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Abstract. Adding reasoning abilities to context-aware systems has been a focus of
research in pervasive computing for several years and a broad range of approaches
has been suggested. In particular, the well-known trade-off between expressivity
and inferential power has been discussed as a major concern, as dimensions of con-
text include well-known hard domains, such as spatial, temporal, and causal knowl-
edge. In practice however, experiments report acceptable run-times and complexity
of the used reasoning mechanism does not seem to be an issue at all. Two ques-
tions are addressed in this paper: why this is the case and whether these positive
results will scale up as context-aware systems are leaving their experimental envi-
ronments, are extended and modified by application developers, and employed in
everyday life by millions of end-users.

The paper presents an analysis of results from pervasive computing, qualitative
spatial and temporal reasoning, and logic-based contextual reasoning. The goal was
to carve out the theoretical core of fast contextual reasoning reported from exper-
imental context-aware systems, and to discuss how these good properties can be
made to scale up. The findings suggest that partial order reasoning is the core of
tractable contextual reasoning. Examples illustrate the surprisingly high expres-
siveness and inferential power, and serve to emphasize the interrelations between
tractable reasoning in pervasive computing, qualitative spatial and temporal reason-
ing, and logic-based contextual reasoning.
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Introduction

Adding reasoning abilities to context-aware systems has been a focus of research in per-
vasive computing for several years and a broad range of approaches has been suggested.
In particular, the well-known trade-off between expressivity and inferential power has
been a major concern. Context-aware systems are expected to produce a reaction within
milliseconds of detecting a context, they run on light-weight systems such as mobile
phones or sensor nodes, and dimensions of context include well-known hard domains,
such as spatial, temporal, and causal knowledge. Recent theoretical studies [35,7] conse-
quently suggest that we need to abandon the idea of using an integrated contextual rea-
soning framework. On the experimental side, however, issues with run-time have rarely
been reported, even when using semi-decidable [30] or even undecidable [41] logics.
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Contextual reasoning, as a field within the research area of large-scale knowledge
representation and reasoning systems [8,5], studies reasoning mechanisms enabled to re-
produce the human capability to separate information that is relevant for a task from ir-
relevant information. Three types of contextual reasoning can be distinguished [5]: par-
tial reasoning focusses on relevant parts, approximate reasoning leaves out unnecessary
detail, perspectival reasoning can move the point of view on a problem.

A wealth of research exists concerning formal logic frameworks for reasoning about
spatial and temporal structures, including natural language constructs, such as here, now,
or yesterday, whose meaning depends on context [11,28,13,3,1]. Especially, the seminal
research by Gabbay [12] should be highlighted here, forming a fundament on which
non-classical formal logic and data structures for AI can be compared and made to work
together.

Spatial and temporal reasoning has been a focus of research also in the area of
constraint satisfaction methods. Qualitative spatial reasoning (QSR) is an active re-
search area [9,10] studying qualitative spatial calculi and heuristics that make reasoning
about spatial relations, such as the mereotopological region-connection-calculus (RCC)
of [29] or the cardinal direction calculus of [25], tractable. Newer results in this area
particularly important for this paper shed light on the complexity for combining calculi
[34,17,33,32,27].

The paper aims to carve out the theoretical core of a class of particularly fast contex-
tual reasoning mechanisms and to hint at possible approaches for retaining these proper-
ties as systems scale up. The rest of the paper is organized as follows. After a brief intro-
duction of contextual reasoning approaches in context-aware computing, the theoretical
framework of partial orders and lattice structures underlying hierarchical contextual rea-
soning mechanisms is discussed. The versatility of this approach is explored in a section
on applications. Finally, the possibilities to realize partial reasoning and reasoning with a
limited level of detail are discussed. We conclude that the hierarchical contextual reason-
ing frameworks proposed in the literature will scale well when context-aware systems
enter everyday life.

1. Reasoning in Context-Aware Systems

From the earliest location-aware systems [36] to recent pervasive computing systems
[19], automatic reasoning capabilities of the system have been a core component. The
key idea of being able to react to a context is an essential component of intelligence.
Representations that are cued by a perceptual trigger have been argued to have come
early in the evolution of intelligence, and seem to require less computational power than
detached representations that can be manipulated independently from any external stim-
ulus [16]. Similarly, context-aware applications can be designed efficiently for the pur-
pose of immediately triggering or adapting behavior in response to sensory input [19].
The objective of adequate representations for such immediate reactive procedures has
been pursued in the field of context modeling.

Among the first and most efficient context-modeling approaches were highly effi-
cient tree-structures [36] and directed acyclic graphs (DAG) [23,43] for representing hi-
erarchies of contexts, such as containment hierarchies of locations or class hierarchies of
types of situations, possibly supplemented by additional numerical or coordinate infor-
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mation [23,22,4], which can be processed using numerical constraint processing or value
comparison.

On the other end of the spectrum between fast inference and high expressiveness lie
logic-based approaches that use standard ontology languages [35,42] or rule-based for-
malisms [26,31]. The knowledge necessary for operating context-aware systems can be
distinguished from that for other computing systems as consisting of particularly many
statements about individuals for describing the environment, e.g. locating a certain room
in a certain building, a certain sensor in a certain room, etc. Class hierarchies for contex-
tual domains such as space or time, are rather flat, comprising e.g. regions and points as
possible classes, however, for handling applications and devices the sub-class relation is
relevant.

For domains like space and time, relations, such as the well-known 13 temporal
interval relations of [2] or the eight mereotopological relations between regions from
[29] are highly relevant and modeled in many existing systems. The use of the language
SROIQ for OWL 2 [18], featuring means for specifying relations as transitive, reflexive,
irreflexive, symmetric, asymmetric, or mutually disjoint, is therefore an important step
for context-aware computing [35]. A recent survey [7], however, emphasizes the grow-
ing concern that the limited reasoning performance of expressive, integrated reasoning
mechanisms could lead to a lack of scalability. The question then arises whether the
more light-weight hierarchy-based approaches face similar concerns, and whether their
expressiveness is sufficient to enable interesting applications beyond simple location hi-
erarchies.

In line with these observations, we identified in [39] a system of six partial ordering
relations that describe context hierarchies in the hierarchical context model of [21]. In
[38], we studied a system of 54 compound spatial relations including mereological rela-
tions, cardinal direction relations (such as to the North of, to the North-West of, etc.), and
size comparisons (smaller than, same size), and found similarly good reasoning prop-
erties in a framework of constraint satisfaction. This paper further explains these find-
ings and illustrates why complexity does not increase, even if arbitrary additional partial
ordering relations are allowed.

2. Theoretical Foundations

We briefly outline the basic framework of pre-orders, partial orders, and lattice structures
that underlies hierarchical reasoning in a first order language and demonstrate the theo-
retical foundations of its versatility. Here and elsewhere, we omit brackets, in particular
outer brackets, if no ambiguity can arise; however, we enclose all atomic formulae in
square brackets to support visual separation between terms and formulae.

2.1. Pre-Orders, Partial Orders and Equivalence Relations

A pre-order is a relation �m that is reflexive (A1) and transitive (A2).

∀x : [x �m x] (A1)

∀x,y,z : [x �m y]∧ [y �m z]→ [x �m z] (A2)
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A pre-order � (A3), (A4) that is antisymmetric (A5) is called partial order.

∀x : [x � x] (A3)

∀x,y,z : [x � y]∧ [y � z]→ [x � z] (A4)

∀x,y : [x � y]∧ [y � x]→ [x = y] (A5)

Every pre-order �m gives rise to an equivalence relation =m, that is, a pre-order that is
symmetric (1).

∀x,y : [x =m y]
def⇔ [x �m y]∧ [y �m x] (D1)

∀x,y : [x =m y]→ [y =m x] (1)

∀x : [x =m x] (2)

∀x,y,z : [x =m y]∧ [y =m z]→ [x =m z] (3)

∀x,y : [x �m y]∧ [y �m x]→ [x =m y] (4)

Moreover, a pre-order �m behaves like a partial order on the equivalence classes of its
corresponding equivalence relation=m (4).

An important property of pre-orders is that they have sub-relations that are also pre-
orders. In particular, we can define a pre-order �m,e from a pre-order �m and a given
element e as the relation that compares for two elements x and y elements x′, which are
in �m both below e and below x, with y. More formally: �m,e holds for x and y, iff for
all x′ that are below both x and e, x′ is below y in �m.

∀x,y : [x �m,e y]
def⇔∀x′ : [x′ �m x]∧ [x′ �m e]→ [x′ �m y] (D2)

∀x : [x �m,e x] (5)

∀x,y,z : [x �m,e y]∧ [y �m,e z]→ [x �m,e z] (6)

To show that �m,e is a pre-order, we need to show that it is reflexive and transitive. It is
clear that �m,e is reflexive (5), since ∀x′ : [x′ �m x]∧ [x′ �m e]→ [x′ �m x] is a tautology.
For transitivity, assume [x �m,e y] and [y �m,e z] hold, and consider any arbitrary x′ that
is below x and e in �m. From the assumption [x �m,e y], we know that x′ must be below
y in �m, by transitivity of �m and (D2). Any such x′ is an element that is both below y
and below e. By the assumption [y �m,e z], we know any such x′ must be below z, again
by transitivity of �m and (D2), and therefore [x �m,e z].

Since �m,e is a pre-order, an equivalence relation ≡m,e can be defined following
(D1).

∀x,y : [x �m y]→ [x �m,e y] (7)

We can show that �m,e extends �m, that is, it behaves like �m for all pairs of elements
in �m (7). Assume [x �m y] holds. With respect to (D2), we only need to check elements
x′ below x in �m that are below e – if there are no such x′, [x �m,e y] holds trivially. For
any given such x′, it holds by transitivity of �m that [x′ �m y], and thus [x �m,e y].
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It thus follows, that a single pre-order (or partial order relation) � suffices to give
rise to a range of pre-orders as extensions. In particular, this entails that a framework for
reasoning with context hierarchies need not encode the dimensions of context into the
given logical language. Rather system developers can define required relations as needed
using the construction (D2). The widely used hierarchical context modeling approach is
more versatile than assumed.

2.2. Lattice Structures

If a partial order � has a unique least upper bound (A6) and greatest lower bound (A7)
for any two elements x and y, it can be extended into a lattice structure.

∀x,y : ∃z : [x � z]∧ [y � z]∧∀z′ : [x � z′]∧ [y � z′]→ [z � z′] (A6)

∀x,y : ∃z : [z � x]∧ [z � y]∧∀z′ : [z′ � x]∧ [z′ � y]→ [z′ � z] (A7)

A lattice structure for � comprises two binary operations 
 (join), yielding the least
upper bound (D3) of two elements, and � (meet), yielding the greatest lower bound (D4).
Furthermore, we characterize two elements � (top) and ⊥ (bottom) as the upper bound
and lower bound of � to obtain a bounded lattice (A8).

∀x,y,z : [z = x
 y]
def⇔ [x � z]∧ [y � z]∧∀z′ : [x � z′]∧ [y � z′]→ [z � z′] (D3)

∀x,y,z : [z = x� y]
def⇔ [z � x]∧ [z � y]∧∀z′ : [z′ � x]∧ [z′ � y]→ [z′ � z] (D4)

∀x : [x ��]∧ [⊥� x] (A8)

With the operations 
 and � we can define further notions. The relation © (overlap)
holds between two elements x and y iff the meet of x and y is not the bottom element.
Two elements underlap (U) iff the join of x and y is not the top element.

∀x,y : [x© y]
def⇔¬[x� y �⊥] (D5)

∀x,y : [x U y]
def⇔¬[�� x
 y] (D6)

2.3. Linearizations

We call a pre-order �m linear extension or linearization of a pre-order �m, if and only if
�m extends �m (A11) and is linear (A12):

∀x : [x �m x] (A9)

∀x,y,z : [x �m y]∧ [y �m z]→ [x �m z] (A10)

∀x,y : [x �m y]→ [x �m y] (A11)

∀x,y : [x �m y]∨ [y �m x] (A12)

∀x,y : [x ≡m y]
def⇔ [x �m y]∧ [y �m x] (D7)

We again obtain a relation ≡m (D7), as equivalence relation for �m.
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Table 1. Pre-orders and their linear extensions in QSR

relation sys-
tem

relation symbol context type

spatial
mereology

part-of �mp mp pre-order

smaller-than �ml ml linear extension of part-of

cardinal di-
rections

directly-to-the-North-of �np np pre-order

more-to-the-North-of �nl nl
linear extension of
directly-to-the-North-of

directly-to-the-East-of �ep ep pre-order (locally2)

more-to-the-East-of �el el
linear extension of
directly-to-the-East-of

temporal in-
tervals

during-or-equal �ip ip pre-order

shorter-duration-than �il il
linear extension of
during-or-equal

temporal or-
der

before-or-same-time
(branching time)

�tp tp pre-order

before-or-same-time (linear
time)

�tl tl
linear extension of branching
before-or-same-time

classes sub-class �cp cp pre-order

smaller-cardinality �cl cl linear extension of sub-class

Many relations that are interesting for reasoning are pre-orders, partial orders, strict
partial orders, or linearizations. Table 1 lists a range of relations that have been discussed
in the area of qualitative reasoning [2,14,6,25,24,29,9,15] and that can be expressed in
terms of pre-orders and their linear extensions.

3. Applications

We can now illustrate how the above framework can be used for modeling context hier-
archies. We show examples how specific pre-orders �m can be derived as extensions of
a partial order � and how linear extensions �m can be defined from pre-orders �m.

3.1. Modeling Context Hierarchies

We can introduce arbitrary sets of partial ordering relations, such as the six relations of
[39], or the detailed modeling of the spatial domain discussed in [38], by deriving exten-
sions �m from � using elements m representing the domains. Here and in the following,
we use Greek letters ξ ,χ,κ to indicate schema variables ranging over contexts.

[ξ �κ χ] def⇔ [ξ �κ � χ] (D8)

[ξ ©κ χ] def⇔¬[ξ �χ �κ ⊥] (D9)

[ξ =κ χ] def⇔ [ξ �κ χ]∧ [χ �κ ξ ] (D10)
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Figure 1. A location hierarchy (a) and size hierarchy (b) specifying the locations (a: relation part-of) and
respective sizes (b: relation smaller-than) of a PC (pc2) on a desk (desk2) in a room (r2). In turn, r2 and room
r1 are in an office space (a1) in a building (b1) on the intersection i12 of roads road1 and road2. The roads
road1 and road2 and the train station ts1 are in a city city1. Arrows indicate the relation described by a spatial
containment relation �mp , not the relation � itself. The hierarchy of the sizes of locations �mp in (b) was
obtained by extending the location hierarchy of (a) with additional information about sizes.

Any relation �κ thus gives rise to relations ©κ (D9) and =κ (D10).
In general, we retain as a consequence of (D8), that for arbitrary x and y: if x is an

m-sub-context of y and m′ is a sub-context of m, then x is also an m′-sub-context of y.

∀x,y,m,m′ : [x �m y]∧ [m′ � m]→ [x �m′ y] (8)

Hierarchical context models store knowledge given in the form [a �m b] in hierarchical
data structures that facilitate transitive inference. An example is shown in Figure 1a.

3.2. Modeling Linearizations in Context Hierarchies

Using sub-relations as in (8), we can also define linear relations �m that extend partial
order relations �m. However, the linearity constraint (A12) demands that a complete
linearization exists, which would in practice be hard to enforce. Moreover, in order to
infer something from the linearity constraint a disjunction has to be checked. In the worst
case, a complete linearization would have to be generated, with every pair of contexts,

H.R. Schmidtke / Contextual Reasoning in Context-Aware Systems88



that is n2 disjunctions, to be checked. This would lead to an explosion of computational
effort that might only rarely be useful.

Similarly as in [38], we will therefore neglect the disjunctive restriction with respect
to reasoning. The argument for this is practical rather than formal: linearizations, such as
the size constraints, facilitate reasoning. Following this argument, we can assume that a
benefit encourages the reasoning agent to collect this information so that linearity of the
�m orders is approximated but not required.

We define the following schema exemplarily for the pair of the mereological pre-
order �mp (part-of) and a linear extension �ml (smaller-than) indicated by contexts mp
and ml so that �ml is an extension of �mp (D13):

[ξ �mp χ] def⇔ [ξ �mp � χ] (D11)

[ξ �ml χ] def⇔ [ξ �ml � χ] (D12)

[mp � ml] (D13)

[ξ ≡ml χ] def⇔ [ξ �ml χ]∧ [χ �ml ξ ] (D14)

Equivalence with respect to �ml is expressed with ≡ml (D14). Like knowledge given
in the form [a �m b], knowledge of the type [a �m b] can be stored in hierarchical data
structures that facilitate transitive inference. An example is shown in Fig. 1b. The hier-
archy for [a �m b] can be obtained from that of [a �m b] by adding size information. In
actual applications, linear ordering can also be encoded numerically.

Large relation systems, such as the 54 combined spatial relations introduced in [38],
can then be defined. There, the three spatial pre-orders listed in Table 1, each with lin-
earizations and equivalence relations are used to represent, and reason about, spatial lay-
outs. Relations, such as north-western part (x MPNLEL y), can be defined as combinations
of relations. We obtain the inferences from [38] as valid schemata, for instance (9).

[ξ MPNLEL χ] def⇔ [ξ �mp χ]∧ [ξ �nl χ]∧ [ξ �el χ] (D15)

[ξ MPNQEL χ] def⇔ [ξ �mp χ]∧ [ξ ≡nl χ]∧ [ξ �el χ] (D16)

[a MPNLEL b]∧ [b MPNQEL c]→ [a MPNLEL c] (9)

Class hierarchies are an important tool for inferring and specifying properties of
types of contexts in a generic way. Since the subclass relation is a partial order over
the domain of classes, it can be defined as a pre-order �cp . This allows interesting con-
structions: for instance, we can define that a context is a class of locations iff it is only
in the spatial and sub-class domain and actually overlaps the spatial domain, i.e. has a
non-empty spatial extent (D17). If we want to ensure that locations are always given the
corresponding type, we can define a relation subLoc as an external interface for the user,
hiding the spatial mereological �mp and sub-class �cp as internal operators.

[ξ �cp location]
def⇔ [ξ � mp 
 cp]∧ [ξ ©mp] (D17)

[ξ subLoc χ] def⇔ [ξ �mp χ]∧ [ξ �cp location] (D18)
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Using this, a developer can enter that road intersections are sub-locations of roads (D19).
Applying (D18), this would be expanded to mean: the sub-class relation holds between
roadIntersection and location and that the spatial containment relation holds between
between roadIntersection and road (10).

[roadIntersection subLoc road] (D19)

[roadIntersection �mp road]∧ [roadIntersection �cp location] (10)

As contexts in this framework are portions of reality not individuals, we have defined
classes of locations as classes and as locations.

The is-a-relation between an individual and a class is usually treated in a different
manner than the sub-class relation. We can identify individuals as classes of cardinality
1 (D20), based on the comparison of cardinality as a linearization �cl of the sub-class
relation �cp .

[ξ instanceOf χ] def⇔ [ξ �cp χ]∧ [ξ ≡cp card1] (D20)

[roadIntersection12 instanceOf roadIntersection] (D21)

With this definition we can specify that roadIntersection12 is a sub-class ofroadIntersection
with cardinality 1 (D21).

4. Partial and Approximate Reasoning

Linearizations, ordering the whole domain, are a suitable tool for stratifying a domain
into levels of granularity and thus for enforcing that reasoning does not go beyond a given
level of detail for a certain task. This holds true even if the total ordering of a domain
cannot be enforced (cf. Figure 1b). Size information, even if incomplete, can be used to
delimit reasoning and allow for approximate representation.

Size-based granularity is a representational tool that can be used to handle differ-
ences in sizes and to model uncertainty [37]. The key idea is to formally specify what is
a small, and therefore irrelevant, detail in a context [40]. Size-based granularity is built
upon the concept of a grain-size for a context region: parts of an object that are smaller
than the grain-size can be disregarded as unimportant details in the context. This concept
forms the basis for level of detail reasoning or approximate reasoning in the terminology
of [5]. Similarly, parts of an object outside the context region are irrelevant. This concept
forms the basis for realizing partial reasoning[5] in context-aware systems.

We can realize both types of restricted reasoning in the framework. Instead of asking
whether CKB∪ {¬φ(ans)} is inconsistent for a contextual knowledge base CKB and
query φ(ans), we can instead ask whether

CKB∪{[gm �ml ans], [ans �mp c]}∪{¬φ(ans)},

is inconsistent, that is: whether query φ(ans) can be solved for ans larger than g for �ml
and below context c for �mp . In practice, this can be implemented directly into the rea-
soning mechanism. In a graph-based representation of the context hierarchy, for instance,
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by pruning the hierarchy below the point gm and above the point c. The algorithm reason-
ing about φ(ans) is then limited to the resulting hierarchy between gm and c. It follows
that additions outside of this local hierarchy would not impede the reasoning process in-
side, and that growing hierarchical context models can retain their good runtime, a step
towards realizing the idea of granularity as advocated by Hobbs [20], that is, towards a
tool to make reasoning and representation tractable and scalable.

5. Outlook and Conclusion

Adding reasoning abilities to context-aware systems has been a focus of research in per-
vasive computing for several years and a broad range of approaches has been suggested.
The well-known trade-off between expressivity and inferential power has raised consid-
erable concerns in this area, as dimensions of context include well-known hard domains,
such as spatial, temporal, and causal knowledge. We suggested that hierarchical context
models, which have been used in numerous practical applications, can be described by
pre-order relations and their linearizations. We showed that this framework, for which
fast reasoning procedures exist, is expressive, and proposed a mechanism for limiting
level of detail and relevant context.

We conjecture that the proposed means can ensure that reasoning with hierarchical
context models will scale well. Future works need to include experimental validation es-
pecially regarding large-scale context-aware systems. Moreover, heuristics for calculat-
ing appropriate level detail and context of reasoning need to be determined.
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