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Abstract. Automated negotiation is especially important when tasks, which require

many resources, enter a Grid where resources are scarce. The level of resource

scarcity dynamically changes in a Grid and the client’s negotiation strategy has to

adapt to this dynamism. In addition, we consider the non-transparency of a Grid

with respect to a client. That is, a client is only able to observe proposals sent to it

by the Grid resource allocator (GRA) but it does not have direct knowledge about

availability of Grid resources. In our work, the client’s strategy is to estimate the

dynamism in a Grid by inferring the criteria influencing the GRA’s proposals, and

to adapt to this dynamism using fuzzy control rules. These rules define whether

the client has to make smaller or larger concessions towards the GRA considering

Grid dynamism. The simulation results show that a client who applies our adaptive

negotiation strategy can obtain higher utility and significantly reduce the number of

failed negotiations comparing to a client who applies the non-adaptive negotiation

strategy.
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adaptive strategy

1. Introduction

Increasingly large amounts of computing resources are required to execute large-scale

resource demanding tasks. For example, Ghanem et al. [1] state that current air pollu-

tion sensors can produce data every two seconds, with approximately 8GB of data per

sensor per day. However, in reality, it is not possible to process an unbounded amount

of data because the resources are bounded in terms of their capacity and operating time.

A Grid environment can be suitable for the effective processing of such data streams, as

it may possess more processing power than a single supercomputer, cluster or worksta-

tion. Moreover, the sources of such data streams can be geographically distributed and a

Grid allows processing them in a distributed way [2]. Although recent work [2,3] shows

good performance, it does not fully take into account preferences and requirements of a

client and resource provider when they allocate resources to execute these tasks, apply-

ing matching algorithms that adjust to client requirements and the amount of available
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resources, which can lead to delays and inaccuracy of processing these tasks in the case

of high dynamism and resource scarcity in the Grid. Here, automated negotiation can

facilitate better matching of preferences and requirements between clients and resource

providers.

In our scenario, we consider a bilateral negotiation in the non-commercial Grid

where a Grid resource allocator (GRA) negotiates with a client over resources to perform

the client’s tasks. The GRA is assumed to have full knowledge of resources in the Grid,

but incomplete knowledge of clients (e.g. their utility functions). It acts on behalf of all

resource providers in negotiation with clients where the resource providers are organisa-

tions or private users. The GRA and client are considered to be autonomous agents [4,5]

which act on behalf of human users. We assume that the clients are self-oriented, i.e.

they aim to obtain optimal resources for their own tasks, but they do not care about other

clients’ tasks. Considering the situation when resources are scarce and highly dynamic,

we assume that the GRA aims to provide resources to those clients who need them the

most. We believe that the clients who are more conceding with respect to the GRA need

resources the most. These clients can obtain resources faster and avoid the situation when

resources are exhausted. In a highly dynamic and large-scale Grid, information about re-

source availability and demand may not be available for the clients (or it may be too un-

certain). Therefore, we assume that the clients are not aware of resource dynamism in the

Grid, i.e. the Grid is considered to be non-transparent in respect to the clients. Moreover,

the GRA does not intend to disclose its negotiation parameters (e.g. reservation value,

the deadline of negotiation) because it aims to persuade clients to be more conceding in

the case of resource scarcity.

A central argument of this paper, and one that informs our negotiation strategy, is

that changes in the opponent’s preferences (negotiation parameters) have to be not only

learned (observed), but the reasons for those changes have to be taken into consideration

by a client. The contribution of our paper is a client’s negotiation strategy for a single

negotiation which adapts to the Grid dynamism considering

• the Grid resources can be exhausted during negotiation;

• the Grid resources are scarce and highly dynamic;

• the client does not have certain knowledge about Grid dynamism;

• the client is not aware of the GRA’s negotiation parameters.

This paper is organised as follows. The related work is discussed in Section 2, the

formal model is described in Section 3, our adaptive negotiation strategy is presented in

Section 4, the experimental results are discussed in Section 5, and the conclusions and

future work are summarised in Section 6.

2. Related Work

Much research has been conducted in the field of automated negotiation in the Grid and

related fields (e.g. e-commerce). Some is mostly focused on mechanisms of resource

allocation (scheduling or load balancing) [6–8], while our primary interest lies in the

negotiation strategies that can be applied by a client (buyer) to benefit from negotiation

[9–17]. Many authors state that the dynamism of environment in the Grid, e-marketplace,

etc. has to be taken into account by a negotiator to find the better outcome. Much work
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[9,13,18–24] proposes negotiation strategies that adapt to the environment’s dynamism,

opponent’s behaviour, etc. with incomplete (uncertain) information.

Narayanan and Jennings [13] assume that agents (buyer/seller) are not aware of their

opponent’s negotiation parameters (i.e. deadline of negotiation and reservation value),

but they also assume that they have probabilistic knowledge about the transition of envi-

ronment from one state to another. This probability varies over time because of the en-

vironment’s dynamism. In the extended work of Narayanan and Jennings [22], the agent

does not have a probabilistic knowledge about the environment’s dynamism, but it has

a specific number of hypotheses about the distribution of probabilities of the possible

changes in the opponent’s strategy which are updated during negotiation. Although their

learning algorithm allows the agent to calculate the optimal payoff in a reasonable time

with incomplete knowledge about the opponent, it depends on the successful negotiations

which number could be insufficient if resources can be exhausted during negotiation (i.e.

negotiation fails).

Sim et al. [16] propose the learning algorithm which allows an agent to estimate

opponent’s reservation value (price). Authors also describe a mechanism of estimation of

the opponent’s negotiation deadline considering opponent’s proposals and the estimated

reservation price. This work has been improved by Gwak and Sim [11] in respect to

the learning algorithm. However, both these papers do not focus on the issue of high

dynamism of the opponent’s reservation value and its impact on the agent’s estimations.

They also do not take into account that resources can be exhausted during negotiation.

Hindriks et al. [18, 19] consider the situation when the opponent’s preferences are

not available for an agent. The authors propose an algorithm which enables the agent

to learn the opponent’s preferences in terms of the values of negotiated issues and the

importance of each issue. Although this work proposes the comprehensive framework

for modelling the opponent’s preferences for multiple issues during a single negotiation,

it does not explicitly focus on connection between the dynamism of environment and the

opponent’s behaviour. However, this connection can be relevant in the specific situation,

e.g. the greedy (selfish) behaviour of the GRA can be caused by the level of resource

scarcity, but not its own intentions to be “greedy” in respect of the clients.

Sim [14, 15] describes the Market-Driven Agent (MDA) which considers multiple

trading partners, multiple competitors and time constraints. Ren et al. [23] extend the

MDA to enable it working in the open and dynamic environments with the uncertain

outside options. The outside options denote the possible trading partners which enter or

may enter the e-market. Ren et al. assume that at most n trading partners (and m com-

petitors) may join or leave the e-market in the next round of negotiation. However, the

number of resources or clients which may join or leave the Grid is not usually bounded

or predictable. Therefore, these estimations may not be applicable for the Grid.

An et al. [9] propose the heuristic-based negotiation strategies for one-to-many nego-

tiation with an effective commitment/decommitment mechanism. In general, this mecha-

nism implies that the agents are able to make tentative agreements with their opponents

as well as to break these agreements with a penalty fee if the more profitable agree-

ment was made. Although An et al. assume incomplete knowledge, the number of trad-

ing partners and competitors, and the distribution of the reservation value (price) of the

trading partners are known to the agent. In this paper, we aim to solve the problem of re-

source scarcity and non-transparency of the Grid in the case of high resource dynamism

estimating the criteria which affect the GRA’s behaviour.
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3. Formal Model

3.1. Tasks and Utility Function

In our model, a client aims to perform N tasks in the Grid. A task is the specification of

an executable (piece of software)2 that describes how this executable must be run in the

Grid. That is, each task Taski comprises the name of the executable Namei, the minimum

resource Rmin
i and the optimal resource R

opt
i required to run this executable. The client

requires only one type of Grid resources for each executable, e.g. CPU time. That is, the

task is described as:

Taski =
(
Namei,R

min
i ,Ropt

i

)
, Rmin

i ,Ropt
i ∈ R, (1)

We assume that the acceptable resource range
[
Rmin

i ,Ropt
i

]
can be different for dif-

ferent executables but the deadline of negotiation tCl
dl for these executables is the same

for all, but is not submitted to the GRA. In this way, the client tries to avoid the situation

when the GRA might persuade the client to concede because the client’s deadline is ap-

proaching. All tasks are embedded in one job Job = {Task1, ...,Taski, ...,TaskN} which

is submitted to the GRA. We assume that the client submits only one job to the Grid. The

failure of negotiation is considered as the worst outcome for the client when it gains 0

utility. The client gains utility Ui which is between 0 and 1 for task i if this task obtains

resource Ri from the acceptable range
[
Rmin

i ,Ropt
i

]
, i.e. Ui : Ri → [0,1]. Consequently,

the closer Ri is to R
opt
i , the higher the client utility. We also assume that the client gains

utility Ui > 0 if Ri = Rmin
i , and the client gains utility Ui = 1 if Ri ≥ R

opt
i . The degree of

non-linearity ξ of the utility is defined by the client and it is considered the same for all

tasks, i.e. the tasks are homogeneous.

For example, assume the tasks that process climate data within a building depend

on the dimensions of a particular room in terms of the amount of resources. However,

these tasks are homogeneous in terms of their objectives, i.e. the processing of climate

data. The utility function Ui for each task increases according to ξ , starting from utility

kξ when Ri = Rmin
i , towards the utility 1 when Ui = R

opt
i . The minimum utility which

can be gained by a client for task i if negotiation was successful is equal to kξ and it is

considered the same for all tasks. Consequently, the utility for task i is presented as:

Ui =

⎧⎪⎪⎨
⎪⎪⎩

0, Ri < Rmin
i ;(

(1−k)×Ri+k×R
opt
i −Rmin

i

R
opt
i −Rmin

i

)ξ

, Rmin
i ≤ Ri < R

opt
i ;

1, Ri ≥ R
opt
i ,

(2)

The aggregated client utility UClient for N tasks is presented as the normalised sum

of N utilities gained by the client.

UClient =
1

N

N

∑
i=1

Ui. (3)

2For instance, the executable may comprise code to perform a statistical analysis of data streams.
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3.2. Proposals and Negotiation Protocol

A proposal denotes a message sent from one agent to another, containing an offered

resource for a particular task. The proposal Pri comprises the name of the corresponding

executable Namei (i is the identifier of the corresponding task) and the offered resource

Ri.

Pri = (Namei,Ri) , Ri ∈ R. (4)

A set of proposals denotes S = {Pr1, ...,Pri, ...,PrN} for all tasks in one job. If the

proposal is accepted, the offered resource Ri in Eq. (4) is substituted with the token “AC-

CEPT”. If the proposal is rejected (i.e. the deadline is reached or the resources are ex-

hausted), the offered resource Ri in Eq. (4) is substituted with the token “REJECT”. The

negotiation finishes when the proposals for all tasks were accepted or rejected. In our

work, we adopt the alternating proposals protocol [25] in which the pair of negotiators

exchange proposals in turns. Each negotiator may accept the opponent’s proposal, gener-

ate the counter-proposal or reject the opponent’s proposal without generating a counter-

proposal. That is, the last option means that the negotiator quits negotiation.

4. Adaptive Negotiation Strategy

Negotiation usually has a time constraint, e.g. a client has to launch its tasks in a reason-

able period of time. Therefore, a client and the GRA adopt a time-dependent negotiation

strategy [10] in which a value of the proposed resource depends on the approaching ne-

gotiation deadline. The negotiation starts at t0 and then a client and the GRA exchange

their proposals each round of negotiation j which is initiated each time unit t. If the ne-

gotiator’s deadline is reached, it proposes its reservation value. The reservation value is a

minimum resource for a client and maximum resource for the GRA which they are will-

ing to accept. A negotiation finishes when the deadline of a client tCl
dl or the GRA tGRA

dl

is reached, or resources are exhausted. The negotiation deadline denotes the maximum

possible number of time units in which the negotiation can continue.

Both the negotiators have their own negotiation intervals for each task. That is, a

client starts negotiation from an optimal resource within its interval and then it moves

towards its minimum resource, while the GRA starts from its minimum resource and

moves towards its maximum resource during negotiation. The client’s negotiation in-

terval is
[
R

opt
i ,Rmin

i

]
for each task i (see Eq. (1)), while the GRA’s negotiation inter-

val
[
Gmin

i ,Gmax
i

]
is considered to be within the client’s interval, i.e. Gmin

i ≥ Rmin
i and

Gmax
i ≤ R

opt
i . These constraints are based on the two corresponding assumptions, that is

the GRA has no reason to offer a resource that cannot be accepted by the client nor a

resource that is larger than the client’s optimal resource because of resource scarcity.

The time-dependent strategy [10] comprises three time-dependent tactics which are

determined by the coefficient βCl
i, j for the client and β GRA

i, j for the GRA. These coeffi-

cients can be different for each particular task i and they can be changed in any negoti-

ation round j. Considering that the client proposes resource RCl
i, j and the GRA proposes

resource RGRA
i, j , the time-dependent strategies for the client and the GRA are presented

as:
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RCl
i, j = R

opt
i +

(
t− t0

tCl
dl

)βCl
i, j

×
(
Rmin

i −R
opt
i

)
. (5)

RGRA
i, j = Gmin

i +

(
t− t0

tGRA
dl

)β GRA
i, j

×
(
Gmax

i, j −Gmin
i

)
. (6)

In Eqs. (5) and (6), βCl
i, j > 1 denotes greedy tactic, i.e. the client makes larger con-

cessions when its negotiation deadline is approaching, comparing to the earlier negotia-

tion rounds; 0 < βCl
i, j < 1 denotes generous tactic, i.e. the client makes smaller conces-

sions when its negotiation deadline is approaching, comparing to the earlier negotiation

rounds; and βCl
i, j = 1 denotes indifferent tactic, i.e. the client makes the same concessions

during negotiation (the same tactics are applied by the GRA). We assume that the GRA’s

reservation resource Gmax
i, j decreases and its tactic β GRA

i, j becomes less generous when the

amount of available resources decreases and vice versa. Consequently, the GRA’s reser-

vation resource and tactic can vary from one round to another, while the client changes

only its tactic βCl
i, j to adapt to the GRA’s dynamism.

4.1. Client’s Estimation of Grid Dynamism

We assume that a client does not have certain knowledge of the GRA’s reservation value

and tactic. Consequently, a client is only able to observe the GRA’s proposals and it must

make a decision based on these proposals. We described a mechanism which allows the

client to estimate the GRA’s tactic and the change of its reservation resource on the next

negotiation round after these parameters were changed, i.e. during the two rounds of

negotiation.

In general, the estimation of the GRA’s tactic is based on the increment between

the GRA’s offered resource in the previous and current rounds of negotiation [11]. For

instance, this increment rises slowly if the GRA applies a greedy tactic and it rises fast

if the GRA applies a generous tactic in the early negotiation rounds. Consequently, the

increment does not change from round to round if the GRA applies an indifferent tactic.

We consider that the client knows the current GRA proposal RGRA
i, j , the previous GRA

proposal RGRA
i, j−1 and the first GRA proposal Gmin

i . In this way, it compares the increments

of the previous and the current GRA’s proposals in respect to the first GRA’s proposal.

Applying Eq. (6) for the rounds j and j−1, the GRA’s tactic for task i in round j can be

estimated as:

β GRA
i, j = ln

(
RGRA

i, j −Gmin
i

RGRA
i, j−1−Gmin

i

)
/ ln

(
j

j−1

)
. (7)

However, this estimation has a limitation, i.e. it is not applicable when the GRA’s

tactic changes in the current negotiation round because the increments RGRA
i, j −Gmin

i and

RGRA
i, j−1−Gmin

i are not comparable in this case. When the GRA’s tactic is estimated, a client

can use Eq. (7) to predict the GRA’s proposed resource in the next round of negotiation

R
pred
i, j+1. If the actual GRA proposal RGRA

i, j+1 in round j + 1 is significantly different from

the predicted R
pred
i, j+1, the client assumes that the GRA’s tactic and reservation resource

were changed. In this case, a client aims to estimate the change of the GRA’s reservation
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resource because this value explicitly reflects the change of the resource availability. That

is, the GRA’s reservation resource is the maximum resource which a client might obtain.

According to Eq. (7), the client has to know in which round the GRA offers its reser-

vation resource to estimate its increment in respect to Gmin
i , i.e. it has to know the GRA’s

negotiation deadline. In our current work, the client assumes that the GRA’s deadline is

equal to its own deadline. In this way, if negotiation round k is the round when the GRA

offers its reservation resource, then k = tCl
dl . Consequently, our estimation of the change

of the GRA’s reservation resource is limited to the case when the GRA’s and client’s

deadlines are equal (or the GRA’s deadline is known to the client). According to Eq. (7),

a client is able to estimate the expected increment R
pred
i,k −Gmin

i (where R
pred
i,k = Gmax

i,k )

of the GRA’s reservation resource in the next negotiation round. A client is also able

to estimate the actual increment RGRA
i,k −Gmin

i (where RGRA
i,k = Gmax′

i,k ) in that round when

the GRA’s reservation resource was changed. Then, the ratio of these two increments is

calculated as described in Eq. (8).

RGRA
i,k −Gmin

i

R
pred
i,k −Gmin

i

=

(
k

j+1

)β GRA
i, j+1−β

pred
i, j+1

×

(
RGRA

i, j+1−Gmin
i

R
pred
i, j+1−Gmin

i

)
, (8)

where β pred
i, j+1 and β GRA

i, j+1 are the expected and actual GRA’s tactics in round j + 1.

We also can describe the estimation in Eq. (8) in percentage δi, j+1 comparing it to this

estimation in the previous round j when the GRA’s reservation resource was not changed.

δi, j+1 =

(
Gmax′

i,k −Gmin
i

Gmax
i,k −Gmin

i

−1

)
×100%. (9)

4.2. Client’s Adaptation to Dynamism

The client has to adapt to the Grid dynamism based on the intuition which is outlined

by Narayanan and Jennings [13]. If resources become more scarce (i.e. the GRA’s reser-

vation resource decreases), then the client becomes more generous towards the GRA to

avoid a failure of negotiation. If resources become less scarce (i.e. the GRA’s reservation

resource increases), then the client becomes less generous towards the GRA aiming to

reach a better agreement. However, the estimation of the change of the GRA’s reserva-

tion resource (see Eq. (8)) is not precise leading to the uncertainty of the client about this

change. Therefore, the client judges the change of resource availability in fuzzy terms,

i.e. it has a particular level of confidence that the GRA’s reservation resource was sig-

nificantly decreased or increased. Consequently, the client cannot be certain which tactic

can be considered “less” or “more” generous in respect to this change of resource avail-

ability. Therefore, we use fuzzy logic to deal with this client’s evaluation. Assume that X

is a non-fuzzy set in which x is a generic element of this set [26, 27]. A fuzzy set A is

the subset of X which is defined (‘characterised’) by a membership function μA (x). This

function denotes the degree of membership of x in A and μA (x) : x ∈ X → [0,1].
In our work, a fuzzy mechanism consists of the three stages: fuzzification, inference

and defuzzification. In the fuzzification stage, the two input parameters δi, j and βCl
i, j are

fuzzified, i.e. their degree of memberships are calculated for the corresponding fuzzy sets

(see Figure 1). Three fuzzy sets are designed for δi, j which denote decrease “D”, zero

“Z” and increase “I”. In Figure 1(a), “D” and “I” show the client’s level of confidence
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Figure 1. Input membership functions for (a) δi, j and (b) βCl
i, j .

that the GRA’s reservation resource is significantly changed and “Z” shows that it is

not significantly changed. That is, the x− axis depicts the value of δi, j and the y− axis

depicts its degree of membership. In Figure 1(b), we demonstrate three fuzzy sets for the

client’s tactic βCl
i, j , i.e. generous “GEN”, indifferent “IND” and greedy “GR”. Each of

these sets denotes the client’s level of confidence that its tactic belongs to the one of the

corresponding tactics when the change of resource availability is uncertain for the client.

The x−axis depicts the value of βCl
i, j and the y−axis depicts its degree of membership.

The output of the client’s deliberation should be a percentage η that its current value

of βCl
i, j should change to avoid failure of negotiation and/or improve client utility. That

is, βCl′

i, j = βCl
i, j ×

(
1+ η%

100%

)
where βCl′

i, j is the modified client’s tactic. We believe that in

highly dynamic Grid environments, the client does not have enough information to esti-

mate the precise relations between input parameters (resource availability, client’s tactic)

and output parameter (change of client’s tactic). Moreover, different Grid environments

may have a different effect on η because of the different characteristics. Therefore, we

designed the client’s output in fuzzy terms where the output membership function (see

Figure 2) shows the client’s level of confidence that its tactic has to be changed in a

particular way (e.g. “medium increase”). We also believe that the small fluctuations of

resources should not affect client’s tactic significantly because the risk of resource ex-

haustion is uncertain. We described five fuzzy sets, i.e. large decrease “LD”, medium de-

crease “MD”, small change “SC”, medium increase “MI” and large increase “LI” which

intuitively denote the level of the client’s tactic change.

In the inference stage, fuzzy control rules connect the fuzzified input values and the

output fuzzy value. For example, if δi, j is decreased (D) and βCl
i, j is greedy (GR), then

βCl
i, j has to be “large decreased” (LD). These control rules are (i) if D and GEN then MD;

(ii) if D and IND then MD; (iii) if D and GR then LD; (iv) if Z and GEN then SC; (v) if

Z and IND then SC; (vi) if Z and GR then SC; (vii) if I and GEN then LI; (viii) if I and

IND then MI; (ix) if I and GR then MI. These control rules correspond to the intuition

of client adaptation to the dynamism which are mentioned above in this section. If the

value of βCl
i, j decreases (i.e. “MD” and “LD”), it means that the client becomes more

generous for the cases when the resource availability decreases (“D”). If the value of βCl
i, j

increases (“MI” and “LI”), it means that the client becomes less generous for the cases

when the resource availability increases (“I”). If the resource availability was not changed
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Figure 2. Output membership functions for η%.

significantly (“Z”), the value of βCl
i, j also does not change significantly (“SC”). We apply

Mamdani’s Min-Max inference method [26] because it is computationally effective for

the small number of control rules (we have 9 fuzzy control rules). As a result of the

inference stage, the output membership function for η% is truncated, i.e. the area where

the output crisp value can lie becomes more narrow. In the defuzzification stage, we

calculate a crisp value of η% by applying the conventional centre of gravity method

(COG) mentioned in Runkler and Glesner [28] which is compatible with the Mamdani’s

type of fuzzy controllers. Consequently, the resulting η% is the centroid of area of the

truncated output membership function. A client applies this fuzzy mechanism each round

of negotiation to generate a counter-proposal.

5. Evaluation

We evaluate our adaptive negotiation strategy in comparison with non-adaptive negotia-

tion strategy in which a client’s tactic does not respond to the Grid dynamism. In contrast,

our negotiation strategy adapts to the dynamism by estimating changes in the GRA’s

negotiation parameters. To evaluate the effectiveness of our strategy, we calculated the

average client utilities and the average number of failed negotiations for 100 tasks over

100 runs (see Figure 3). Each negotiation took 100 rounds and the initial tactics for the

client and GRA were assumed to be indifferent (see Eq. (5)). We also consider only linear

client utility function in our current experiments.

To test our strategy, we tried to determine how our strategy works in the case of the

more or less random Grid dynamism. In Figures 3 and 4, the probability of tendency

denotes that the next change (increase/decrease) of the amount of available resources

is in the same direction (positive/negative) as the previous change. Consequently, if the

probability is 1, it means that each next change of the resource availability will be the

same by direction (not by value) as its previous change. This case denotes the strongest

tendency in the Grid dynamism and a probability of 0 denotes the highest randomness

(opposite to the tendency) in the Grid dynamism. The GRA’s reservation resource and

tactic that reflect the dynamism of the resource availability are generated randomly for

each task and can vary from task to task. We also assume that the GRA’s reservation

resource may increase or decrease per negotiation round by at most 5% of the client’s

optimal resource for the task.
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Figure 3. The experiment where approximately half of the tasks may fail to obtain resources.
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Figure 4. The experiment where approximately all tasks may fail to obtain resources.

Our negotiation strategy aims to avoid failure when resources are exhausted. There-

fore, we conducted an experiment in which approximately half of the tasks may fail to

obtain resources (see Figure 3) and another in which approximately all tasks may fail to

obtain resources (see Figure 4) for the different levels of tendency in the Grid. In both

experiments, our adaptive negotiation strategy significantly reduces the number of failed

negotiations in comparison with the non-adaptive strategy. The “Maximum” labels in

Figures 3 and 4 denote the maximum possible number of tasks which may fail to obtain

resources because resources have been exhausted. It has to be noted that our strategy

shows significantly better utility than the non-adaptive one in the cases of the stronger

tendency. However, in the cases of the higher randomness, our strategy does not show

improvements in utility compared to the non-adaptive one. Intuitively, it is not possible

to adapt to random dynamism. In the adaptive strategy, the client becomes more gen-

erous when resources decrease and less generous when resources increase. If the client

becomes less generous and then more generous, its tactic will be close to the indifferent

one which is applied by the non-adaptive client. Therefore, the adaptive client utility is

close to the non-adaptive client utility for these cases.

The significant difference between two experiments mentioned above is observed for

the cases of stronger tendency of the dynamism, i.e. when the probability of the tendency

lies in the interval from 1 to 0.6. The client utility for the adaptive strategy in Figure

3 tends to decrease, while this utility in Figure 4 tends to increase during the interval
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mentioned above. In the second experiment, the client utility for the adaptive strategy is

significantly lower than in the first experiment because the number of failed negotiations

is significantly higher. Moreover, the client utility for the probability of tendency, which

is equal to 1, rapidly decreases or increases compared to all other tendencies in both

experiments. This is because this case is more influenced by the decrease or increase

of resources than all other cases. In summary, the advantage of our adaptive negotiation

strategy is that it significantly reduces the number of failed negotiations and improves

client utility for those cases when the dynamism is less random.

6. Conclusions and Future Work

In this paper we introduced our adaptive negotiation strategy for a client to negotiate

with the Grid resource allocator (GRA) about resources for multiple tasks. That is, our

strategy adapts to the high dynamism in the Grid by estimating the GRA’s reservation

resource and tactic in the case of ignorance of Grid dynamism. The adaptation is imple-

mented with fuzzy control rules which specify whether the client should become less or

more generous in respect to the GRA. We evaluated our adaptive strategy for the differ-

ent tendencies of the Grid dynamism (increase/decrease of resources) in terms of client

utility and the number of failed negotiations. We also compared our strategy to a non-

adaptive one which does not change its tactic in response to the Grid dynamism. The

simulation results show that our strategy outperforms the non-adaptive one with respect

to the client utility and the number of successful negotiations for the cases of less random

dynamism. In cases of more random dynamism, our strategy still shows better result in

terms of the number of successful negotiations. In our future work, we intend to improve

our strategy in terms of learning the tendency (direction) and speed (value per round) of

Grid dynamism and compare it to alternative adaptive negotiation strategies. We also aim

to allow a client to estimate its opponent’s deadline of negotiation. Moreover, we intend

to focus not only on resource intensive tasks, but on tasks which have to be processed

continuously.
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