
NORMC: a Norm Compliance Temporal
Logic Model Checker
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Abstract. We describe NORMC, a model checker for Norm Compliance CTL, a
temporal logic for reasoning about compliance in normative systems, implemented
in the Haskell programming language. NORMC is intended as a tool for students,
researchers, and practitioners to learn about and understand normative systems, and
as an exploratory tool for researchers in multi-agent systems. The objectives of the
paper are twofold. First, to give a system description of NORMC. Second, to argue
and demonstrate that the Haskell programming language is a natural and useful
alternative for model checking multi-agent systems; in particular that the full power
of Haskell makes it easy to describe arbitrary multi-agent state-transition models in
a natural way.
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1. Introduction

Normative systems, or social laws, have emerged as a promising and powerful frame-
work for coordinating multi-agent systems [13,14,9,10,1,3,7,2,4]. The starting point is
a state-transition model of a multi-agent system, typically a legacy system, and the goal
is to constrain the behaviour of the agents in the system in such a way that the global
behaviour of the system exhibits some desirable properties. Such a restriction on agents’
behaviour is called a normative system, or a social law. The desirable global properties
are typically represented using a (modal) logical formula; the objective (typically not
satisfied in the initial system).

A key issue in normative systems is the question of compliance. Even if a norma-
tive system is effective, i.e., will ensure that the objective holds, under the assumption
that all agents comply with it – how do we know that they will actually comply? And
what happens if they do not? There are several possible reasons for non-compliance
[4]: an autonomous and rational agent might choose not to comply because it is not in
her best interest; a rational agent might not comply by accident (a failure); an irrational
agent might choose not to comply without any particular reason. Norm compliance CTL
(NCCTL) [4] was developed to reason about normative systems and in particular about
(non-)compliance. It can be used, e.g., to model check compliance properties such as
“which agents have to comply for the objective to hold”. NCCTL extends the branching-
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time temporal logic Computation-Tree Logic (CTL) [8] with a modality [P ], where P is a
coalition predicate, i.e., a possible property of groups of agents (coalitions). The mean-
ing of the expression [P ]ϕ is that if any coalition that satisfies P complies with the nor-
mative system, then ϕ will hold. Examples of NCCTL expressions include the following,
which are evaluated in the context of a model and a normative system:

• [supseteq(C)]ϕ: if any superset of C comply, ϕ will hold (C is sufficient1)
• [¬geq(k)]¬ϕ: at least k agents have to comply forϕ to hold (the normative system
is k-necessary)

• [geq(n − k)]ϕ ∧ 〈ceq(n − k − 1)〉¬ϕ, where n is the total number of agents: k
is the largest number of non-compliant agents the normative system can tolerate
whilst still being effective for ϕ (the resilience of the normative system is k)2

Formally, [P ] has a non-standard update semantics, which makes it difficult to use stan-
dard branching-time model checkers directly to verify normative system properties spec-
ified in NCCTL.

In this paper we describe NORMC, a prototype model checker for NCCTL imple-
mented in Haskell [12]. The intended use of NORMC is as a tool to learn about and un-
derstand normative systems, and as an exploratory tool for researchers. Even small ex-
amples can be difficult to understand properly without a computational tool, because the
number of possible model updates resulting from different groups of agents complying is
typically exponential in the size of the model. As a prototype tool intended for academic
rather than industrial use, the focus in the implementation of NORMC has not been on
efficiency, but rather on clarity, extensibility and ease of use. In particular, standard sym-
bolic model checking optimization techniques have not been implemented. However, the
implementation is still efficient enough for interesting and non-trivial examples.

The objectives of the paper are twofold. First, the paper is a system description of
NORMC that demonstrates how it can be used to model check normative systems. Sec-
ond, we want to argue for and demonstrate the usefulness of the Haskell programming
language for model checking modal logics, as already suggested by model checkers such
as the epistemic logic model checker DEMO [15]. We argue that Haskell’s native support
for discrete structures and lazy evaluation mechanism makes it well suited for program-
ming model checking algorithms. Furthermore, a Haskell implementation means that it
is possible to have the full power of the Haskell language available for the user to de-
scribe models – in contrast with the restricted model description languages available in
popular temporal logic model checkers such as SPIN [11] or NUSMV [5].

The paper is organized as follows. We first review the formal normative systems
framework and NCCTL. The details of NORMC implementation are discussed in Section
3. In Section 4 we illustrate usage with an example, and show how NORMC was used to
find an error in a case study in the literature. We conclude in Section 5.

NORMC, with source code, can be downloaded from http://pkazmierczak.
github.com/NorMC/. Although not strictly necessary, familiarity with the Haskell
programming language is helpful to fully understand the source code snippets in this
paper. We provide some explanation, but due to lack of space and a different focus in
this paper, we further refer the reader to a short manual (which comes with a simple and
illustrative example) that can be found on the NORMC’s website.

1Notions of sufficiency, k-necessity and resilience are formally defined in [4].
2ceq(n) is an abbreviation of (geq(n) ∧ ¬geq(n+ 1)).
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2. Background

We give a, necessarily terse due to lack of space, overview of the background; see [4]
for more details on NCCTL. Assume a set Φ of propositional variables. As the semantic
model we use an agent-labelled Kripke structure; a tupleK = 〈S, s0, R,A, α, V 〉 where
S is a finite, non-empty set of states; s0 ∈ S is the initial state; R ⊆ S × S is a
serial binary relation (i.e., ∀s∃t (s, t) ∈ R) on S, which we refer to as the transition
relation; A is a set of agents; α : R → A labels each transition in R with an agent; and
V : S → ℘(Φ) labels each state with a set of propositional variables.

A path π over a relation R is an infinite sequence of states s0, s1, s2, . . . such that
∀u ∈ N : (su, su+1) ∈ R. π[0] denotes the first element of the sequence, π[1] the second,
and so on. An s-path is a path π such that π[0] = s. ΠR(s) is the set of s-paths over R,
and we write Π(s), if R is clear from the context.

Objectives are specified using CTL formulas. We use an adequate fragment of the
language defined by the following grammar:

ϕ ::= 
 | p | ¬ϕ | ϕ ∨ ϕ | E© ϕ | E(ϕUϕ) | A(ϕUϕ)

where p ∈ Φ. The standard derived propositional connectives are used, in addition to
standard derived CTL connectives such as A© ϕ for ¬E© ¬ϕ (see [8] for details).
Satisfaction of a formula ϕ in a state s of a structureK,K, s |= ϕ, is defined as follows:

K, s |= 
;
K, s |= p iff p ∈ V (s);

K, s |= ¬ϕ iff notK, s |= ϕ;

K, s |= ϕ ∨ ψ iffK, s |= ϕ orK, s |= ψ;

K, s |= E© ϕ iff ∃π ∈ Π(s) : K,π[1] |= ϕ;

K, s |= E(ϕUψ) iff ∃π ∈ Π(s), ∃u ∈ N, s.t.K,π[u] |= ψ

and ∀v, (0 ≤ v < u) : K,π[v] |= ϕ;

K, s |= A(ϕUψ) iff ∀π ∈ Π(s), ∃u ∈ N, s.t.K,π[u] |= ψ

and ∀v, (0 ≤ v < u) : K,π[v] |= ϕ.

A normative system η over K is a set of constraints on the behaviour of the agents.
Formally, η ⊆ R, such that R \ η is a serial relation, represents the forbidden transitions.
N(R) denotes the set of all normative systems over K. We say that normative systems
are implemented on Kripke structures, which means that after the implementation all
the transitions that are forbidden according to a normative system are removed from
the structure. Formally, if η is a normative system over K, then K † η stands for the
Kripke structure obtained from K by removing the transitions forbidden by η, i.e., if
K = 〈S, s0, R,A, α, V 〉 and η ∈ N(R), then K † η = 〈S, s0, R′, A, α′, V 〉 where
R′ = R \ η, and α′ is the restriction of α to R′: if (s, s′) ∈ R′ then α′(s, s′) = α(s, s′).
A set C ⊆ A is called a coalition. Let η be a normative system over K, then η � C is
the normative system restricted to the actions of agents in C: η � C = {(s, s′) : (s, s′) ∈
η & α(s, s′) ∈ C}.
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The language of NCCTL extends the language of CTL with an operator 〈P 〉 where P
is a coalition predicate. The coalition predicates P are defined by the following grammar:

P ::= subseteq(C) | supseteq(C) | geq(n) | ¬P | P ∨ P

where C ⊆ A and n ∈ N. Satisfaction of a predicate P by a coalition C0, C0 |=cp P , is
defined straightforwardly: C0 |=cp subseteq(C) iff C0 ⊆ C; C0 |=cp geq(n) iff |C0| ≥
n; C0 |=cp supseteq(C) iff C0 ⊇ C; C0 |=cp ¬P iff not C0 |=cp P ; and C0 |=cp

P1 ∨ P2 iff C0 |=cp P1 or C0 |=cp P2. Other coalition predicates can be introduced as
abbreviations, such as eq(C) = subseteq(C) ∧ supseteq(C), etc.

Formally, the language of the NCCTL is generated as follows:

ϕ ::= 
 | p | ¬ϕ | ϕ ∨ ϕ | E© ϕ | E(ϕUϕ) | A(ϕUϕ) | 〈P 〉ϕ

We also write [P ]ϕ to denote the dual coalition predicate: ¬〈P 〉¬ϕ.
Formulas of NCCTL are interpreted in a triple (K, η, s) where K is a Kripke struc-

ture, η a normative system over K and s is a state of K. The clauses for coalition predi-
cates are as follows:

K, η, s |= 〈P 〉ϕ iff ∃C ⊆ A (C |=cp P andK † (η � C), η, s |= ϕ)

All other formulas are defined as for CTL, but carrying the normative system in the con-
text: e.g.K, η, s |= E© ϕ iff ∃π ∈ Π(s) : K, η, π[1] |= ϕ.

3. Implementation

We now discuss the design and implementation of NORMC. The core of the model
checker is the function check. It implements an extension of a standard model checking
algorithm for CTL formulas, as described in [6], with additional clauses for coalition
predicates. check takes a model, normative system and formula as arguments and returns
the set of states in which the given formula is satisfied. It is used in the following way:

*Example> check myModel myNS myFormula
[s1, s3, s7]

where myModel is the Kripke structure, myNS is the normative system, and myFormula
is the objective.

Kripke models are represented by the Kripke data structure. To represent sets, such
as the set of states in the Kripke structure, sorted lists with no duplicate occurrences are
used. In NORMC the data structure Kripke is defined as follows:3

data (Ord s, Eq p) ⇒ Kripke p s = Kripke {
agents :: [Int], states :: [s],
tr :: FODBR s s, owner :: (s, s) → Int,
valuation :: p → [s] }

3One mysterious element in this code snippet is the type of tr (transition relation), which is FODBR. It is
a type provided by our binary relations library, and it is explained in Section 3.1.
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The requirements Ord s and Eq p state that the type of states s should support ordering,
and the type of propositional symbols p should support equality testing, respectively.

Normative systems are naturally represented in the same way as transition relations,
so an example implementation of a function representing a normative system could look
as follows:

normativeSystem :: FODBR s s
normativeSystem = build [ ((p0,p1,i),(p0’,p1’,1-i)) |

(p0,01,i) <- statespace,
(p0’,p1’,_) <- ... ]

We discuss the build function in more detail in a subsection below.
Finally, formulas are represented by the structures Formula and Coalition:

data (Eq p) => Formula p = Prop p
| Neg (Formula p)
| Disj (Formula p) (Formula p)
| Conj (Formula p) (Formula p)
| EX (Formula p)
| EF (Formula p)
| EG (Formula p)
| EU (Formula p) (Formula p)
| CD Coalition (Formula p)
| CS Coalition (Formula p)

deriving (Show)

data Coalition = Subseteq [Int] | Supseteq [Int]
| Eq [Int] | GEQ Int
| CNeg Coalition | CDisj Coalition Coalition

deriving (Show)

Should we need more CTL connectives, it is very easy to implement appropriate abbre-
viations:

ag,af :: (Eq p) => (Formula p) -> (Formula p)
ag f = Neg (EF (Neg f))
af f = Neg (EG (Neg f))

The check function is our counterpart of �, but rather than a relation � ⊆ M×
N ×S×ϕ, we have check : M×N ×ϕ→ ℘(S). The function is defined recursively,
and the clauses for propositional variables and path-state-quantifiers are defined as in
standard CTL algorithms (see [6] for more details).

The propositional clauses are fairly obvious:

check :: (Ord s, Eq p) ⇒ (Kripke p s) → (FODBR s s) → (Formula p) → [s]
check mod sys (Prop p) = sort $ (valuation mod) p
check mod sys (Neg f) = (states mod) ‘nubminus‘ (check mod sys f)
check mod sys (Disj f f’) = (check mod sys f) ‘nubunion‘ (check mod sys f’)
check mod sys (Conj f f’) = (check mod sys f) ‘nubisect‘ (check mod sys f’)

The path-state-quantifiers are checked as follows: for the EX f case, (check mod

sys f) is the set where f is satisfied and hence (EX f) is satisfied in the set of states
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which has a successor in (check mod sys f). EF f is satisfied in the set of states s0
where f is satisfied and the image of these states. We repeat this process until it settles on
a fixed point. EG f is satisfied in the set of states s0 which satisfy f and also in the states
which satisfy f and has an edge into this set. Finally EU f f’ is satisfied in the set of
states where f’ is satisfied, and (as long as the preimage of a given state is in the set) the
intersection of the preimage and the set containing the states in which f is satisfied.

check mod sys (EX f) =
find (backwards mod) (check mod sys f)

check mod sys (EF f) = fix ff (check mod sys (EX f)) where
ff ss = ss ‘nubunion‘ (find $ backwards mod) ss

check mod sys (EG f) = fix ff (check mod sys f) where
ff ss = ss ‘nubisect‘ (find $ backwards mod) ss

check mod sys (EU f f’) = fix ff (check mod sys f’) where
ff ss = ss ‘nubunion‘ ((find $ backwards mod) ss ‘nubisect‘ (check

mod sys f))

For the coalition predicates we need some semantic update functions: nsimplement
implements a normative system on a Kripke structure (the † operator), nsrestrict
implements the � operator, and ir combines the two, implementing a given normative
system restricted to the given coalition predicate:

nsimplement :: (Ord s, Eq p) ⇒ (Kripke p s) → (FODBR s s) → (Kripke p s)
nsimplement mod sys = mod { tr = (tr mod) ‘minus‘ sys }

nsrestrict:: (Ord s, Eq p)⇒ (Kripke p s)→ (FODBR s s)→ [Int]→ (FODBR s s)
nsrestrict mod sys coa= restrict sys (λs s’→ ((owner mod (s,s’)) ‘elem‘ coa))

ir :: (Ord s, Eq p) ⇒ (Kripke p s) → (FODBR s s) → [Int] → (Kripke p s)
ir mod sys coa = nsimplement mod (nsrestrict mod sys coa)

The function checkCoaPred returns True iff coalition predicates are satisfied by
its arguments: a coalition predicate and a set of agents.

checkCoaPred :: Coalition → [Int] → Bool
checkCoaPred (Subseteq set) coa = coa ‘subset‘ set
checkCoaPred (Supseteq set) coa = set ‘supset‘ coa
checkCoaPred (Eq set) coa = set == coa
checkCoaPred (GEQ n) coa = n ≤ length coa
checkCoaPred (CNeg c) coa = not (checkCoaPred c coa)
checkCoaPred (CDisj c c’) coa = (checkCoaPred c coa) | | (checkCoaPred c’ coa)

coasGivenCP :: (Ord s, Eq p) ⇒ (Kripke p s) → Coalition → [[Int]]
coasGivenCP mod cp = filter (checkCoaPred cp) (spowerlist $ agents mod)

Model checking NCCTL involves quantification over coalitions. As discussed, for
each subformula ϕ the algorithm computes the set of satisfying states (call it sat(ϕ)).
By the semantics of NCCTL, we have that sat([P ]ϕ) = {s ∈ S : ∀C ⊆ A(C |=cp P ⇒
K † (η � C), η, s |= ϕ). A naïve implementation of this involves testing every coalition
against the predicate, once for each state. However, it is easy to see that the quantifier
can be moved out (and similarly for 〈P 〉ϕ):
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Lemma 1 sat([P ]ϕ) =
⋃

C|=cpP
{s ∈ S : K † (η � C), η, s |= ϕ)} and

sat(〈P 〉ϕ) = ⋂
C|=cpP

{s ∈ S : K † (η � C), η, s |= ϕ)}.

Thus we only have to test the predicate once for each coalition, and save a considerable
amount of time in practice. This is made use of as follows in the clauses checking the
“coalition predicate diamond” (CD) and “coalition predicate square” (CS):

check mod sys (CD c f) = foldl’ nubunion [] $
map (λmod → (check mod sys f)) $

map (ir mod sys) $ coasGivenCP mod c
check mod sys (CS c f) = foldl’ nubisect (states mod) $

map (λmod → (check mod sys f)) $
map (ir mod sys) $ coasGivenCP mod c

This concludes the description of the implementation of the model checking algorithm.
As the reader familiar with programming model checkers might notice, the code of the
whole model checking algorithm is very succinct and compact. The model checker code
alone is only 88 lines long, and the library for handling binary relations has 140 lines.
That gives only 228 lines in total, compared to thousands of lines of what could constitute
a similar tool written in C, C++ or Java.

We would also argue that Haskell’s syntax is pretty close to mathematical notation,
hence fairly easy to understand for a logician.

3.1. Binary relations

Much of the core functionality of NORMC is found in the handling of the transition re-
lation, and performing a model update operation is performing an appropriate restriction
on this relation. We only mention the implementation of relation handling briefly here,
due to lack of space and to keep focus on more high-level considerations.

Our relation handling implementation, FODBR (Finite Ordered Domain Binary Re-
lation), is a sufficiently efficient representation of a binary relation by two binary search
trees. We require that the domain is finite and consists of elements with an ordering,
and we represent the binary relation by two multifunctions: src : D → ℘(D′) and
trg : D′ → ℘(D). Both these functions are stored as a binary search tree where each
node contains a value of the type (D, [D′]) (’key’ and ’value set’, respectively).

The above functionality is provided by a collection of functions stored in a separate
library that is loaded to the model checker. The library contains a number of useful
definitions, most importantly the data type FODBR, which is a tuple of two binary trees,
and a function build, which given a list of pairs [..., (source,target),...]

constructs a pair of binary search trees consisting of tuples of source and targets, and
target and sources, as shown in Figure 1.

The functionality provided by FODBR requires that argument lists are sorted and con-
tain no duplicate elements, and guarantees that any returned lists also satisfy these prop-
erties. This allows us to implement the usual set theoretic operations of union, intersec-
tion and difference efficiently.

The implementation of FODBR library is where we make use of Haskell’s lazy evalu-
ation mechanisms. For the purpose of our model checking algorithm, only the backwards
image is generated – lazy evaluation of the structure ensures that the forward direction
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build [..., (s,t1),(s,t2),...]

(s,[...,t1,t2,...]) (t1,[...,s,...])

(t2,[...,s,...])

Figure 1. build function constructing binary trees, the forward tree on the left, and the backward on the
right.

is not calculated. However, should we need to generate counter examples or extend the
model checker functionality in some way, Haskell will generate the forward direction as
well.

4. Specifying and model checking a complex system

We will now present parts of a specification of an elaborate example taken from [4]. The
example describes four researchers attending a conference who need to share a limited
amount of resources. The model has 62500 states and 470596 transitions. We present
the essential parts of this example and use it to demonstrate the flexibility in describing
elaborate models in Haskell/NORMC, and that NORMC can model check pretty large
models. Due to lack of space some details must be left out, but we focus on the essential
parts.

The states are tuples s = 〈Oa, Ob, Oc, Od, i〉 where for each i ∈ {a, b, c, d} = A,
Oi represents the resources owned by agent i. The resources they need to share are: (i) a
printer (the singleton setR1), (ii) two scanners (the setR2), and (iii) three computers (the
setR3). The agents do not have the same needs. Agent a needs the printer and a computer,
agent b needs a scanner and the printer, agent c needs a scanner and a computer, and
agent d only needs the printer. Agents’ actions are turn-based. There is no distribution
of resources that allows all agents to own the resources they need simultaneously, but
there are limitations on the permitted transitions which guarantee that each agent will
eventually own all the resources needed.

The first restriction is the implementation of a normative system which sets some
basic rules of behaviour. Since the example is rather elaborate, we have to omit much of
the formal definition here and refer to [4] for details. Below is an informal description of
the normative system η0 [4]:

[. . . ] no agent (i) owns two resources of the same type at the same time, (ii) takes
possession of a resource that he does not need, (iii) takes possession of two new
resources simultaneously, and (iv) fails to take possession of some useful resource if
it is available when it is his turn [. . . ]

We describe this model in Haskell using seven integers to represent each state. The first
six of these integers represent the owner of, respectively, (1) the printer, (2) scanner1, (3)
scanner2, (4) computer1, (5) computer2 and (6) computer3. Each of these can take on a
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value 0..4 where 0 represents a free resource and a non-zero number indicates the owner
of this resource. The seventh integer represent whose turn it is and has a value 1..4.

type State = (Int, Int, Int, Int, Int, Int, Int)

The set of states is defined as follows.

statespace :: [State]
statespace = [(p, s1, s2, c1, c2, c3, a) |

p ← [0..4], s1 ← [0..4], s2 ← [0..4],
c1 ← [0..4], c2 ← [0..4], c3 ← [0..4], a ← [1..4] ]

For the transition relation, if the current agent a owns a given resource r (a == r),
or nobody owns that resource (r ==0), then the current agent can keep (resp. grab) or
release (resp. ignore) it, otherwise that resource will not change owner.

transition :: FODBR State State
transition = build [((p , s1 , s2 , c1 , c2 , c3 , a),

(p’, s1’, s2’, c1’, c2’, c3’, 1 + (a ‘mod‘ 4))) |
(p,s1,s2,c1,c2,c3,a) ← statespace,
p’ ← if (p == a | | p == 0) then [0, a] else [p ],
s1’ ← if (s1 == a | | s1 == 0) then [0, a] else [s1],
s2’ ← if (s2 == a | | s2 == 0) then [0, a] else [s2],
c1’ ← if (c1 == a | | c1 == 0) then [0, a] else [c1],
c2’ ← if (c2 == a | | c2 == 0) then [0, a] else [c2],
c3’ ← if (c3 == a | | c3 == 0) then [0, a] else [c3] ]

We label each transition with its owner. This is a simple projection.

owner :: (State, State) → Int
owner ((_,_,_,_,_,_,i), _) = i

We model a proposition symbol by an (agent) index and a keyword. We define the type
Resource to denote the various resources and give a function which projects from a
given state the owner of the given resource.

data Resource = Pr | S1 | S2 | C1 | C2 | C3 deriving Eq

project :: Resource → State → Int
project Pr (pr,_,_,_,_,_,_) = pr
project S1 (_,s1,_,_,_,_,_) = s1
-- and so on...

The valuation function is now simply defined by removing the states in which given
agent does not own the resource in question.

type Proposition = (Resource, Int)

val :: Proposition → [State]
val (res, ag) = filter ((ag == ) ◦ (project res)) statespace
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The normative system η0 is implemented as the union of four separate relations
(see the description of η0).These are all constructed in a similar way, i.e. restricting the
transition relation appropriately, and we show only component3 which does not allow
an agent to grab two resources at the same time.

component3 :: FODBR State State
component3 = restrict transition

(λ(pr,s1,s2,c1,c2,c3,a) (pr’, s1’, s2’, c1’, c2’, c3’, a’) →
(sum $ zipWith (λx y → if (x /= a) && (y == a) then 1 else 0)

[pr , s1 , s2 , c1 , c2 , c3 ]
[pr’, s1’, s2’, c1’, c2’, c3’]) > 1)

eta_0 :: FODBR State State
eta_0 = component1 ‘union‘ component2 ‘union‘ component3 ‘union‘ component4

Next we define the normative system η1: if an agent owns all his useful resources simul-
taneously (he is ‘happy’), he will make them available in the next turn.

stHappy :: Int → State → Bool
stHappy 1 (pr, _, _, c1, c2, c3, _) = (pr == 1 && (c1 == 1 | | c2 == 1

| | c3 == 1))
-- and similarly for stHappy 2, 3 and 4, defining the states where
-- agents are happy
ownsSomething :: Int → (State → Bool)
ownsSomething n = (pr, s1, s2, c1, c2, c3, a) → (pr == n | |

s1 == n | | s2 == n | |
c1 == n | | c2 == n | |
c3 == n)

eta_1 :: FODBR State State
eta_1 = restrict transition

(λs s’ → (stHappy (owner (s,s’)) s) && (ownsSomething
(owner (s,s’)) s’))

For convenience, we define two example models, one with no normative system imple-
mented on it (K0), and the second one with η0 implemented on it (K1 = K0 † η0):

exampleModel :: Kripke Proposition State
exampleModel = Kripke [1,2,3,4] statespace transition owner val
exampleModel’ :: Kripke Proposition State
exampleModel’ = ir exampleModel eta_0 [1,2,3,4]

Our first objective is that it is always the case that every agent will eventually be-
come happy: ϕ1 = A�(

∧
i∈Ag A�happy(i)), where the proposition happy(i) (code:

fHappy i) is true iff i is ‘happy’.

phi_1 :: Formula Proposition
phi_1 = ag (Conj (af (fHappy 1))(Conj(af (fHappy 2))

(Conj(af(fHappy 3))
(af (fHappy 4)))))

This concludes the implementation of the example model from [4]. We now proceed
with model checking. First we check whether eta_0 is effective.
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*Ex02> check exampleModel’ eta_1 phi_1
[]

The model checker outputs an empty set, indicating there are no states satisfying phi_1
if no agents are required to comply with eta_1. In [4] it is claimed that compliance
of coalition {1, 2, 3} to eta_1 is sufficient for the objective to hold (assuming that all
agents comply with η0). Let us check:

*Ex02> check exampleModel’ eta_1 (CS (Supseteq [1,2,3]) phi_1)
[]

Surprisingly, the model checker tells us that the formula is not true in any state. Using
the model checker we can produce a trace:

[(0,0,0,0,0,0,1),(0,0,0,0,0,1,2),(2,0,0,0,0,1,3),(2,0,0,0,3,1,4),
(2,0,4,0,3,1,1),(2,0,4,0,3,0,2),(0,2,4,0,3,0,3),(0,2,4,0,0,0,4),
(0,2,0,0,0,0,1),(0,2,0,0,0,1,2),(2,0,0,0,0,1,3)]

In steps 2 and 10 we end up in the same state. We have a loop where all agents comply
with both η0 and η1. No agent is ever ‘happy’ in this loop. So, there is a path π in Π(s0)
along which it is not the case that every agent will eventually be ‘happy’. Thus, there is
an error in the example in [4]. This error was not obvious, and this illustrates the benefit
of software tools even for “toy” examples.

The problem with the example from [4] is that η1 as stated is too weak; as seen
above it allows agents to simultaneously grab some resources and release others in an
endless loop without ever becoming ‘happy’. We now introduce an additional condition
that tells the agents to not release any resources they posses until they are ‘happy’:

dont_release :: FODBR State State
dont_release = restrict transition

(λs@(pr,s1,s2,c1,c2,c3,a) (pr’,s1’,s2’,c1’,c2’,c3’,_) →
(not $ stHappy a s) &&
(((pr == a) && (pr’ /= a)) | | ((s1 == a) && (s1’ /= a)) | |
((s2 == a) && (s2’ /= a)) | | ((c1 == a) && (c1’ /= a)) | |
((c2 == a) && (c2’ /= a)) | | ((c3 == a) && (c3’ /= a))))

Modify the normative system eta_1 to include the new condition:

eta_1’ :: FODBR State State
eta_1’ = eta_1 ‘union‘ dont_release

Now {1, 2, 3} is a sufficient4 coalition (the only minimal sufficient coalition):

*Ex02> let is = ((0,0,0,0,0,0,1)::State)

*Ex02> is ‘elem‘ check exampleModel’ eta_1’
(CS (Supseteq [1,2,3])phi_1)

True

4C is sufficient for ϕ in the context of K and η iff ∀C′ ⊆ A : (C ⊆ C′) ⇒ [K † (η � C′) |= ϕ]. Note
thatK † (η � C) |= ϕ does not in general imply thatK † (η � C′) |= ϕ when C ⊆ C′ [4].
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5. Conclusions

In this paper we have described NORMC, a prototype model checker for Norm Com-
pliance CTL (NCCTL). NCCTL extends CTL with a family of modalities with update se-
mantics. We have also aimed to demonstrate that the Haskell programming language
is a natural and useful alternative for model checking; in particular that the full power
of Haskell makes it easy to describe arbitrary state-transition models in a natural way.
While NORMC has not been optimised for industrial use, we have seen that it is effi-
cient enough to be used on an interesting and non-trivial example. If higher efficiency is
needed, there are two natural options. The first is to extend NORMC with standard sym-
bolic model checking techniques such as binary decision diagrams (BDDs) and partial
order reduction. The other is to change NORMC into a front-end for an efficient existing
CTL model checker.
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