
Hierarchical Action Selection for
Reinforcement Learning in Infinite Mario

Mandar JOSHIa,1, Rakesh KHOBRAGADEa, Saurabh SARDAa, Umesh
DESHPANDEa and Shiwali MOHANb

a
 Visvesvaraya National Institute of Technology, Nagpur

b
 University of Michigan, Ann Arbor

Abstract. In this work, we analyze and improve upon reinforcement learning
techniques used to build agents that can learn to play Infinite Mario, an action
game. We use the object-oriented representation with the hierarchical RL model as
a learning framework. We then extend the idea of hierarchical RL by designing a
hierarchy in action selection using domain specific knowledge. Using
experimental results, we show that this approach facilitates faster and efficient
learning for the domain.

Keywords. hierarchical reinforcement learning, action games, Infinite Mario,
object-oriented representation, action selection.

Introduction

Action games are an interesting platform for research in artificial intelligence and
machine learning. They encourage quick decision making, as penalties are incurred if
the agent fails to finish the game quickly. Players have to often choose between
competing goals and make decisions that can give favorable long term rewards.

In this work, we concentrate on designing a reinforcement learning agent for a
variant of a popular action game, Super Mario Bros, called Infinite Mario. This domain,
like most action games, poses a challenge in the form of a very large search space (in
terms of time and memory).

Hierarchies are often employed to scale up traditional reinforcement learning
algorithms to complex environments. This is done by dividing a complex task into
simpler subtasks using well-formulated domain knowledge. We use an object-oriented
representation along with hierarchical RL as a learning framework for the Infinite
Mario domain. We then extend the idea, by designing a hierarchy in action selection as
well, using domain specific knowledge about the behaviour of game entities. Using
experimental results, we claim that this approach provides for a higher domain-specific
performance level as it brings about a reduction in both state and action spaces.

1 Corresponding Author: Mandar Joshi, E-mail: mandarjoshi.90@gmail.com

STAIRS 2012
K. Kersting and M. Toussaint (Eds.)
© 2012 The Authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-096-3-162

162

1. Related Work

For an extensive overview of RL related work, we refer to [1]. Several hierarchical
reinforcement learning (HRL) techniques have been developed e.g., MAXQ [2],
Options [3], HAMs [4]. A summary of work in HRL is given by [5]. The motivation
and scope for research in computer games is documented in [6]. Marthi et al. [7]
applied hierarchical RL to scale to complex environments where the agent has to
control several effectors simultaneously. They describe a concurrent partial
programming language for hierarchical reinforcement learning and use the language to
design an agent that learns navigation policies in a limited real-time strategy game.
Ponsen et al. [8] employed a deictic state representation that reduces the complexity
compared to a propositional representation and allows the adaptive agent to learn a
generalized policy, i.e., it is capable of transferring knowledge to unseen game
instances.

In the domain of action games, Diuk et al. [9] introduce Object-Oriented
representation that is based on interaction of game entities called objects. They show
that this representation results in performance gains in Pitfall, an action game. Mohan
and Laird [10] use this representation to propose a reinforcement learning framework
that gives promising results on a subset of game instances for the Infinite Mario
domain. Their approach aims at creating learning agents that begin with little or no
background knowledge about the game environment. In contrast, we use domain
specific knowledge to extend the object oriented representation by introducing the
concept of object classes, which play a major role in constraining the state space. We
also use domain specific knowledge to design a hierarchy in action selection. We
integrate this action selection hierarchy with the learning framework and show that this
approach gives better results in terms of the average final reward, as well as the time
required to learn the game playing task.

2. Problem Specification

Infinite Mario is a reinforcement learning domain developed for RL-competition, 2009
[11]. It is a complete side scrolling game with destructible blocks, coins, monsters, pits,
and raised platforms. The objective of the game is to maximize the total reward by
collecting coins and killing monsters on the way to the finish line. One run from the
starting point to the finish line (or to the point where Mario gets killed) is called as an
episode. If Mario reaches the finish line, the game restarts on the same level.

2.1. Environment

At any given time-step, the agent perceives the visual scene as a two-dimensional [16 x
22] matrix of tiles, where each tile can have 13 different values. The agent has access to
a character array generated by the environment corresponding to the given scene. The
domain also provides attributes like speed and position of the dynamic elements as
double precision arrays.

Each action is composed of three action classes – motion (left, right, stationary),
jump (yes, no), and speed (high, low). For each interaction with the entities in the
environment, the agent receives a reward.

M. Joshi et al. / Hierarchical Action Selection for Reinforcement Learning in Infinite Mario 163

The RL competition software is capable of generating several instances of the
game varying in difficulty level. As the difficulty level increases, interaction with game
elements becomes more complex, i.e., the agent has to deal with more entities of
different types. This makes decision making more difficult.

2.2. Challenges

� Large state space: One of the main challenges of the domain is a large and
continuous state space. As reinforcement learning uses the trial and error
paradigm, large state spaces are a major deterrent to the learning process. To
make learning tractable, some form of discretization and abstraction is required.
The learning framework, that uses the object-oriented representation combined
with hierarchical RL, enables the agent to constrain the state space and
facilitates effective learning.

� Action selection: At any time step, the visual scene is occupied by a large
number of objects and corresponding goals. The action selection problem,
given these multiple goals, is combinatorial in the number of objects and is
largely intractable. Additionally, some of the actions may be irrelevant or
useless in context of a particular goal. The hierarchy introduced in action
selection helps in constraining the action space.

2.3. Benchmark: Memory Agent

RL Competition, 2009 provides a sample learning agent which is used as a benchmark
for the proposed solution. The sample agent does not use any reinforcement learning
but learns through memorization. It stores the sequence of actions it takes as it moves
through the episode and uses this memory to take actions during the future trials. This
simple strategy enables the agent to learn quickly; however, the final reward obtained
by the agent is restricted by its limited exploration. Furthermore, the agent cannot
transfer its learning in between different levels of the game. An RL framework, on the
other hand, is capable of this transfer.

3. Agent Design

Our agent design is based on the object-oriented representation [9] integrated with the
hierarchical model of reinforcement learning. We also incorporate a hierarchy in action
selection into this framework to facilitate intelligent action selection.

3.1. State Representation

In [9], object oriented representation is used to model another video-game, Pitfall.
According to this representation, the environment can be described as a collection of
objects – entities that the agent can interact with and thus affecting the agent’s
behavior. For the Infinite Mario domain, the set of objects includes monsters, blocks,
coins, platforms, pits and pipes. An object is characterized by its attributes, e.g. an
instance of the object monster will have the (x and y components of the) distance of the

M. Joshi et al. / Hierarchical Action Selection for Reinforcement Learning in Infinite Mario164

monster from Mario, speed of the monster and its type as attributes. Mohan and Laird
also used a similar representation in their solution for the Infinite Mario domain in [10].

However, including all objects in the visual scene as a part of the state will result
in a large state table. As an extension to the object oriented representation, we divide
objects into various classes, and each class defines the range of inclusion of the object
instance in the state. This range is pre-programmed using domain-specific knowledge,
e.g., a monster’s range is larger than that of a coin or a question block, as monsters
pose a threat to Mario. The central idea behind using object classes is to exclude those
objects, which do not influence the agent’s immediate actions, from the state. The state
table in our approach is incremental, i.e. a state is added to the state table only when it
is encountered for the first time in the game.

3.2. Hierarchical RL

The basic idea behind hierarchical reinforcement learning is to divide a complex task
into a hierarchy of simpler subtasks. Each subtask can then be modeled as a single
Markov Decision Process. The game playing task is accomplished using combinations
of four subtasks, namely moveRight, grabCoin, tackleMonster and
searchQuestionBlock. Each subtask is initiated with respect to a specific object in the
state and spans over multiple one step actions.

Learning to carry out a subtask, therefore, involves identifying a set of primitive
actions that allow the agent to interact “successfully” with the selected object.
Termination criteria are defined separately for each subtask to identify successful
interaction. For example, the terminal state for tackleMonster subtask is reached when
the agent either kills or avoids the monster.

The state representation at the subtask level also uses object classes. The double
precision attributes are rounded off to the nearest integer. Thus, the state representation
at the lower (action) level of the hierarchy is more detailed as compared to that at the
higher (subtask) level.

3.3. Subtask Selection

After the state is created, the agent tries to select one of the objects in the state and
initiates an appropriate subtask. For example, if the agent selects a coin, it initiates the
grabCoin subtask to grab it. The object selection is done by learnt object selection
preferences, where a value is associated with each object in the state and this value
indicates the utility of selecting that object. The agent uses SARSA to update this value
after the termination of every subtask using the cumulative sum of rewards received
from the environment.

3.4. Action Selection

Once a subtask is selected, the first level of the action selection hierarchy uses
qualitative measures to reject irrelevant and useless actions corresponding to that
subtask. These measures are based on the characteristic properties and behavior of the
game entities. For example, in certain cases it might be possible to predict a collision

M. Joshi et al. / Hierarchical Action Selection for Reinforcement Learning in Infinite Mario 165

Figure 2. Performance of HRL Agent
at seed 121, level 1 at seed 121, level 0

Figure 1. Performance of HRL Agent

Memory Agent

HRL Agent

Number of Episodes

T
ot

al
 R

ew
ar

d

2500
-20

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

Memory Agent

HRL Agent

Number of Episodes

T
ot

al
 R

ew
ar

d

2500 -20

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000

The state for which the state distance is minimum and below a threshold value is the
nearest similar state. If no such state exists, a random action is selected.

3.5. Results

Figures 1 and 2 show the average performance of the proposed agent on difficulty level
0 and difficulty level 1 respectively, on seed 121. All results have been averaged over
10 trials of 2000 episodes each. Seed 121 of the game has been specifically chosen to
enable a comparison with the work presented in [10]. On both levels the agent is able to
converge to a policy, and gives a higher final reward as compared to the Memory
Agent. This improvement in performance is due to the fact that the proposed HRL
agent tries to explore the environment to maximize the total reward while the memory
agent mainly concentrates on survival.

While comparing with other RL agent designs, two performance measures can be
used – the average final reward, and the number of trials it takes the agent to converge
to a policy. On difficulty level 0, the average final reward obtained by the proposed
agent is close to 149.48 and the agent converges to a policy in about 300 episodes.
Thus, the proposed agent performs better than the agents in [10] in terms of both the
performance measures, on difficulty level 0. On difficulty level 1, the proposed agent
converges to a policy in about 1000 episodes and earns an average final reward of
127.64 while agents proposed in [10] failed to learn a good policy.

The improved performance can be attributed to the following reasons. The divison

between Mario and the game entities. Consider the case where a monster is very close
to Mario. Depending on the position and speed of the monster, the agent may rule out
certain actions (like remaining stationary) which might lead to a collision. Similar
reductions in action space can be done for other subtasks. Once this reduction is done,
the agent uses the learning framework to select an optimal action from the remaining
set of actions. Thus, action selection at the second level of the action selection
hierarchy is quantitative.

Additionally, whenever a new state is encountered, the action optimal for the
nearest similar state is selected. We find the nearest similar state as follows. A search
is made into the state table to find the set of all states which have the same entities as
the present state, j. For every member, i of this set the state distance from the present
state is calculated using

M. Joshi et al. / Hierarchical Action Selection for Reinforcement Learning in Infinite Mario166

of objects into classes helps in constraining the state space. The hierarchical RL model
introduces abstraction in state representation at higher levels while retaining the
benefits of a detailed state representation at lower levels. By exploiting the interplay
between high-level and low-level representations, the agent learns more efficiently and
more accurately. The hierarchy introduced in action selection facilitates intelligent
action selection. The reduction in action space allows the agent to learn quickly as has
fewer relevant actions to choose from.

4. Conclusion and Future Work

The Infinite Mario domain is characterized by continuous, enormous state-action
spaces and complex relationships between participating entities which encourage good
decision making. To learn near optimal policies, the ability of agents to constrain state
and action spaces is often crucial.

Through this work, we combine an object-oriented representation with hierarchical
reinforcement learning to bring about a reduction in state and action spaces in the
Mario domain. We also show that introducing a hierarchy in action selection in the
above framework improves performance.

A major limitation of this work is that the proposed agent is unable to transfer
previously acquired knowledge to identify optimal actions in related (but not
necessarily similar) states. We plan to study function approximation schemes that can
represent the states and actions as a combination of features. We are interested in
approaches that can represent domain knowledge as a feature of a state and not merely
as a tool for constraining action spaces.

References

[1] R. Sutton and A. Barto, Introduction to reinforcement learning, 1st Edition ed., MIT Press, 1998.
[2] T. G. Dietterich, "The MAXQ method for hierarchical reinforcement learning," in the Fifteenth

International Conference on Machine Learning, 1998.
[3] R. S. Sutton, D. Precup and S. Singh, "Between MDPs and semi-MDPs: a framework for temporal

abstraction in reinforcement learning," Artificial Intelligence, vol. 112, pp. 181-211, 1999.
[4] R. Parr and S. Russell, "Reinforcement learning with hierarchies of machines," in Advances in Neural

Information Processing Systems [NIPS-97], 1997.
[5] A. G. Barto and S. Mahadevan, "Recent advances in hierarchical reinforcement learning," in Discrete

Events Dynamic Systems: Theory and Applications, 2003.
[6] J. Laird and M. van Lent, "Human-Level AI's Killer Application: Interactive Computer Games," in the

Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative
Applications of Artificial Intelligence, 2000.

[7] B. Marthi, S. Russell, D. Latham and C. Guestrin, "Concurrent hierarchical reinforcement learning.," in
The 20th National Conference on Artificial Intelligence, 2005.

[8] M. Ponsen, P. Spronck and K. Tuyls, "Hierarchical reinforcement learning with diectic representation
in a computer game," in the 18th Belgium-Netherlands Conference on Artificial Intelligence, 2006.

[9] C. Diuk, A. Cohen and M. Littman, "An object oriented representation for efficient reinforcement
learning," in the 25th International Conference on Machine Learning, 2008.

[10] S. Mohan and J. Laird, "An object-oreiented approach to reinforcement learning in an action game," in
the 7th Artificial Intelligence for Interactive Digital Entertainment Conference, 2011.

[11] B. Tanner and A. White, "RL-Glue: Language-indepenent software for reinforcement learning
experiments," The Journal of Machine Learning Research, vol. 10, pp. 2133-2136, September 2009.

M. Joshi et al. / Hierarchical Action Selection for Reinforcement Learning in Infinite Mario 167

