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Abstract. A number of problems in statistical physics and computer science can
be expressed as the computation of marginal probabilities over a Markov random
field. Belief propagation, an iterative message-passing algorithm, computes exactly
such marginals when the underlying graph is a tree. But it has gained its popularity
as an efficient way to approximate them in the more general case, even if it can
exhibits multiple fixed points and is not guaranteed to converge. In this paper, we
express a new sufficient condition for local stability of a belief propagation fixed
point in terms of the graph structure and the beliefs values at the fixed point. This
gives credence to the usual understanding that Belief Propagation performs better
on sparse graphs.
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1. Introduction

We consider in this work a Markov random field (MRF) on a finite graph with local
interactions, on which we want to compute marginal probabilities. The structure of the
underlying model is described by a set of discrete variables x = {xi, i ∈V} ∈ {1, . . . ,q}V,
where the set V of variables is linked together by so-called “factors” which are subsets
a ⊂ V of variables. If F is this set of factors, we consider the set of probability measures
of the form

p(x) = ∏
i∈V

φi(xi)∏
a∈F

ψa(xa), (1)

where xa = {xi, i∈ a}. In what follows, a factor will be indifferently considered as a node
in a graph or as a set of variables. In this respect, i ∈ a ca be read as “the variable node i
is connected to the factor node a.”

F together with V define the factor graph G [6], which is an undirected bipartite
graph. We will also assume that p is strictly positive, which is to say that the MRF
exhibits no deterministic behavior. The set E of edges contains all the pairs (a, i)∈ F×V

such that i ∈ a. We denote da (resp. di) the degree of the factor node a (resp. of the
variable node i).
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Exact procedures for computing marginal probabilities of p generally face an expo-
nential complexity and one has to resort to approximate procedures. In computer science,
the belief propagation (BP) algorithm [9] is a message passing procedure that allows
to compute efficiently exact marginal probabilities when the underlying graph is a tree.
When the graph has cycles, it is still possible to apply the procedure, which converges
with a rather good accuracy on sufficiently sparse graphs. However, there may be sev-
eral fixed points, corresponding to stationary points of the Bethe free energy [14]. Stable
fixed points of BP are local minima of the Bethe free energy [4,13].

The question of convergence of BP has been addressed in a series of works [10,5,8],
which establish sufficient conditions on the MRF under which BP converges to a unique
fixed point. However, cases with multiple fixed points can be used to encode different
patterns [2] and have not been studied yet. Wainwright [12] suggests that, facing the joint
problem of parameter estimation and prediction in a MRF, estimation under the Bethe
approximation and prediction using BP is an efficient setting. This consist in choosing (1)
such that one fixed point is known. We propose here to change the viewpoint and, instead
of looking for conditions ensuring a single fixed point, examine the local properties of
each of them. The main result is Theorem 4.1 which gives a sufficient condition for local
stability of fixed points in terms of the graph structure and of the dependence structure
of the considered fixed point. It provides insight about the usual understanding that BP
performs better on sparse graphs.

The paper is organized as follows: the BP algorithm and its various normalization
strategies are defined in Section 2. Section 3 exhibits cases where convergence of mes-
sages is equivalent to convergence of beliefs, allowing us to consider only message con-
vergence. Finally in Section 4, we provide some sufficient conditions for local stability
of BP fixed points. Section 5 concludes the paper.

2. The Belief Propagation Algorithm

The belief propagation algorithm [9] is a message passing procedure, whose output is a
set of estimated marginal probabilities, the beliefs ba(xa) (including single nodes beliefs
bi(xi)). The idea is to factor the marginal probability at a given site as a product of contri-
butions coming from neighboring factor nodes, which are the messages. With definition
(1) of the joint probability measure, the updates rules read:

ma→i(xi)← ∑
xa\i

ψa(xa) ∏
j∈a\i

n j→a(x j), (2)

ni→a(xi)
def
= φi(xi) ∏

a′�i,a′ �=a
ma′→i(xi), (3)

where the notation ∑xa\i
should be understood as summing from 1 to q all the variables

x j, j ∈ a ⊂ V, j �= i. At any point of the algorithm, one can compute the current beliefs
as
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bi(xi)
def
=

1
Zi(m)

φi(xi)∏
a�i

ma→i(xi), (4)

ba(xa)
def
=

1
Za(m)

ψa(xa)∏
i∈a

ni→a(xi), (5)

where Zi(m) and Za(m) are the normalization constants that ensure that

∑
xi

bi(xi) = 1, ∑
xa

ba(xa) = 1. (6)

These constants reduce to 1 when G is a tree. When the algorithm has converged, the
following compatibility condition holds :

∑
xa\i

ba(xa) = bi(xi). (7)

In practice, the messages are often normalized so that

q

∑
xi=1

ma→i(xi) = 1. (8)

However, the possibilities of normalization are not limited to this setting. Consider the
mapping

Θai,xi(m)
def
= ∑

xa\i

ψa(xa) ∏
j∈a\i

[
φ j(x j) ∏

a′� j,a′ �=a
ma′→ j(x j)

]
. (9)

A normalized version of BP is defined by the update rule

m̃a→i(xi)← Θai,xi(m̃)

Zai(m̃)
. (10)

where Zai(m̃) is a constant that depends on the messages and which, in the case of (8),
reads

Zmess
ai (m̃)

def
=

q

∑
x=1

Θai,x(m̃). (11)

Following [11], it is worth noting that (2,3) can be rewritten as

ma→i(xi)←
Za(m)bi|a(xi)

Zi(m)bi(xi)
ma→i(xi), (12)

where we use the convenient shorthand notation bi|a(xi)
def
= ∑xa\i

ba(xa). This suggests a
different type of normalization, used in particular by [4], namely
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Zbel
ai (m̃)

def
=

Za(m̃)

Zi(m̃)
, (13)

which leads to the simple update rule

m̃a→i(xi)←
bi|a(xi)

bi(xi)
m̃a→i(xi). (14)

3. Belief and Message Dynamic

At each step of the algorithm, using Eqs. (4) and (5), we can compute the current beliefs
b(n)

i and b(n)
a associated with the message m(n). The sequence m(n) will be said to be “b-

convergent” when the sequences b(n)
i and b(n)

a converge. This is the convergence that is
interesting in practice. The term “m-convergence” will be used to refer to convergence
of the sequence m(n) itself. Since the algorithm is expressed in terms of messages, m-
convergence obviously implies b-convergence, but the opposite is not generally true. The
aim of this section is to provide a broad class of normalization policies such that b- and
m-convergence, are equivalent in order to focus on m-convergence in the next section.

As pointed out in [8], different sets of messages correspond to the same set of beliefs.
The following lemma makes this explicit.

Lemma 3.1. Two set of messages m and m′ lead to the same beliefs if, and only if, there
is a set of strictly positive constants cai such that

m′
a→i(xi) = caima→i(xi).

Proof. The direct part of the lemma is trivial. Concerning the other part, we have from
(4) and (5)

ba(xa)Za(m)

ψa(xa)
= ∏

j∈a
∏

b� j,b�=a
mb→ j(x j),

bi(xi)Zi(m)

φi(xi)
= ∏

a�i
ma→i(xi).

Assume the two vectors of messages m and m′ lead to the same set of beliefs b and write
ma→i(xi) = cai(xi)m′

a→i(xi). Then, from the relation on bi(xi), the vector c satisfies

∏
a�i

cai(xi) = ∏
a�i

ma→i(xi)

m′
a→i(xi)

=
Zi(m)

Zi(m′)
def
= vi. (15)

Moreover, we want to preserve the beliefs ba. Using Eq. (15), we have

∏
j∈a

ca j(x j) = ∏
j∈a

ma→ j(x j)

m′
a→ j(x j)

=
Za(m′)
Za(m) ∏

i∈a
vi

def
= va, (16)

since vi (resp. va) does not depend on the choice of xi (resp. xa), Eq. (16) implies the
independence of cai(xi) with respect to xi. Indeed, if we compare two vectors xa and x′a
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such that, for all i ∈ a \ j, x′i = xi, but x′j �= x j, then ca j(x j) = ca j(x′j), which concludes
the proof.

Following an idea developed in [8], it is natural to look at the behavior of BP in
a quotient space corresponding to the invariance of beliefs. First, we will introduce a
natural parametrization for which the quotient space is just a vector space. Then we will
show that, in terms of b-convergence, the effect of normalization is null. Let us consider
the following change of variables:

μa→i(xi)
def
= logma→i(xi),

so that the plain update mapping Eq. (9) becomes

μa→i(xi)← Λai,xi(μ)
def
= log

⎡
⎢⎣∑

xa\i
ψa(xa)exp

(
∑

j∈a\i
∑
b� j
b�=a

μb→ j(x j)
)⎤⎥⎦ .

We have μ ∈ N
def
= R

|E|×q and we define the vector space W which is the linear span of
the following vectors {eai ∈ N }(ai)∈E

(eai)c j,x j
def
= 11{a=c,i= j}.

The invariance set of the beliefs corresponding to μ is simply the affine space μ +W
(Lemma 3.1). So μ(n) is b-convergent iff μ(n) converges in the quotient space N \W ,
which is simply a vector space [3]. We use the notation [x] for the canonical projection
of x on N \W .

The normalization of μ leads to μ +w with some w ∈ W . Indeed we have

Λai,xi(μ +w) = log
(

∑
j∈a\i

∑
b� j
b�=a

wb j

)
+Λai,xi(μ)

def
= lai +Λai,xi(μ),

which can be summed up by [Λ(μ +W )] = [Λ(μ)], since l ∈ W . This means that nor-
malization plays no role in N \W and implies the following proposition.

Proposition 3.2. The dynamic, i.e. the value of the normalized beliefs at each step, of
the BP algorithm with or without normalization is exactly the same.

We will come back to this vision in terms of quotient space in Section 4.3, and we
now exhibit a broad class of normalizations for which b-convergence and m-convergence
are equivalent.

Definition 3.3. A normalization Zai is said to be positive homogeneous when it is of the
form Zai = Nai ◦Θai, with Nai : R

q
+ 
→ R+ a positive homogeneous function of order 1

satisfying

Nai(λma→i) = λNai(ma→i),∀λ ≥ 0. (17)

Nai(ma→i) = 0 ⇐⇒ ma→i = 0. (18)
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A particular family of positive homogeneous normalizations is obtained when Nai is
a norm on R

q. This is the case the normalization Zmess
ai (11). It is actually not necessary

to have a proper norm: the scheme used in [13] amounts to Z1
ai(m)

def
= Θai,1(m).

Note however that Zbel
ai (13) is not part positive homogeneous, and therefore the

results of this section do not apply to this case.

Proposition 3.4. For any positive homogeneous normalization Zai with continuous Nai,
m-convergence and b-convergence are equivalent.

Proof. Assume that the sequences of beliefs are such that b(n)
a → ba and b(n)

i → bi as
n → ∞. The idea of the proof is to first express the normalized messages m̃(n)

a→i at each
step in terms of these beliefs, and then to conclude by a continuity argument. Starting
from a rewrite of Eqs. (4) and (5),

b(n)
i (xi) =

φi(xi)

Zi(m̃(n)) ∏
a�i

m̃(n)
a→i(xi),

b(n)
a (xa) =

ψa(xa)

Za(m̃(n)) ∏
j∈a

φ j(x j) ∏
b� j,b�=a

m̃(n)
b→ j(x j),

one obtains by recombination

∏
j∈a

m̃(n)
a→ j(x j) =

K(n)
ai (xa\i;xi)

Z̃ai(m̃)
,

where an arbitrary variable i ∈ a has been singled out and

1
Z̃ai(m̃)

def
=

∏ j∈a Z j(m̃(n))

Za(m̃(n))
, K(n)

ai (xa\i;xi)
def
= ψa(xa)

∏ j∈a b(n)
j (x j)

b(n)
a (xa)

.

Assume now that xa\i is fixed and consider K
(n)
ai (xa\i)

def
= K(n)

ai (xa\i; ·) as a vector of
R

q. Normalizing each side of the equation with a positive homogeneous function Nai
yields

m̃(n)
a→i(xi)

Nai
[
m̃(n)

a→i

] =
K(n)

ai (xa\i;xi)

Nai
[
K

(n)
ai (xa\i)

] .
Actually Nai

[
m̃(n)

a→i

]
= 1, since m̃(n)

a→i has been normalized by Nai and therefore

m̃(n)
a→i(xi) =

K(n)
ai (xa\i;xi)

Nai
[
K

(n)
ai (xa\i)

] .
This concludes the proof, since m̃(n)

a→i has been expressed as a continuous function of b(n)
i

and b(n)
a , and therefore it converges whenever the beliefs converge.
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4. Local Stability of BP Fixed Points

The question of convergence of BP has been addressed in a series of works [10,5,8]
which establish conditions and bounds on the MRF coefficients for having global con-
vergence. In this section, we change the viewpoint and, instead of looking for conditions
ensuring a single fixed point, we examine the local properties each fixed point.

In what follows, we are interested in the local stability of a message fixed point m
with associated beliefs b. It is known that a BP fixed point is locally attractive if the
Jacobian of the relevant mapping (Θ or its normalized version) at this point has all its
eigenvalues of modulus strictly smaller than 1 and unstable when, at least, one eigenvalue
has a modulus strictly greater than 1. The characterization of the local stability relies on
two ingredients. The first one is the oriented line graph L(G ) based on G , whose vertices
are the elements of E, and whose oriented links relate ai to a′ j if j ∈ a∩ a′, j �= i and
a′ �= a. The corresponding 0-1 adjacency matrix A is defined by the coefficients

Aa′ j
ai

def
= 11{ j∈a∩a′, j �=i,a′ �=a}. (19)

The second ingredient is the set of stochastic matrices B(ia j), attached to pairs of
variables (i, j) having a factor node a in common, and which coefficients at row k, col-
umn � (in {1, . . . ,q}2) are the conditional beliefs

b(ia j)
k�

def
= ba(x j = �|xi = k) = ∑

xa\{i, j}

ba(xa)

bi(xi)

∣∣∣∣∣xi=k
x j=�

.

4.1. The Unnormalized Algorithm

Let us first consider briefly the unnormalized algorithm (2,3). Using the representa-
tion (12), the Jacobian reads at this point:

∂Θai,xi(m)

∂ma′→ j(x j)
= ∑

xa\{i, j}

ba(xa)

bi(xi)

ma→i(xi)

ma′→ j(x j)
11{ j∈a\i}11{a′� j,a′ �=a}

=
bi j|a(xi,x j)

bi(xi)

ma→i(xi)

ma′→ j(x j)
Aa′ j

ai

Therefore, the Jacobian of the plain BP algorithm is—using a trivial change of
variable—similar to the matrix J defined, for any pair (ai,k) and (a′ j, �) of E×{1, . . . ,q}
by the elements

Ja′ j,�
ai,k

def
= b(ia j)

k� Aa′ j
ai .

This expression is analogous to the Jacobian encountered in [8]. It is interesting to note
that it only depends on the structure of the graph and on the belief corresponding to the
fixed point. Since G is a singly connected graph, it is clear that A is an irreducible matrix.
To simplify the discussion, we assume in the following that J is also irreducible. This
will be true as long as the ψ are always positive.
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It can be shown [7] that the spectral radius of J is always larger than 1, except in
some special cases where the number of cycles in the graph is less than 1. We will not
develop this point here.

4.2. Positive Homogeneous Normalization

We have seen in Proposition 3.4 that all the continuous positively homogeneous nor-
malizations make m-convergence equivalent to b-convergence. Since they all share the
same properties, we look at the particular case of Zmess

ai (m), which is both simple and
differentiable. The coefficients of the Jacobian matrix at fixed point m with beliefs b read

∂
∂ m̃a′→ j(�)

[
Θai,k(m̃)

∑q
x=1 Θai,x(m̃)

]
= Ja′ j,�

ai,k
ma→i(k)
ma′→ j(�)

−ma→i(k)
q

∑
x=1

Ja′ j,�
ai,x

ma→i(x)
ma′→ j(�)

,

which is similar to the matrix J̃ of general term

J̃a′ j,�
ai,k

def
=

[
b(ia j)

k� −
q

∑
x=1

ma→i(x)b
(ia j)
x�

]
Aa′ j

ai = Ja′ j,�
ai,k −

q

∑
x=1

ma→i(x)J
a′ j,�
ai,x , (20)

which can be summarized by J̃ = (I−M)J, with I the identity matrix and M:

Ma′ j,�
ai,k

def
= ma′→ j(�)11{a=b,i= j}.

The presence of the messages in the Jacobian J̃ seems to complicate the study, but in fact
the spectrum of J̃ does not depend on the messages themselves. It is known (see e.g. [2])
that it is possible to chose the functions φ̂ and ψ̂ as

φ̂i(xi)
def
= b̂i(xi), ψ̂a(xa)

def
=

b̂a(xa)

∏i∈a b̂i(xi)
, (21)

in order to obtain a prescribed set of beliefs b̂ at a fixed point. Indeed, BP will admit a
fixed point with ba = b̂a and bi = b̂i when ma→i(xi) ≡ 1. Since only the beliefs matter
here, without loss of generality, we restrict ourselves in the remainder of this section to
the functions of Eq. (21). Then, from Eq. (20), the definition of J̃ rewrites

J̃a′ j,�
ai,k

def
=

[
b(ia j)

k� − 1
q

q

∑
x=1

b(ia j)
x�

]
Aa′ j

ai = Ja′ j,�
ai,k − 1

q

q

∑
x=1

Ja′ j,�
ai,x .

For each connected pair (i, j) of variable nodes, we associate to the stochastic kernel
B(ia j) a combined stochastic kernel K(ia j) def

= B(ia j)B( jai). In the following we consider bi
as a vector of Rq. Since bi B(ia j) = b j, bi is the invariant measure associated to K:

bi K(ia j) = bi B(ia j)B( jai) = b j B( jai) = bi,

and K(ia j) is reversible, since

V. Martin et al. / Local Stability of Belief Propagation Algorithm with Multiple Fixed Points 187



bi(k)K
(ia j)
k� =

q

∑
m=1

b( jai)
mk b j(m)b( jai)

m� =
q

∑
m=1

b( jai)
mk b(ia j)

�m bi(�) = bi(�)K(ia j)
�k .

Let μ(ia j)
2 be the second largest eigenvalue of K(ia j) and let

μ2
def
= max

(ia j)

√
|μ(ia j)

2 |.

The combined effect of the graph and of the local correlations on the stability of the
reference fixed point is stated as follows.

Theorem 4.1. Let λ1 be the Perron eigenvalue of the matrix A

(i) if λ1μ2 < 1, the fixed point of BP scheme (10, 11) associated to b is stable.
(ii) If the system is homogeneous (B(ia j) = B independent of i, j and a), λ1μ2 ≤ 1 is

also a necessary condition.

Condition (i) combines the effects of a term (μ2) which depends on the local de-
pendence structure of the given fixed point with another one (λ1) characteristic of the
underlying graph. For example, in the homogeneous case, if G has uniform degrees da
and di, the condition reads

μ2(da −1)(di −1)< 1.

In the case of binary variables μ(ia j)
2 = det(K(ia j)), which is just the square of Pearson’s

correlation coefficient between xi and x j, which in general depends on the factor a. The
condition (i) of Theorem 4.1 thus is an upper bound on the correlations between variables
at stable fixed points.

In order to prove part (i) of the theorem, we will consider a local norm on R
q attached

to each variable node i,

‖x‖bi
def
=
( q

∑
k=1

x2
kbi(k)

) 1
2

and 〈x〉bi
def
=

q

∑
k=1

xkbi(k),

the local average of x ∈R
q w.r.t bi. For convenience, we will also consider the somewhat

hybrid global norm on R
q×|E|

‖x‖π,b
def
= ∑

(ai)∈E
πai‖xai‖bi ,

where π is the right Perron vector of A, associated to λ1. We have the following useful
inequality:

Lemma 4.2. For any (x(i),x( j)) ∈ R
q × R

q, such that 〈x(i)〉bi = 0 and x( j)
� b j(�) =

∑k x(i)k bi(k)B
(ia j)
k� ,

〈x( j)〉b j = 0 and ‖x( j)‖2
b j
≤ μ(ia j)

2 ‖x(i)‖2
bi
.

V. Martin et al. / Local Stability of Belief Propagation Algorithm with Multiple Fixed Points188



Proof. By definition of the kernels K(ia j), we have

‖x( j)‖2
b j
=

q

∑
k=1

1
b j(k)

∣∣∣ q

∑
�=1

b(ia j)
�k bi(�)x(i)�

∣∣∣2 = ∑
�,m

x(i)� x(i)m K(ia j)
�m bi(�).

Since K(ia j) is reversible, Rayleigh’s theorem implies

μ(ia j)
2

def
= sup

x

{∑k� xkx�K
(ia j)
k� bi(k)

∑k x2
kbi(k)

,〈x〉bi = 0,x �= 0
}
,

which concludes the proof.

To deal with iterations of J, we express it as a sum over paths.

(
Jn)a′ j,�

ai,k =
(
An)a′ j

ai

(
B(n)

ai,a′ j

)
k� ,

where B(n)
ai,a′ j is an average stochastic kernel,

B(n)
ai,a′ j

def
=

1

|Γ(n)
ai,a′ j|

∑
γ∈Γ(n)

ai,a′ j

∏
(ck,d�)∈γ

B(kc�). (22)

Γ(n)
ai,a′ j represents the set of directed path of length n joining ai and a′ j on L(G ) and its

cardinal is precisely |Γ(n)
ai,a′ j|=

(
An

)a′ j
ai .

Lemma 4.3. For any (x(ai),x(a
′ j)) ∈ R

2q, such that 〈x(ai)〉bi = 0 and

x(a
′ j)

� b j(�) = ∑
k

x(ai)
k bi(k)

(
B(n)

ai,a′ j

)
k� ,

the following inequality holds

‖x(a
′ j)‖b j ≤ μn

2‖x(ai)‖bi .

Proof. Let x(a
′ j)(γ) be the contribution to x(a

′ j) corresponding to the path γ ∈ Γ(n)
ai,a′ j.

Using Lemma 4.2 recursively yields for each individual path

‖x(a
′ j)(γ)‖b j ≤ μn

2‖x(ai)‖bi ,

and, owing to triangle inequality,

‖x(a
′ j)‖b j ≤

1

|Γ(n)
ai,a′ j|

∑
γ∈Γ(n)

ai,a′ j

‖x(a
′ j)(γ)‖b j ≤ μn

2‖x(ai)‖bi .
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Proof of Theorem 4.1. Let v and v′ two vectors with v′ = vJ̃n = v(I−M)Jn, since J̃M =
0. Recall that the effect of (I−M) is to first project on a vector with zero local sum,
∑k

(
v(I−M)

)
ai,k = 0, ∀i ∈ V, so we assume directly v of the form

vai,k = xai,k bi(k), with 〈xai〉bi = 0.

As a result, v′ = vJn is of the same form. Let x′a′ j,�
def
= v′a′ j,�/b j(�). We have

‖x′‖π,b ≤ ∑
(a′ j)∈E

πa′ j ∑
(ai)∈E

(
An)a′ j

ai ‖y(ai)
a′ j ‖b j ,

with y(ai)
a′ j,� b j(�) = ∑k xai,k bi(k)

(
B(n)

ai,a′ j

)
k�. Applying Lemma 4.3 to y(ai)

a′ j yields

‖x′‖π,b ≤ ∑
(a′ j)∈E

πa′ j ∑
(ai)∈E

(
An)a′ j

ai μn
2‖xai‖bi = λ n

1 μn
2‖x‖π,b,

since π is the right Perron vector of A. This ends the proof of (i).
For (ii), when the system is homogeneous, J̃ is a tensor product of A with B̃, and its

spectrum is therefore the product of their respective spectra.

The quantity μ2 is representative of the level of mutual information between vari-
ables. It relates to the spectral gap (see e.g. [1] for geometric bounds) of each elementary
stochastic matrix B(ia j), while λ1 encodes the statistical properties of the graph connec-
tivity. The bound λ1μ2 < 1 could be refined when dealing with the statistical average of
the sum over path in (22) which allows to define μ2 as

μ2 = lim
n→∞

max
(ai,a′ j)

{ 1

|Γ(n)
ai,a′ j|

∑
γ∈Γ(n)

ai,a′ j

(
∏

(x,y)∈γ
μ(xy)

2

) 1
2n
}
.

4.3. Local Convergence in Quotient Space N \W

We make here the connexion with the notion of local stability in the quotient space
N \W of Section 3. Trivial computations yield ∇Λ = J. In terms of convergence in
N \W , the stability of a fixed point is given by the projection of J on the quotient space
N \W and we have [8]:

[J] def
= [∇Λ] = ∇[Λ]

The normalization Zmess
ai is in fact just a way to compute [J] by applying a projection

I−M to J. Since ker(I−M) = W , it is just a quotient map from N to N \W . For
any differentiable positively homogeneous normalization, we obtain the same result, the
Jacobian of the corresponding normalized scheme is the projection of J on N \W ,
through some quotient map.
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5. Conclusion

We provided here, for the first time at our knowledge, an explicit sufficient condition for
local stability of a belief propagation fixed point, instead of sufficient conditions for con-
vergence to a unique fixed point. This condition is coherent with the usual understand-
ing of BP convergence; when the connectivity of both G and L(G ) increases, λ1 is also
increasing since A is increasing. So Theorem 4.1 imposes that the level of mutual infor-
mation μ(ia j)

2 between variables i and j at a stable fixed point decreases. Reciprocally,
the sparser G is, the bigger mutual information can be. This somewhat explains why BP
performs better on sparse graphs: the amount of admissible mutual information between
variables at a stable fixed point is larger on a sparse graph than on a dense one.
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