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Abstract. In this work, we analyze and improve upon reinforcement learning 
techniques used to build agents that can learn to play Infinite Mario, an action 
game. We use the object-oriented representation with the hierarchical RL model as 
a learning framework. We then extend the idea of hierarchical RL by designing a 
hierarchy in action selection using domain specific knowledge. Using 
experimental results, we show that this approach facilitates faster and efficient 
learning for the domain.  
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Introduction 

Action games are an interesting platform for research in artificial intelligence and 
machine learning. They encourage quick decision making, as penalties are incurred if 
the agent fails to finish the game quickly. Players have to often choose between 
competing goals and make decisions that can give favorable long term rewards.  

In this work, we concentrate on designing a reinforcement learning agent for a 
variant of a popular action game, Super Mario Bros, called Infinite Mario. This domain, 
like most action games, poses a challenge in the form of a very large search space (in 
terms of time and memory).  

Hierarchies are often employed to scale up traditional reinforcement learning 
algorithms to complex environments. This is done by dividing a complex task into 
simpler subtasks using well-formulated domain knowledge. We use an object-oriented 
representation along with hierarchical RL as a learning framework for the Infinite 
Mario domain. We then extend the idea, by designing a hierarchy in action selection as 
well, using domain specific knowledge about the behaviour of game entities. Using 
experimental results, we claim that this approach provides for a higher domain-specific 
performance level as it brings about a reduction in both state and action spaces. 
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1. Related Work 

For an extensive overview of RL related work, we refer to [1]. Several hierarchical 
reinforcement learning (HRL) techniques have been developed e.g., MAXQ [2], 
Options [3], HAMs [4]. A summary of work in HRL is given by [5]. The motivation 
and scope for research in computer games is documented in [6]. Marthi et al. [7] 
applied hierarchical RL to scale to complex environments where the agent has to 
control several effectors simultaneously. They describe a concurrent partial 
programming language for hierarchical reinforcement learning and use the language to 
design an agent that learns navigation policies in a limited real-time strategy game. 
Ponsen et al. [8] employed a deictic state representation that reduces the complexity 
compared to a propositional representation and allows the adaptive agent to learn a 
generalized policy, i.e., it is capable of transferring knowledge to unseen game 
instances.  

In the domain of action games, Diuk et al. [9] introduce Object-Oriented 
representation that is based on interaction of game entities called objects. They show 
that this representation results in performance gains in Pitfall, an action game. Mohan 
and Laird [10] use this representation to propose a reinforcement learning framework 
that gives promising results on a subset of game instances for the Infinite Mario 
domain. Their approach aims at creating learning agents that begin with little or no 
background knowledge about the game environment. In contrast, we use domain 
specific knowledge to extend the object oriented representation by introducing the 
concept of object classes, which play a major role in constraining the state space. We 
also use domain specific knowledge to design a hierarchy in action selection. We 
integrate this action selection hierarchy with the learning framework and show that this 
approach gives better results in terms of the average final reward, as well as the time 
required to learn the game playing task.  

2. Problem Specification 

Infinite Mario is a reinforcement learning domain developed for RL-competition, 2009 
[11]. It is a complete side scrolling game with destructible blocks, coins, monsters, pits, 
and raised platforms. The objective of the game is to maximize the total reward by 
collecting coins and killing monsters on the way to the finish line. One run from the 
starting point to the finish line (or to the point where Mario gets killed) is called as an 
episode. If Mario reaches the finish line, the game restarts on the same level. 

2.1. Environment 

At any given time-step, the agent perceives the visual scene as a two-dimensional [16 x 
22] matrix of tiles, where each tile can have 13 different values. The agent has access to 
a character array generated by the environment corresponding to the given scene. The 
domain also provides attributes like speed and position of the dynamic elements as 
double precision arrays. 

Each action is composed of three action classes – motion (left, right, stationary), 
jump (yes, no), and speed (high, low). For each interaction with the entities in the 
environment, the agent receives a reward.  
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The RL competition software is capable of generating several instances of the 
game varying in difficulty level. As the difficulty level increases, interaction with game 
elements becomes more complex, i.e., the agent has to deal with more entities of 
different types. This makes decision making more difficult.  

2.2. Challenges 

� Large state space: One of the main challenges of the domain is a large and 
continuous state space. As reinforcement learning uses the trial and error 
paradigm, large state spaces are a major deterrent to the learning process. To 
make learning tractable, some form of discretization and abstraction is required. 
The learning framework, that uses the object-oriented representation combined 
with hierarchical RL, enables the agent to constrain the state space and 
facilitates effective learning. 

� Action selection: At any time step, the visual scene is occupied by a large 
number of objects and corresponding goals. The action selection problem, 
given these multiple goals, is combinatorial in the number of objects and is 
largely intractable. Additionally, some of the actions may be irrelevant or 
useless in context of a particular goal. The hierarchy introduced in action 
selection helps in constraining the action space. 

2.3. Benchmark: Memory Agent 

RL Competition, 2009 provides a sample learning agent which is used as a benchmark 
for the proposed solution. The sample agent does not use any reinforcement learning 
but learns through memorization. It stores the sequence of actions it takes as it moves 
through the episode and uses this memory to take actions during the future trials. This 
simple strategy enables the agent to learn quickly; however, the final reward obtained 
by the agent is restricted by its limited exploration. Furthermore, the agent cannot 
transfer its learning in between different levels of the game. An RL framework, on the 
other hand, is capable of this transfer. 

3. Agent Design 

Our agent design is based on the object-oriented representation [9] integrated with the 
hierarchical model of reinforcement learning. We also incorporate a hierarchy in action 
selection into this framework to facilitate intelligent action selection. 

3.1. State Representation 

In [9], object oriented representation is used to model another video-game, Pitfall. 
According to this representation, the environment can be described as a collection of 
objects – entities that the agent can interact with and thus affecting the agent’s 
behavior. For the Infinite Mario domain, the set of objects includes monsters, blocks, 
coins, platforms, pits and pipes. An object is characterized by its attributes, e.g. an 
instance of the object monster will have the (x and y components of the) distance of the 
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monster from Mario, speed of the monster and its type as attributes. Mohan and Laird 
also used a similar representation in their solution for the Infinite Mario domain in [10]. 

However, including all objects in the visual scene as a part of the state will result 
in a large state table. As an extension to the object oriented representation, we divide 
objects into various classes, and each class defines the range of inclusion of the object 
instance in the state. This range is pre-programmed using domain-specific knowledge, 
e.g., a monster’s range is larger than that of a coin or a question block, as monsters 
pose a threat to Mario. The central idea behind using object classes is to exclude those 
objects, which do not influence the agent’s immediate actions, from the state. The state 
table in our approach is incremental, i.e. a state is added to the state table only when it 
is encountered for the first time in the game. 

3.2. Hierarchical RL 

The basic idea behind hierarchical reinforcement learning is to divide a complex task 
into a hierarchy of simpler subtasks. Each subtask can then be modeled as a single 
Markov Decision Process. The game playing task is accomplished using combinations 
of four subtasks, namely moveRight, grabCoin, tackleMonster and 
searchQuestionBlock. Each subtask is initiated with respect to a specific object in the 
state and spans over multiple one step actions.  

Learning to carry out a subtask, therefore, involves identifying a set of primitive 
actions that allow the agent to interact “successfully” with the selected object. 
Termination criteria are defined separately for each subtask to identify successful 
interaction. For example, the terminal state for tackleMonster subtask is reached when 
the agent either kills or avoids the monster. 

The state representation at the subtask level also uses object classes. The double 
precision attributes are rounded off to the nearest integer. Thus, the state representation 
at the lower (action) level of the hierarchy is more detailed as compared to that at the 
higher (subtask) level. 

 

3.3. Subtask Selection 

After the state is created, the agent tries to select one of the objects in the state and 
initiates an appropriate subtask. For example, if the agent selects a coin, it initiates the 
grabCoin subtask to grab it. The object selection is done by learnt object selection 
preferences, where a value is associated with each object in the state and this value 
indicates the utility of selecting that object. The agent uses SARSA to update this value 
after the termination of every subtask using the cumulative sum of rewards received 
from the environment. 

 

3.4. Action Selection 

Once a subtask is selected, the first level of the action selection hierarchy uses 
qualitative measures to reject irrelevant and useless actions corresponding to that 
subtask. These measures are based on the characteristic properties and behavior of the 
game entities.  For example, in certain cases it might be possible to predict a collision 
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Figure 2. Performance of HRL Agent 
at seed 121, level 1 at seed 121, level 0 

Figure 1. Performance of HRL Agent 
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The state for which the state distance is minimum and below a threshold value is the 
nearest similar state. If no such state exists, a random action is selected. 

3.5. Results 

Figures 1 and 2 show the average performance of the proposed agent on difficulty level 
0 and difficulty level 1 respectively, on seed 121. All results have been averaged over 
10 trials of 2000 episodes each. Seed 121 of the game has been specifically chosen to 
enable a comparison with the work presented in [10]. On both levels the agent is able to 
converge to a policy, and gives a higher final reward as compared to the Memory 
Agent. This improvement in performance is due to the fact that the proposed HRL 
agent tries to explore the environment to maximize the total reward while the memory 
agent mainly concentrates on survival. 

While comparing with other RL agent designs, two performance measures can be 
used – the average final reward, and the number of trials it takes the agent to converge 
to a policy. On difficulty level 0, the average final reward obtained by the proposed 
agent is close to 149.48 and the agent converges to a policy in about 300 episodes. 
Thus, the proposed agent performs better than the agents in [10] in terms of both the 
performance measures, on difficulty level 0. On difficulty level 1, the proposed agent 
converges to a policy in about 1000 episodes and earns an average final reward of 
127.64 while agents proposed in [10] failed to learn a good policy. 

The improved performance can be attributed to the following reasons. The divison 

 

between Mario and the game entities. Consider the case where a monster is very close 
to Mario. Depending on the position and speed of the monster, the agent may rule out 
certain actions (like remaining stationary) which might lead to a collision. Similar 
reductions in action space can be done for other subtasks. Once this reduction is done, 
the agent uses the learning framework to select an optimal action from the remaining 
set of actions. Thus, action selection at the second level of the action selection 
hierarchy is quantitative. 

Additionally, whenever a new state is encountered, the action optimal for the 
nearest similar state is selected. We find the nearest similar state as follows. A search 
is made into the state table to find the set of all states which have the same entities as 
the present state, j. For every member, i of this set the state distance from the present 
state is calculated using 

 

M. Joshi et al. / Hierarchical Action Selection for Reinforcement Learning in Infinite Mario166



of objects into classes helps in constraining the state space. The hierarchical RL model 
introduces abstraction in state representation at higher levels while retaining the 
benefits of a detailed state representation at lower levels. By exploiting the interplay 
between high-level and low-level representations, the agent learns more efficiently and 
more accurately. The hierarchy introduced in action selection facilitates intelligent 
action selection. The reduction in action space allows the agent to learn quickly as has 
fewer relevant actions to choose from. 

4. Conclusion and Future Work 

The Infinite Mario domain is characterized by continuous, enormous state-action 
spaces and complex relationships between participating entities which encourage good 
decision making. To learn near optimal policies, the ability of agents to constrain state 
and action spaces is often crucial. 

Through this work, we combine an object-oriented representation with hierarchical 
reinforcement learning to bring about a reduction in state and action spaces in the 
Mario domain. We also show that introducing a hierarchy in action selection in the 
above framework improves performance.  

A major limitation of this work is that the proposed agent is unable to transfer 
previously acquired knowledge to identify optimal actions in related (but not 
necessarily similar) states. We plan to study function approximation schemes that can 
represent the states and actions as a combination of features. We are interested in 
approaches that can represent domain knowledge as a feature of a state and not merely 
as a tool for constraining action spaces. 
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