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Abstract. Multiagent resource allocation deals with distributing (bundles) of re-
sources to agents that specify utility functions over bundles. A natural and impor-
tant problem in this field is social welfare optimization. We assume resources to
be indivisible and nonshareable and that utility functions are represented by the k-
additive form or as straight-line programs. We prove NP-completeness for egalitar-
ian and Nash product social welfare optimization for straight-line program repre-
sentation of utility functions. In addition, we show that social welfare optimization
by the Nash product in the 1-additive form is hard to approximate, yet we also give
fully polynomial-time approximation schemes for egalitarian and Nash product so-
cial welfare optimization in the 1-additive form with a fixed number of agents.
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1. Introduction

Resource allocation is at the core of multiagent research. In the resource allocation
framework we deal with the following scenario. There are autonomous (software) agents
with individual goals and utilities. A central entity distributes indivisible and nonshare-
able resources to the agents, each agent assigning utility to bundles of resources. As
designers of such systems we may have different goals, e.g., ensuring a high average
well-being of every agent or maintaining fairness among the agents. Depending on our
goal, we differently aggregate the utilities that each agent realizes upon receiving some
bundle. On the one hand, ensuring a high well-being overall usually means resorting to
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utilitarian social welfare, i.e., the sum of the agents’ utilities. On the other hand, maxi-
mizing the minimum utility that the agents realize, that is, maximizing egalitarian social
welfare, might increase fairness to some extent. A simple approach to bridge these two
conflicting goals is the aggregation of utilities by taking their product. Maximizing this
Nash product means achieving a “balanced” utility vector.

Because we have software agents, we have to pay attention to the encoding of their
utility functions. Naive approaches such as the bundle form (see, e.g., [3]), where we list
all bundles with their attached utility (dropping bundles with zero utility) easily lead to
an exponential blowup. The k-additive form succinctly captures the interrelated nature of
resources, which explains why agents express their utilities over bundles of resources.3
There are other succinct representation forms as well, e.g., by interpreting utility func-
tions as computational processes. The idea underlying the straight-line program (SLP)
representation is to express a given utility function by a shortest program that can ef-
ficiently compute it. This may result in compact representation of utility functions as
well.

We study the computational complexity of social welfare optimization problems
when utility functions are represented by straight-line programs, an issue left open by
Roos and Rothe [14]. We show that egalitarian and Nash product social welfare opti-
mization are NP-complete in this case. In addition, we look at the 1-additive representa-
tion of utility functions and present an inapproximability result for Nash product social
welfare optimization. However, we also show that egalitarian social welfare optimization
and Nash product social welfare optimization admit fully polynomial-time approxima-
tion schemes when the number of agents is fixed.

2. Formal Model

2.1. Multiagent Resource Allocation Settings

Following Chevaleyre et al. [3], let A = {a1, . . . ,an} denote the set of n agents and R =
{r1, . . . ,rm} the set of m indivisible and nonshareable resources. Every agent ai specifies
a utility function ui, which is a mapping from the power set of resources, 2R, to some
numerical set such as Q, the set of rational numbers, or Q+, the set of nonnegative
rational numbers. Let U be the set of all utility functions for the agents in A. A triple
(A,R,U) is called a multiagent resource allocation setting (for short,MARA setting). An
allocation of resources to the agents is modeled by a function X : A → 2R such that for
all distinct ai,a j ∈ A we have X(ai)∩X(a j) = /0 and

⋃
ai∈A X(ai) = R. That is, a resource

is given exclusively to a single agent and all resources are given to some agents. The set
of all allocations for a MARA setting (A,R,U) is denoted byΠA,R and has cardinality nm.

2.2. Representing Utility Functions

We consider two possible ways to represent utility functions, the k-additive form and the
straight-line program representation.

3Agents may find a bundle of several items worth more, or less, than the sum of the utilities of each item
individually. For example, think of complementary items such as a left and a right shoe (which may be almost
worthless when bought alone but very valuable together), or of discounts for bulk purchases.
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For some fixed k ∈ N, a utility function u is in k-additive form if there are unique
coefficients αT for every T ⊆ R with ‖T‖ ≤ k such that for every bundle of resources R′

we have

u(R′) = ∑
T⊆R′,‖T‖≤k

αT .

On the one hand, if k is large enough, we can represent every utility function. On the
other hand, for small k, utility functions can be encoded succinctly. The k-additive form
has been introduced in multiagent resource allocation by Chevaleyre et al. [4,5] and,
independently, in combinatorial auctions by Conitzer et al. [6]. We only deal with the
1-additive form, that is, only with additive utility functions.

The other representation form that we consider is the straight-line program repre-
sentation. Informally, a straight-line program is a topologically sorted list of gates of a
boolean circuit C that takes as input an m-dimensional binary vector and outputs s bits.
Interpreting the input vector as a bundle of resources R′ and the output as the binary
representation of u(R′), we can say that C (or a corresponding straight-line program)
represents utility function u.

Formally (see [7]), an (m,s)-combinational logic network is a directed graph with m
input nodes (β1, . . . ,βm) of in-degree 0, s output nodes (γs−1, . . . ,γ0) of out-degree 0, and
gate nodes of in-degree at most 2 and out-degree at least 1. A gate node represents one
of the common boolean operations (∧,∨,¬). An input to the nodes (β1, . . . ,βm) can be
interpreted as a vector of length m and vice versa. Hence, every input vector β induces4
an output vector C(β ), where we denote by C(β )i the i-th least significant bit of C(β ).
Let R = {r1, . . . ,rm}, let u : R → N be a utility function and C an (m,s) combinational
logic network. Denote by βS the characteristic vector that has for every j ∈ {1, . . . ,m}
the j-th coordinate equal 1 if and only if r j ∈ S for some S ⊆ R. Utility function u is
realized byC if for every S ⊆ R with binary vector βS the following holds:

u(S) =
s−1

∑
i=0
2i ·C(βS)i.

The advantages of straight-line programs are mainly the efficiency of evaluation (linear
time in the number of nodes) and its conciseness, which is supported by the following
result by Pippenger and Fischer [12] and Schnorr [16].

Fact 1 Let f : {0,1}m → {0,1}s. If there exists a deterministic Turing machine that
computes f in time T , then there exists a straight-line program of O(T logT ) lines that
computes f as well.

In multiagent resource allocation, utility representations by straight-line programs
were introduced by Dunne et al. [7].

4Every bit at a gate node is induced as usual: If a is a gate node with a 2-ary boolean operation σ , then
the bit induced at a is b1σb2, provided that (b1,a) and (b2,a) are edges of the graph, σ is a binary operation,
and by b1 and b2 we mean the induced bits at nodes b1 and b2. For the boolean operation ¬, the definition is
analogous.
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2.3. Notions of Social Welfare

Depending on the objective of the system designer, different notions of social welfare
are appropriate. We will study the following notions of social welfare.

Definition 1 For a MARA setting (A,R,U) and an allocation X ∈ ΠA,R, define

1. the utilitarian social welfare of X as swu(X) = ∑
ai∈A

ui(X);

2. the egalitarian social welfare of X as swe(X) =min
ai∈A

{ui(X)};

3. the Nash product of X as swN(X) = ∏
ai∈A

ui(X).

2.4. Social Welfare Optimization Problems

We consider two problem types of social welfare optimization, decision problems and
maximization problems. For F ∈ {Q+,Q} and form ∈ {k-add | k ≥ 1}∪ {SLP}, where
k-add abbreviates “k-additive” and SLP “straight-line program,” define the decision prob-
lem:

F-EGALITARIAN SOCIAL WELFARE OPTIMIZATIONform
Given: AMARA settingM = (A,R,U), where form indicates how every ui : 2R → F

inU is represented, and a threshold t ∈ F.
Question: Is there an allocation X ∈ ΠA,R such that swe(X)≥ t?

We abbreviate this problem by F-ESWOform. The corresponding problems for util-
itarian and Nash product social welfare can be defined analogously and are abbreviated
by F-USWOform and F-NPSWOform, respectively.

The maximization problem for utilitarian social welfare is formally defined as fol-
lows:

F-MAXIMUM UTILITARIAN SOCIAL WELFAREform

Input: AMARA settingM = (A,R,U), where form indicates how every ui : 2R → F

inU is represented.
Output: max{swu(X) |X ∈ ΠA,R}.

As a shorthand, write F-MAX-USWform. Based on swe and swN , F-MAXIMUM
EGALITARIAN SOCIAL WELFAREform (or F-MAX-ESWform) and F-MAXIMUM NASH
PRODUCT SOCIAL WELFAREform (or F-MAX-NPSWform) are defined accordingly.

2.5. Background on Approximation Theory

We define the relevant notions of approximation theory, i.e, approximation algorithms,
polynomial-time approximation schemes, and reducibilities to prove hardness of approx-
imation.

N.-T. Nguyen et al. / Complexity and Approximability 207



Definition 2 (α-approximation algorithm) Let Π be an maximization problem and α :
N→ [0,1] be a polynomial-time computable function. An α-approximation algorithm A
for Π is a polynomial-time algorithm such that for each instance x of Π,

val(A(x))≥ α(|x|) ·OPT(x),

where val(A(x)) denotes the value of a solution produced by A on input x and where
OPT(x) denotes the value of an optimal solution for x.

The approximation factor α might be a constant function such as 1− ε for some ε ,
0< ε < 1, or a function of the input size.

Definition 3 (FPTAS) A maximization problem Π has a fully polynomial-time approx-
imation scheme (FPTAS) if for each ε , 0 < ε < 1, there exists a (1− ε)-approximation
algorithm Aε for Π, where the running time is polynomial in 1/ε as well.

One approach to prove inapproximability for a maximization problem is to find an
α-gap-introducing reduction from an NP-complete problem. This is also known as pro-
ducing hard gaps.

Definition 4 (α-gap-introducing reduction) Let A ⊆ Σ∗ be an NP-complete problem,
Π be a maximization problem, and let α : N→ [0,1] be a polynomial-time computable
function of the input size. An α-gap-introducing reduction from A to Π is given by two
polynomial-time computable functions f and g such that for each x ∈ Σ∗,

1. g(x) is an instance of Π,
2. if x ∈ A then OPT(g(x))≥ f (x), and
3. if x �∈ A then OPT(g(x))< α(|x|) · f (x).

Note that an α-approximation algorithm B for a maximization problem Π that has
an α-gap-introducing reduction from an NP-complete problem A implies x ∈ A if and
only if the value of the solution B(g(x)) is at least α(|x|) · f (x). Hence, there can be no
α-approximation algorithm for Π, unless P= NP.

Definition 5 (L-reduction) Let Π1 and Π2 be some maximization problems. An L-
reduction from Π1 to Π2 is given by two polynomial-time computable functions f and g
and two parameters α and β such that for each instance x of Π1,

1. y = f (x) is an instance of Π2,
2. OPT(y)≤ α ·OPT(x), and
3. for each solution s2 for y of value v2, s1 = g(s2) is a solution for x of value v1

such that

OPT(x)− v1 ≤ β · (OPT(y)− v2).

Having an L-reduction from maximization problem Π1 to Π2 with parameters α ,β
and an (1− ε)-approximation algorithm for Π2 implies a (1−αβ ε)-approximation al-
gorithm forΠ1 by invoking f on the instance x ofΠ1 to get an instance y ofΠ2, then run-
ning the approximation algorithm for Π2 on y and, at last, translating the solution back
via g. Note that if Π1 does not admit a (1− ε)-approximation algorithm and reduces to

N.-T. Nguyen et al. / Complexity and Approximability208



Π2 with parameters α = β = 1 then Π2 cannot have a (1− ε)-approximation algorithm
either.

For more background on approximation theory, see, e.g., the textbook by Vazi-
rani [17] and the survey by Arora and Lund [1].

3. Related Work

Chevaleyre et al. [4] (see also [5]) were the first to show that utilitarian social welfare
optimization in MARA is NP-complete for the “bundle form” representation of a utility
function (a simple enumerative listing of all subsets that have nonzero utility under the
utility function being represented) and the k-additive form. For the straight-line program
representation, Dunne et al. [7] proved the same problem to be NP-complete as well.

Roos and Rothe [14] showed NP-completeness of egalitarian and Nash product so-
cial welfare optimization for both the bundle form and the k-additive form. In addition,
they studied the complexity of the exact variants of social welfare optimization prob-
lems. Lipton et al. [10] provided a reduction to proveNP-hardness of finding a minimum-
envy allocation (i.e., an allocation X that minimizes the envy maxi, j{0,ui(X(a j))−
ui(X(ai))}). This reduction proves NP-hardness of the decision problem associated with
egalitarian social welfare optimization as well. Independently of Roos and Rothe [14],
Ramezani and Endriss [13] proved the same NP-completeness result of Nash product
social welfare optimization for the bundle form.

For results on the approximability of social welfare optimization, see the survey by
Nguyen, Roos, and Rothe [11].

4. Results

Our first result is the NP-completeness of egalitarian and Nash product social welfare
optimization when representing utility functions as straight-line programs. The intuition
is to encode a formula into the utility function of an agent.

Theorem 1 Q-ESWOSLP and Q+-NPSWOSLP are NP-complete.

Proof. Membership in NP is easy to see. To show NP-hardness, we reduce from the
NP-complete problem MAX3SAT, which is formally defined as follows:

MAX3SAT

Given: A boolean formula ϕ in 3-CNF (i.e., in conjunctive normal form with three
literals per clause) and k ≥ 2.

Question: Is there an assignment to the variables of ϕ such that at least k clauses are
satisfied?

Let ϕ =
m∧

i=1
(z1i ∨ z2i ∨ z3i ) be a given boolean formula in 3-CNF, where z j

i , 1 ≤ i ≤ m

and j ∈ {1,2,3}, is a literal of some variable v ∈ V = {v1, . . . ,vn}. Define A = {a1,a2}
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and R = {r1, . . . ,rn,rn+1, . . . ,r2n}. We say a bundle S ⊆ R or its corresponding vector
αS = (x1, . . . ,xn,xn+1, . . . ,x2n) is valid if

n∧
i=1

XOR(xi,xn+i) =
n∧

i=1
(¬xi ∧ xn+1)∨ (xi ∧¬xn+i) = 1,

i.e., XOR denotes the boolean exclusive-or operation. Define a1’s utility function as

u1(S) =

{
number of satisfied clauses in ϕ by S if S is valid
0 otherwise

and a2’s utility function as

u2 ≡

{
m if we reduce to the egalitarian social welfare
1 if we reduce to social welfare by the Nash product.

Write

u1(αS) =

(
n∧

i=1
XOR(xi,xn+i)

)
·

m

∑
i=1

(z1i ∨ z2i ∨ z3i ),

where we replace5 z j
i by the corresponding value of xk, k ∈ {1, . . . ,n}, if z j

i is a positive
literal of xk; otherwise (that is, if z j

i is a negated variable) we replace it by the value of
xn+k, k ∈ {1, . . . ,n}. By Proposition 1, we know there is an SLP of polynomial size that
represents u1.

Now consider a 3-CNF formula ϕ whose maximum number of satisfied clauses is
k for some assignment A : X → {0,1}. Assignment A induces an assignment vector
αS = (A(v1), . . . ,A(vn),1−A(v1), . . . ,1−A(vn)). By definition,αS is valid and a1’s utility
is exactly k. The remaining resources go to a2. Because a2’s utility can be ignored, the
social welfare is a1’s utility, that is, the maximum number of satisfied clauses in ϕ .

For the other direction, note that we reduced from a legal 3-CNF formula. So there is
an assignment that satisfies at least one clause. Hence, a1 realizes a utility of at least one.
Now let k ≥ 1 be the maximum social welfare of this instance. By definition, u1(S) =
k for some valid αS = (x1, . . . ,xn,xn+1, . . . ,x2n). Truncating αS by dropping the last n
coordinates yields an assignment that satisfies k clauses. ❑

Notice that the reduction in the proof of Theorem 1 is an L-reduction with parame-
ters α = β = 1. There is a one-to-one correspondence between assignments of variables
and assignments of resources to the first agent where the maximum number of satisfied
clauses equals the social welfare after the reduction. By setting the utility function of the
second agent to the constant zero-function, we have a reduction with the same properties
for the utilitarian case. Using the inapproximability result of Max3SAT by Håstad [8] we
conclude:
5Because we have a boolean circuit, we actually insert an edge (xk,o

q
p), where oq

p, p ∈ {1, . . . ,m}, q ∈ {1,2},
denotes the ∨-gate that is responsible for z j

i in clause p.
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Corollary 1 Q-MAX-USWSLP, Q-MAX-ESWSLP, Q+-MAX-NPSWSLP are NP-hard
to approximate within a factor of 7/8+ ε for every ε > 0.

The next result deals with the hardness of approximability for Nash product social
welfare optimization for 1-additive utility functions. We prove this result by a reduction
from the well-known NP-complete problem EXACT COVER BY THREE SETS, which is
defined as follows:

EXACT COVER BY THREE SETS (X3C)

Given: A finite set B with ‖B‖ = 3n and a collection C = {S1, . . . ,Sm} of 3-element
subsets of B.

Question: Does there exist a subcollection C′ ⊆C such that every element of B occurs
in exactly one of the sets inC′?

Theorem 2 Assuming P �= NP, MAX-NPSW1-additive cannot be approximated within a
factor of 2/3+ ε for any ε > 0.

Proof. Let (B,C)with ‖B‖= 3n andC = {S1, . . . ,Sm} be an instance of X3C. Without
loss of generality, assume that m ≥ n. Construct an instanceM = (A,R,U) of Q+-MAX-
NPSW1-additive as follows. Let A be a set of m agents, where agent ai corresponds to Si,
and let R = B∪D be a set of 2n+m resources. That is, there are 3n “real” resources that
correspond to the 3n elements of B, and there are m−n “dummy” resources in D. Define
the agents’ utilities as follows. For each ai ∈ A and each r j ∈ R, let

ui(r j) =

⎧⎪⎨
⎪⎩
1/3 if r j ∈ Si

1 if r j ∈ D

0 otherwise.

Also, define ui( /0) = 0 for all i, 1≤ i ≤ m.
Suppose that (B,C) is a yes-instance of X3C. Then there exist a set I ⊆ {1, . . . ,m},

‖I‖ = n such that Si ∩ S j = /0 for all i, j ∈ I, i �= j, and
⋃

i∈I Si = B. Hence, we assign
the bundle Si to agent ai for each i ∈ I, and the dummy resource to the m−n remaining
agents. This allocation maximizes the Nash product social welfare, which now is at least
1. Furthermore, the sum of all agents’ utilities is at most m. Hence, the product of the
agents’ individual utilities is maximal if and only if all agents have the same utility, which
exactly equals 1.

Conversely, if (B,C) is a no-instance of X3C, we show that the maximum Nash
product social welfare is at most 2/3. Obviously, the sum of all agents’ utilities is at
most m− 1/3 in this case. The Nash product social welfare reaches the maximal value iff
the utilities of the agents are as balanced as possible. The best allocation that satisfies
this property is the following. Dummy resources are distributed to m− n agents, n− 1
agents get the n− 1 disjoint bundles from (S1, . . . ,Sm), and the last agent is assigned
the remaining bundle which has utility of at most 2/3. This implies that maxN(M) ≤ 2/3.
Therefore, an approximation algorithm with a factor better than 2/3 will distinguish the
“yes” and “no” instances of X3C. ❑
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Theorem 2 shows that MAX-NPSW1-additive cannot have a PTAS unless P = NP.
This result also holds for MAX-ESW1-additive due to Bezáková and Dani [2]. However,
we now show that there is an FPTAS for this problem whenever the number of agents is
fixed, using a technique that was also used to give an FPTAS for a variety of scheduling
problems (see [15] and [9]). From now on, we assume that for any agent ai, the utility
function ui is nonnegative and ui( /0) = 0.

Theorem 3 BothMAX-NPSW1-additive andMAX-ESW1-additive admit an FPTAS for any
fixed number of agents.

Proof. Let M = (A,R,U) be a MARA setting with 1-additive utilities and a fixed
number n = ‖A‖ of agents. As a shorthand, we denote by si j the utility of resource r j for
agent ai for i, 1≤ i ≤ n, and j, 1≤ j ≤ m.

The proof of this theoremwill be divided into two parts. In the first part, we construct
a pseudo-polynomial time algorithm for MAX-NPSW1-additive that runs in time O(mBn)
where B =max1≤i≤n ∑m

j=1 si j . We then prove in the second part that this algorithm yields
a fully polynomial-time approximation scheme for our problem.

Let T = (e1, . . . ,en) be a canonical basis of the vector space Rn, where ei denotes
the vector with a 1 in the i-th coordinate and 0’s elsewhere. Now, consider Algorithm 1.

Algorithm 1 Pseudo-polynomial-time algorithm
1: V0 := {ei | 1≤ i ≤ n}
2: for j := 1 to m do
3: Vj := /0
4: for each v ∈Vj−1 do
5: Vj :=Vj ∪{v+ si j · ei | i = 1, . . . ,n}
6: end for
7: end for
8: return Vector v ∈Vm that has the maximal product of its coordinates.

Clearly, ‖Vm‖ > ‖Vj‖ for all j, 1 ≤ j ≤ m− 1. Furthermore, we have ‖Vm‖ ≤ Bn

since the coordinates of all vectors of Vm are integers which do not exceed B. Hence, the
running time of above algorithm is in O(m∑m

k=1 ‖Vk‖) = O(mBn).
We make a small modification to the above pseudo-polynomial-time algorithm. In

more detail, we will remove some unnecessary vectors fromVj, for all j, 1≤ j ≤ m. This
implies that the algorithm may perhaps not return the exact optimal solution but it will
give a good approximation to the solution. Indeed, let ε be any fixed positive number
such that 0< ε < 1, and consider Algorithm 2.

Let V ⊆ Nn, K = �logα B� and Li = [α i−1,α i] for i, 1 ≤ i ≤ K. We define a relation
∼ on the set V as follows. For any two vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn) in V ,
x ∼ y if for every i, 1≤ i ≤ n, xi = yi = 0 or xi,yi ∈ Lj for some j ∈ {1, . . . ,K}. Obviously,
this relation is reflexive, symmetric and transitive and thus, it is an equivalence relation
on V . Moreover, under this relation, V can be partitioned into equivalence classes, i.e.,
any two vectors from the same class are equivalent with respect to ∼. We claim that
if x ∼ y then xi ≥ (1/α)yi for all i, 1 ≤ i ≤ n. Indeed, the statement is obviously true
if xi = yi = 0. So, consider all other xi,yi ∈ Lj, that is, α j−1 ≤ xi,yi ≤ α j . In this case
we have xi/yi ≥ α j−1/α j = 1/α. We now prove by induction on j that for every vector
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Algorithm 2 FPTAS for MAX-NPSWadditive

1: α := 1+ ε/2nm

2: K := �logα B�
3: Li = [α i−1,α i] for i = 1, . . . ,K
4: V ∗

0 := {ei | 1≤ i ≤ n}
5: for j := 1 to m do
6: V ∗

j := /0
7: for each v∗ ∈V ∗

j−1 do
8: V ∗

j :=V ∗
j ∪{v∗+ si j · ei | i = 1, . . . ,n}

9: end for
10: Divide V ∗

j into equivalence classes by the relation ∼. Remove the vectors in V ∗
j

such that each class contains only one vector.
11: end for
12: return Vector v∗ ∈V ∗

m which has the maximal product of its coordinates.

v = (v1, . . . ,vn) ∈Vj, there always exists a v∗ = (v∗1, . . . ,v
∗
n) ∈ V ∗

j such that v∗i ≥ (1/α j)vi

for all i, 1≤ i ≤ n. If j = 1, it is easy to see thatV ∗
1 =V1, hence the statement is obviously

true. To prove the statement for j, assume that the statement is true for j − 1. Consider
the set Vj and an arbitrary vector v = (v1, . . . ,vn) of Vj. This vector v must be created in
line 8 of Algorithm 2 from some vector w = (w1, . . . ,wn) in Vj−1.

Without loss of generality, we assume that v has the form of (w1+ s1 j,w2, . . . ,wn)
(note that v1 = w1+ s1 j and vi = wi for all i = 2, . . . ,n). Using the inductive hypothesis
above, there exists w∗ = (w∗

1, . . . ,w
∗
n)∈V ∗

j−1 such that w∗
i ≥ (1/α j−1)wi for all i, 1≤ i ≤ n.

On the other hand, note that w∗+ s1 j ·e1 = (w∗
1+ s1 j,w∗

2, . . . ,w
∗
n) will also be created for

V ∗
j in line 8 of Algorithm 2, but it may be removed after line 10.
However, there is another vector v∗ = (v∗1, . . . ,v

∗
n) ∈V ∗

j such that v∗ ∼ (w∗+ s1 je1).
This yields

v∗1 ≥
1
α
· (w∗

1+ s1 j)≥
1

α j ·w1+
1
α
· s1 j ≥

1
α j · (w1+ s1 j) =

1
α j · v1

and for i, 2≤ i ≤ n, if w∗
i �= 0, we have

v∗i ≥
1
α
·w∗

i ≥
1

α j ·wi =
1

α j · vi.

We now assume that Algorithm 1 returns a vector v = (v1, . . . ,vn) ∈Vm such that the
product ∏n

i=1 vi = OPT is maximal. Then, there must be a vector v∗ = (v∗1, . . . ,v
∗
n) ∈ V ∗

m
such that v∗i ≥ vi/αm for all i, 1≤ i ≤ n. This implies that

n

∏
i=1

v∗i ≥
1

αnm

n

∏
i=1

vi =
1

αnm OPT.

Moreover, we have

αnm =
(
1+

ε
2nm

)nm
≤ eε/2 ≤ 1+ ε.
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The first inequality follows from the known inequality (1+ x/n)n ≤ ex for all n ≥ 1. The
second inequality can be proven easily as follows. Consider function f (x) = ex −1− 2x
in domain x ∈ [0,1]. The derivative f ′(x) = 0 if and only if x = ln2. Therefore, we have
maxx∈[0,1] f (x) =max{ f (0), f (1), f (ln 2)}= f (0) = 0.

Hence, we have

n

∏
i=1

v∗i ≥
1

1+ ε
OPT > (1− ε)OPT.

Let M = (A,R,U) be a MARA-setting. We prove that Algorithm 2 has a running
time that is polynomial in |M| and 1/ε, where |M| denotes the size of M in some natural
encoding. First, consider the set V ∗

m, which has at most Kn vectors. Thus, the running
time of the algorithm is in O(mKn). On the other hand, we have

K = �logα B�=

⌈
lnB
lnα

⌉
=

⎡
⎢⎢⎢⎢

lnB

ln
(
1+

ε
2nm

)
⎤
⎥⎥⎥⎥<

⌈(
1+

2nm
ε

)
lnB

⌉
.

The above inequality follows, since f (a) = lna− 1+ 1/a is a continuous, increasing
function on the interval (1,∞). This function is increasing on this interval, as f ′(a) =
1/a− 1/a2 > 0 for all a > 1. Hence, we have f (a) > f (1) = 0 for all a > 1. By choosing
a = α , the inequality follows.

Furthermore, note that |M| ≥ logB = log(e) lnB. Thus, we have

K ≤

(
1+

2nm
ε

)
|M|

log(e)

This proves the theorem for the maximum social welfare by the Nash product. Using
the same algorithms, we obtain an FPTAS for maximum egalitarian social welfare with
1-additive utility functions. Indeed, assuming that Algorithm 1 returns the vector v =

(v1, . . . ,vn) ∈ Vm such that the min{v1, . . . ,vn} = OPT is maximal, Algorithm 2 must
return a vector v∗ = (v∗1, . . . ,v

∗
n) ∈V ∗

m such that v∗i ≥ vi/αm for all i = 1, . . . ,n. Hence:

min{v∗1, . . . ,v
∗
n} ≥min

{ v1
αm , . . . ,

vn

αm

}
=
1

αm min{v1, . . . ,vn}=
1

αm OPT.

Choosing α = 1+ ε/2m, we have

αm =
(
1+

ε
2m

)m
≤ eε/2 ≤ 1+ ε.

and finally, min{v∗1, . . . ,v
∗
n} ≥ 1/(1+ε)OPT > (1−ε)OPT. This proves the theorem. ❑
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5. Conclusion

We have given new hardness results on egalitarian and Nash product social welfare op-
timization in multiagent resource allocation when utility functions are represented as
straight-line programs. A new inapproximability result for Nash product social welfare
optimization and FPTAS complement this picture. For future work, we propose the study
of complexity and approximability of social welfare optimization problems for different
representation forms and improving approximation algorithms. In particular, can we im-
prove the hardness factor of 2/3 and 1/2 for the maximum Nash product social welfare
and egalitarian social welfare problems with 1-additive utility functions? It is also very
interesting to study whether or not these two problems are in APX (the class of problems
allowing constant-factor approximation algorithms).
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