vempaty, N.R.: Solving Constraint Satisfaction Problems Using Finite State Automata.
In: AAAI. (1992) 453–458

[2] Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Multi-valued Decision Dia-
grams: Theory and Applications. Multiple-Valued Logic 4(1–2) (1998) 9–62

[3] Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A Constraint Store Based on
Multivalued Decision Diagrams. In: CP. (2007) 118–132

[4] Amilhastre, J., Fargier, H., Marquis, P.: Consistency Restoration and Explanations in
Dynamic CSPs — Application to Configuration. AIJ 135(1–2) (2002) 199–234

[5] Cambazard, H., Hadzic, T., O’Sullivan, B.: Knowledge Compilation for Itemset Mining.
In: ECAI. (2010) 1109–1110

[6] Giunchiglia, F., Traverso, P.: Planning as Model Checking. In: ECP. (1999) 1–20
[7] Hoey, J., St-Aubin, R., Hu, A.J., Boutilier, C.: SPUDD: Stochastic Planning Using Deci-

sion Diagrams. In: UAI. (1999) 279–288
[8] Torasso, P., Torta, G.: Model-Based Diagnosis Through OBDD Compilation: A Complex-

ity Analysis. In: Reasoning, Action and Interaction in AI Theories and Systems. (2006)
287–305

[9] Bern, J., Gergov, J., Meinel, C., Slobodová, A.: Boolean manipulation with free bdd’s.
first experimental results. In: EDAC-ETC-EUROASIC. (1994) 200–207

[10] Niveau, A., Fargier, H., Pralet, C.: Representing CSPs with set-labeled diagrams: A
compilation map. In: Proc. of the 2nd International Workshop on Graph Structures for
Knowledge Representation and Reasoning (GKR). (2011)

[11] Huang, J., Darwiche, A.: DPLL with a Trace: From SAT to Knowledge Compilation. In:
IJCAI. (2005) 156–162

[12] choco Team: choco: an open source java constraint programming library. Research report
10-02-INFO, Ecole des Mines de Nantes (2010)

[13] Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transac-
tions on Computers 35(8) (1986) 677–691

[14] Srinivasan, A., Ham, T., Malik, S., Brayton, R.: Algorithms for discrete function manip-
ulation. In: ICCAD-90. (November 1990) 92 –95

[15] Amilhastre, J., Vilarem, P., Vilarem, M.C.: FA Minimisation Heuristics for a Class of
Finite Languages. In: WIA. (1999) 1–12

[16] Niveau, A., Fargier, H., Pralet, C., Verfaillie, G.: Knowledge compilation using interval
automata and applications to planning. In: ECAI. (2010) 459–464

[17] Strehl, K., Thiele, L.: Symbolic model checking of process networks using interval diagram
techniques. In: Proc. of the 1998 IEEE/ACM international conference on Computer-aided
design. (1998) 686–692

[18] Lind-Nielsen, J.: BuDDy : Binary Decision Diagrams Library Package, release 2.4 (2002)
http://sourceforge.net/projects/buddy/.

[19] Somenzi, F.: CUDD : Colorado University Decision Diagram package, release 2.4.1 (2005)
http://vlsi.colorado.edu/~fabio/CUDD/.

[20] Hadzic, T., Hansen, E., B. O’Sullivan, B.: On Automata, MDDs and BDDs in Constraint
Satisfaction. In: ECAI Workshop on Inference methods based on Graphical Structures of
Knowledge (WIGSK). (2008)

[21] Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of
constraints into multivalued decision diagrams. In: CP. (2008) 448–462

[22] Mateescu, R., Dechter, R., Marinescu, R.: AND/OR multi-valued decision diagrams
(AOMDDs) for graphical models. J. Artif. Intell. Res. (JAIR) 33 (2008) 465–519

[23] Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)
[24] Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Transposition tables for constraint satisfaction.

In: AAAI. (2007) 243–248
[25] Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weight-

ing constraints. In: ECAI. (2004) 146–150
[26] Amilhastre, J.: Représentation par automate d’ensemble de solutions de problèmes de

satisfaction de contraintes. PhD thesis, Université Montpellier II (1999)

A. Niveau et al. / Set-Labeled Diagrams for CSP Compilation 227

