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Abstract. In this paper, we discuss the need for improved user interfaces for 
editing mathematical text, focusing of three types (individuals suffering from 
various disabilities, people relying heaving on on-line learning systems and ones 
relying on using portable devices) of people for whom conventional editing 
approaches are not very satisfactory. After reviewing various recent approaches, 
we focus on describing the development and evaluation of our own intelligent 
web-based interfaces, TalkMaths and SWIMS for editing mathematical text. The 
former is a speech-based editing interface, the latter a system which assists the 
user through the predictive and corrective power of statistical language models. It 
offers options for predicting what will appear next (analogous to predictive text for 
SMS messages) and identifying likely errors due to simple mistakes on the user's 
part in order to assist in correcting the errors. Using text-stream input, we 
investigate the utility of the error identification by studying the proportion of times 
the correct version of the complete mathematical expression appears within the M 
most likely alternatives suggested by our system. These systems are currently 
independent of each other, but we aim to integrate the facilities they provide into a 
simple intelligent assistive interface. 

Keywords. statistical language model; web-based mathematical editors; assistive 
technology 

Introduction 
Information and Communication Technology (ICT) has been having a greater and 
greater impact on education, in the classroom and elsewhere over the last few decades. 
For example, nowadays, teachers can use smartboards and similar facilities to annotate 
notes in front of their class, then save the resulting “hybrid” document for their students 
to download and review in their own time. This greatly reduces the burden on students 
for taking accurate notes at high speed during classes, which was normal 20 years ago. 

However, in some ways, mathematics – which is a core subject of study in the 
school curriculum in most countries and proficiency in which, at least at an elementary 
level, is essential for success in a wide range of scientific, technical and commercial 
fields - is perhaps much less suited to be taught via modern educational ICT than many 
other disciplines. It is a subject which many students find difficult, partly due to its 
specialized language and notation. These make working with mathematical equations 
and formulae a problem for a large proportion of people. This is even more notable 
when the mathematical expressions to be manipulated are to be included in electronic 
documents. Typing and editing ordinary text can be both slow and error-prone for non-
experts, and this is even more the case for mathematical text, with its non-alphanumeric 
symbols and typically somewhat complicated two-dimensional layout. Furthermore, 
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creating, editing and reading mathematical text (in its conventional form) is particularly 
difficult for three types of groups of people : individuals suffering from various 
disabilities [5], people relying heavily on on-line learning systems [24, 25] (particularly 
distance-learning students), and people relying on using portable devices, such as 
smartphones and tablet computers, to access learning resources. These factors can 
severely limit the educational and career opportunities of such groups.  

In this paper, we first review some existing recent approaches to addressing these 
problems. We then focus on our own approaches, namely using spoken input as an 
option for creating and editing mathematical text in electronic documents, and 
providing an “intelligent assistant” to aid the user by predicting what may come next 
and offer a semi-automatic correction facility to rectify mistakes. 

Spell checkers, automated correcting facilities and predictive text have been 
familiar features of word processing and text messaging systems for a number of years. 
These have aimed to provide “intelligent assistance” to the user in order to make the 
task of creating and editing ordinary text easier. In this paper, we discuss the 
development of similar features for an editing system for mathematical text. Although 
the prototype prediction and correction system described here is a “proof of concept”, it 
is proposed to integrate it with our existing editor, TalkMaths [6], which now supports 
both spoken and typed input and editing commands, and is available online [6].  

1. Problems Accessing and Creating Mathematical Content 
As noted above, mathematical text tends to have a complicated layout, with a notation 
which is not simply related to “regular” natural language. Complicated and/or multi-
dimensional mathematical expressions cannot easily be conveyed in narrative terms 
[26].  Österholm [27] performed a study to find out if reading a mathematics textbook 
with symbols required different skills from reading one without symbols. He concluded 
that, whilst the use of non-alphanumeric symbols gave mathematics great strengths, 
saving time and space, comprehending texts using this specialised language and 
notation, and also translating written words into algebraic equations, required particular 
skills which students needed time and considerable effort to acquire [27]. Furthermore, 
established ways of creating, formatting and editing mathematical text in electronic 
documents – including LaTeX and MathML, and even the GUI-based equation editors 
embedded in many modern word processors – are not particularly easy for novices to 
learn to use. These issues are even more relevant for the three types of people 
mentioned previously : individuals with many types of disability [5], on-line and 
distance learners [24, 25], and people relying on portable devices with small screens 
and keyboards which make accessing and typing mathematical content very difficult 
indeed. Some previous authors have tried to address these issues by taking novel 
approaches. We briefly review some of these here. 

2. Previous Approaches to Addressing the Problems 
2.1. Solutions using Tactile Output 
Braille has been a successful tactile medium for nearly 200 years, enabling the blind to 
read and write. Conventional Braille codes use a two-dimensional representation for 
each alphanumeric character, but these are arranged in a “linear” format, much like the 
normal orthography of English, to represent words, phrases and sentences. This is not 
particularly well-suited to represent mathematics. However, novel extensions and 
modifications to Braille have allowed blind and other visually-impaired students a 
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much wider access to mathematical resources (e.g. [37]). Nevertheless, all of these 
coding schemes need to be learned by both the students and teachers, which is a 
problem for most teachers since they (except specialist teachers of the blind) will 
probably only teach a rather small number of blind students over many years. 

2.2.   Solutions using Optical Character Recognition (OCR) 
For some groups, typing, but not writing, mathematics is a problem. These would 
include people with certain types of repetitive strain injuries, people using small mobile 
devices and, in some cases, on-line distance learners [25]. For such people, an 
appropriate option might be to write the necessary mathematical expressions using a 
smart pen or stylus. The characters used could then be identified using an optical 
character recognition system, and converted into (correctly) typeset mathematical text 
in electronic form. Some previous authors [38, 39] have developed systems following 
this approach. However, two remaining issues are how to deal with the possibilities of 
misidentified symbols (potentially a big problem, since many people have poor “on-
screen” handwriting) and mistakes by the user. Previous researchers have used 
syntactic [40] or statistical [41] approaches in attempts to resolve these issues. The 
latter approach is to some extent similar to the methodology we use in this paper (see 
section 4.1 below). 
2.3. Solutions using Head Motion or Eye Gaze Direction Monitoring 
Although we are not aware of these approaches having been applied to the editing of 
mathematical text, severely disabled people, including tetraplegics, can interact with 
computers using systems which monitor motions of their head, eyes, or possibly facial 
muscles [44]. One such system of particular note is Dasher[43], which uses statistical 
language models (see section 4.1 below) to allocate an appropriate area of a display 
screen according to the likelihood of the character, word or symbol displayed there 
being the next item in the sequence being input. Dasher can be controlled using a 
mouse, pointer or any motion or graze tracking system. It should be possible to adapt 
Dasher for use with mathematical editors. 
2.4. Solutions using Spoken Input and/or Output 
Several groups, including the visually impaired, people with limited use of their hands 
or arms, and people using portable devices, could benefit by the input and/or output 
modalities being through speech. There have been a variety of systems attempting to 
provide synthetic speech descriptions of mathematical text, including AsTeR (Audio 
Systems for Technical Readings [31], MathGenie  [42], REMathEx [28], the 
commercial system MathPlayer™  [29], and AudioMath [36]. The latter system is 
open-source, but unfortunately only functions in Portuguese. Previous approaches to 
allowing spoken input of mathematics include the research prototype systems of 
Bernareggi & Brigatti [30] (which only works in Italian) and Hanakovič and Nagy [34] 
(which is restricted to use with the Opera web browser), plus the commercial systems 
MathTalk™  [32] (which is only compatible with certain commercial editiors) and 
Math Speak & Write  [33] (which has a rather limited mathematical vocabulary). All of 
these systems allowing spoken input of mathematics have serious limitations, 
prompting us to develop our own system, TalkMaths. 
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3. The TalkMaths System 
3.1. Overview 
The TalkMaths system initially started as a desktop application for creating and editing 
mathematical text, but allowing input by speech alone [4]. With recent developments to 
the project, the current TalkMaths system is now a web-based application [3] and the 
additional facility for typing input has been added to make the system more useful to a 
wider audience. The system currently uses a commercial speech recognition system as 
a front-end. However, since TalkMaths works by using a context free grammar to parse 
a text stream resulting from the speech recognition process, other speech recognition 
systems could also be employed. Several different editing paradigms (see Figure 1) 
proposed as a result of earlier work [4, 15] have also been incorporated into this new 
web-based solution. Three such methods, highlighting all sub-expressions, all 
individual symbols and all operators, respectively, are illustrated in Figure 1. The 
appropriate box, corresponding to a particular sub-expression, of the user’s choice can 
then be selected for further editing by specifying the number indexing it. 

 
Figure 1. Different editing paradigms for editing mathematics by speech. 

3.2. Speaking Mathematics 
Attempts at providing standards for speaking mathematics have been given by various 
previous authors [16, 14]. These have been specified as formal languages aiming to 
model, to as great an extent as possible, the natural spoken language constructs that 
people may use when dictating or teaching mathematics. Our approach, slightly 
extending that of [14, 4], has been to design our formal language in order to be as close 
as possible to how mathematically proficient people speak or read mathematical 
equations and formulae. This should make the formal language relatively easy to learn 
and use but certain compromises have to be made to avoid potential ambiguities. In 
particular, for dictating single alphabetical characters (a-z), the names from the NATO 
pronunciation alphabet [12, 15] must be used. An example of a simple mathematical 
expression is the equation for velocity under uniform acceleration  v = u + at  which in 
our spoken mathematical language would be read as: “victor equals uniform plus alpha 
tango”. A more complex example is the formula for the solutions of a general quadratic 
equation:  

 
which would be spoken as “minus bravo plus or minus square root of bravo squared 
minus four alpha charlie all over begin two alpha end”. Greek characters, such as α , β  , 
etc. can be inserted using the prefix “greek” before the name of the character. For 
example, the trigonometric identity :  sin( α  + β ) = sin α  cos β  + cos α sin β would 
be read as “sine begin greek alpha plus greek beta end equals sine greek alpha cos 
greek beta plus cos greek alpha sine greek beta”.   

 

3.3. User Evaluation of TalkMaths Version 1.0 
The original version of TalkMaths was tested on a group of users, none of whom had 
any disability.  The results of that evaluation, which indicated that non-disabled users, 
who were more used to using the keyboard and mouse than a speech recognition 
system, were faster and made fewer errors when creating and editing mathematical text 
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using a conventional editor than when using TalkMaths [4, 15]. However, they did find 
learning to use TalkMaths interesting and relatively straightforward. We also had one 
participant who suffered from Duchenne Muscular Dystrophy and was wheelchair-
bound. He was able to use the keyboard and mouse, but found this unpleasant, and he 
did have some previous experience of using automatic speech recognition systems. He 
performed much better using TalkMaths than did the non-disabled group, and on many 
tasks was faster using our system than he was with the conventional editor [4]. This 
illustrates the potential of TalkMaths as a useful tool, particularly for people for whom 
conventional types of interface are not very satisfactory.   

4. New Intelligent Features for Prediction and Correction 
4.1. Background 
A wide variety of existing technological systems employ prediction and/or correction 
methodologies in an attempt to make the systems more useful and usable. These 
include automatic (or semi-automatic) correction systems found in word processors and 
internet search engines (“Showing results for … Search instead for …”) and the 
prediction systems used in Automatic Speech Recognition (ASR) systems and SMS 
text message editors on mobile telephones. Although manufacturers of commercial 
products rarely reveal exactly their secrets, it is understood that correction systems look 
for “close matches” to what was entered from a database of common words or phrases, 
whilst prediction systems use statistical models. These models give probabilities of 
words and word sequences, using information from a large set of previously observed 
data and evidence from the current situation together with an “inference rule”, such as a 
Bayesian framework, in order to combine information from more than one source [9]. 
It has been noted that the majority of human typing and spelling errors are quite minor, 
often involving just the omission or addition of a single character, typing two 
characters in the wrong order, or  accidentally substituting one character for another 
(often one adjacent to the correct symbol on the keyboard). The Damerau–Levenshtein 
distance [1, 2] between two character strings measures how different the strings are by 
taking account of the minimum numbers of insertions, deletions, substitutions and 
transpositions of characters required to transform one of the strings into the other. 
Although one of the original motivations for the development of this metric was to 
compare the similarity of short pieces of natural language text, it has also been applied 
in fields such as genetics, for example to study how similar two fragments of DNA are 
to each other. However, we believe that our present paper is the first application of this 
metric to descriptions of mathematical expressions. 

Statistical language models (SLMs) [18] have been at the core of ASR systems for 
many years [9, 10] where they use statistics from “past experience” to predict the 
likelihood of what will be spoken next, and combine this with evidence from the 
acoustic signal of the speech to decide what words were actually said. More recently, 
such SLMs have been incorporated into innovative systems for automatic translation 
between languages, such as Google Translate [11]. 

The simplest types of SLMs are N-gram models, which use statistics of the 
occurrences of specific sequences of N consecutive words within a database (or 
“corpus”) of training material observed in the past. Individual words (N=1) are 
referred-to as unigrams, pairs of consecutive words (N=2) as bigrams and triplets of 
consecutive words (N=3) as trigrams (see [19] for more details on use of trigram and 
similar models). Longer N-grams are not commonly used [9, 21]. N-gram models can 
be used both for analyzing how likely or common an observed sequence of words is 
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(for example, is a given piece of text more typical of author A or of author B?), or for 
predicting the most likely candidate words or words to next appear in a sequence. This 
latter case is used in both ASR systems and in predictive text systems.   
4.2. Datasets and Building the SLMs 
Some ASR systems require the user to enroll (the process of adapting the system to a 
specific user, before it can actually be used for speech). In order to do this, a user has to 
provide samples of his or her speech input, which is then used to train the ASR. 
However, these samples do not cover all possible speech patterns and hence speech 
recognition programs tend to find “out of vocabulary” words or improbable word 
sequences when put to work. We hope our predictive and corrective language models 
will impose constraints which can be efficiently used in combination with those 
language and acoustic models built-in to the ASR system to correct these errors, with 
the aid of minimal intervention by the user, as perhaps the best source of knowledge on 
what was actually said by the user is the user him/herself.  

For the work presented in this paper, we built various trigram-based SLMs for 
spoken mathematics generated from content extracted from a variety of “tutorial” web 
sites on elementary and intermediate level mathematics. We obtained approximately 
4100 equations from such web sites and converted these to the simplest equivalent 
“spoken” forms using the formalized language described in Section II B. Table shows 
the most frequent words found in this corpus of spoken mathematics. The SLMs were 
built from this data using the CMU Toolkit [7], applying Good-Turing discounting [13] 
and then evaluated for perplexity, as in our previous work [8]. The complete set of 
distinct words found in the corpus formed the vocabulary of the system. 
Table 1. The most frequent words in our “spoken mathematical expressions” corpus. “x-ray” is the spoken 
form of the symbol “x”.  

Word end begin x-ray  of two power equals bracket 

Frequency % 7.58 7.57 7.3 7.26 4.82 3.93 3.79 3.61 

5. SWIMS Prototype System 
In this section, we introduce our prototype web-based mathematical document editor, 
SWIMS (Speech-based Web Interface for Mathematics using SLMs), as a proof of 
concept. SWIMS was developed as a separate module which can be later integrated into 
the TalkMaths system following successful evaluation. The goal of SWIMS is to assist 
the user by predicting and/or correcting his/her input using SLMs prior to parsing, 
required in order to display the output on the screen using suitable mathematical 
rendering technology such as MathML. For ease of evaluation and for better 
performance, SWIMS has been divided into two units, one to predict the next word(s) in 
the input and the other to correct user mistakes. The former interface is called 
“Predictive Mathematics” and the latter “Alternative/Corrective Mathematics”. We 
used JSON to store trigram probabilities for our SLM, JavaScript for calculating 
probabilities, and jQuery library to communicate between the browser and the 
TalkMaths parsing server. See [8] for a high-level diagram of the system’s architecture.  
5.1. Predictive Mathematics Interface 
The predictive mathematics interface predicts one or two words ahead of the currently 
typed or dictated mathematical text. In order to predict one word ahead, the system uses 
the last two words of the input to match trigram probabilities. In the case that the input 
is less than two words or there is no matching trigram, then the system will back-off 

1 

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics 291



[17, 20] to bigram probabilities and if this is not successful, unigram probabilities will 
be used. Two word prediction is a recursive extension of the one word prediction 
mechanism. Figure 2 shows this applied to the formula for the voltage across a 
capacitor which is being discharged through a resistor. 

 
Figure 2. Predictive Mathematics Interface in use. In the top-ranked suggestion, the SLM predicts that 

“charlie” will be followed by “end”. 

5.2. Alternative/Corrective Mathematics Interface 
To realize correction of errors, we implemented another web interface called 
Alternative/Corrective Mathematics. Once an “out of vocabulary” (OOV) word is 
detected, the Damerau – Levenshtein algorithm [1, 2] is used to calculate the 
Levenshtein distance of the typed word relative to each word in the vocabulary, in 
order to find suitable candidates for correction of the OOV word in question. Once a 
list of such candidates has been obtained, SLM probabilities can be used to re-rank the 
resulting new sequences of words. To illustrate this concept, we designed three variants 
of correction methods in the Alternative/Corrective Interface of SWIMS. These use 
Damerau – Levenshtein only, SLM only, and both in combination, respectively. To 
date, only the first of these has been developed and tested, but we intend to implement 
and evaluate the other two methods in future work. 

 
Figure 3. Alternative/Corrective Mathematics Interface in use. In the top-ranked suggestion, the OOV word 

“pluck” is replaced with “plus”. 

6. Initial Evaluation 
In order to evaluate the predictive power of our statistical language models in the 
context of our alternative predictive mathematics system (SWIMS), we set up three 
experiments. From our previous studies of perplexities [8], we demonstrated that such 
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SLMs have the potential to be useful for prediction of mathematical text. The current 
study empirically evaluates these models when put into practice. For the first two 
experiments, A1 and A2, we trained a SLM using 90% of our database of spoken 
mathematical equations (≈3700 expressions). The remaining 10% (≈400) was then used 
to test the predictions offered by the system, based on the trained model, comparing 
these with the complete version of each expression. For the third experiment, A3, we 
varied the size of the training and test data sets in order to monitor the consequential 
change in the system’s prediction performance. In experiment A4, the correction 
algorithm of the SWIMS system has been evaluated by artificially introducing a 
controlled selection of mistakes into otherwise “correct” expressions. 
6.1. Experiments A1 and A2- prediction success rate depends on number of alternatives 
Each expression in the test set was run through the interface with the last one 
(Experiment A1) or two (Experiment A2) word(s) omitted. We then observed the next 
word(s) predicted by the system, to see if one of highest ranked predictions (by 
probability) contained the actual missing word(s). The word “end” is normally used as 
a “context cue” within our specialized language for spoken mathematics, resulting in it 
being the most common word (see Table 1). Hence, we did not test expressions ending 
with “end” (A1) or ones which had “end” in the last two words (A2). Table 2 illustrates 
the percentages of times the correct prediction was included in the list of M “best” 
suggestions being offered to the user, and how this varied with M. In order to check 
that the results obtained were consistent, we performed 10 fold cross validation by 
dividing the complete dataset into 10 “folds”, using one fold as the test set whilst the 
other 9 folds were used to build the SLM in each trial. The results of Experiment A1 
are also represented graphically in Figure 4, which shows that the success of the one 
word ahead prediction increased as the number of suggestions shown to the user was 
increased, but with diminishing return. 
Table 2. Experiment A1: Variation of success rate of one word ahead prediction with number of suggestions 
offered to the user. 

 Size of Training Set Size of Test Set Number of Suggestions 
5 10 15 20 25 

Min 3684 407 62% 74% 79% 85% 88% 
Mean 3691.8 410.2 63.2% 77.6% 84.4% 88.9% 91.1% 
Max 3695 418 66% 81% 87% 91% 94% 

 

 
Figure 4: One word ahead prediction success rate increasing  

with the number of suggestions offered to the user 

Experiment A2 evaluated the two words ahead prediction within SWIMS, in a similar 
manner to Experiment A1. The results are summarized in Table 3, and graphically in 
Figure 5. The trend is similar to that for A1, but the success rates in A2 are lower for a 
given number of suggestions.  
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Figure 5: Two word ahead prediction success rate increasing  

with the number of suggestions offered to the user 
Table 3. Experiment A2: Variation of success rate of two word prediction with the number of suggestions 
offered to the user. 

 
Size of Training Set Size of Test Set 

Number of Suggestions 
5 10 15 20 25 

Min 3684 407 17% 24% 28% 29% 30% 
Mean 3691.8 410.2 24.3% 30.2% 33.6% 35.2% 36.2% 
Max 3695 418 31% 36% 39% 42% 44% 

6.2. Experiment A3- prediction success rate depends on size of training dataset  
In Experiment A3, we observed how the success rate for one word prediction varied as 
different sized data sets were used to train the SLM. The results are summarized in 
Table 4. 
Table 4. Experiment A3: Variation of success rate of one word ahead prediction with SLM size  
(5 suggestions per trial). MTrSS is Mean Training Set Size, MTSS Mean Test Set Size and M% Mean % 

MTrSS 3691.8 3281.6 2871.4 2461.2 2051 1640.8 1230.6 820.4 410.2 

MTSS 410.2 820.4 1230.6 1640.8 2051 2461.2 2871.4 3281.6 3691.8 

M% 63.10% 62.60% 62.30% 62.10% 61.30% 60.30% 59.00% 56.50% 52.70% 

6.3. Experiment A4- how successful the correction system is at correcting errors 
In order to evaluate the performance of the correction algorithm, we artificially 
introduced some controlled errors into each of 100 expressions selected from a test 
expressions, then observed the proportion of these where the “correct” version was 
found within the 5 top ranked alternatives offered by our correction system. This was 
carried out for each of introducing R characters per expression, deleting R characters 
per expression and swapping R pairs for adjacent characters, for each of  R = 1, 2, 3. 
The percentage of expressions which were successfully corrected using this approach 
for each trial are shown in Table 5. It can be seen that our method is extremely 
successful in correcting up to 3 insertions or transpositions of characters per expression, 
and fairly successful in correcting cases where up to three characters have been deleted 
from an expression. However, investigation of its performance in cases involving more 
complex or larger number of errors will require further experiments. 
Table 5. Experiment A5: Variation of success rate (%) of correction using Damerau-Levenshtein method 
(5 suggestions offered per trial) 

Number of Changes   1         2         3 
Deletion of characters 
Insertion of characters 
Swapping  pairs of adjacent characters  

95 
100 
100 

92 
98 
95 

68 
97 
91 
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7. Discussion and Conclusion 
From Experiment A1 and A2, we observe that one word ahead and two word ahead 
prediction success rates can be improved by increasing the number of alternatives, M, 
suggested to the user. However, the rate of increase of success rate diminishes as M 
increases, and it would appear that the maximum possible rates are about 90% for one 
word prediction, but around just 40% for two word prediction. However, if the user has 
to read too large a number of suggestions, the cognitive load imposed will very great. 
Thus, the number of options displayed must be limited. Based on our results, we 
propose that between 5 to 10 suggestions should be offered for one word prediction, 
giving success rates from 63 to 80%. Displaying the alternative expressions rendered 
into standard mathematical notation may help ease the reading burden on the user. 
However, two word prediction is rather less useful unless a large number of 
suggestions is presented. Experiment A3 showed that a small increase in success rate 
for one word ahead prediction could be achieved by increasing the amount of training 
data used, whilst M remained fixed. This is consistent with other studies of the 
predictive power of models based on other types of text [4, 22 and 23]. Finally, 
according to the results we obtained in Experiment A4, the Damerau-Levenshtein 
based correcting method is highly successful at correcting up to 3 errors at the character 
level errors in an expression. However, when the number or complexity of such errors 
is increased, the efficiency of correction declines. 

At present, the predictions are limited to the vocabulary of the SLM. This implies 
that each time a new word (in our case, a spoken name of a mathematical entity) is 
encountered it will need to be added to the system’s vocabulary. This should be 
relatively straightforward for the Damerau-Levenshtein based method. However, in 
order to modify the SLM, the corpus of mathematical expressions will have to be 
extended to reflect the change. Although possible in principle, this is not 
straightforward as one would have to find a considerable additional amount of data in 
order to update the model. Online learning within an adaptive system may be the 
solution to this issue. 

Our work to date has indicated that the prediction/correction assistive facilities 
incorporated into SWIMS have potential to help make mathematical editing systems, 
including TalkMaths, more powerful and user-friendly. Improving such systems in this 
manner should in turn make writing and editing mathematics in electronic documents 
much easier for three groups – the disabled, on-line (particularly “at a distance”) 
learners and people relying heavily on the use of portable devices – for whom these 
tasks are currently very difficult or even near impossible. 

8. Future Work 
Our method should be easily adaptable to use in several other closely related domains. 
For example, computer algebra systems such as Maple and Mathematica have their 
own language and syntax for mathematical expressions. It should be fairly 
straightforward for our predictive and corrective system to be integrated with these 
systems, assuming that enough data on past usage is available to train the models.  

We have noted the issue of the high cognitive load on the user when having to read 
a large number of possible alternatives offered by the system. We aim to provide 
previews each of these, rendered into standard mathematical format, which should be 
make the user’s task of identifying the correct version easier. 

The corrective method we have used is currently not based on probabilities given 
by SLMs. Our next goal is to make use of SLMs to further enhance the current 
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Damerau-Levenshtein based correcting method, re-ordering candidate expressions by 
“likelihood”.  We also consider possibilities of incorporating a user’s own “common 
usage” statistics, or specialized topic dependent models, in addition to our baseline 
SLM, so that an adaptive approach can be implemented into our system, fine-tuning it 
to be appropriate to the current need. Previous authors have tried to improve on N-gram 
models by combining these with “cache” or “word trigger” models [18, 45] in an 
attempt to incorporate longer-range statistical relationships between words. These 
approaches may prove fruitful for our system. We also aim to investigate ways we can 
adapt the Damerau-Levenshtein algorithm to correct speech recognition errors by 
applying a phonetically-weighted version to the phonetic transcription of the 
recognized words. For example, we would expect a higher rate of confusion between 
two similar phonemes, such as voiceless fricatives /s/ (“s”) and /ʃ/ (“sh”), or between 
voiced plosives /d/ and /g/, than between two phonemes of different types [35].  

References 
[1] F. Damerau, A technique for computer detection and correction of spelling errors. Communications of 

the ACM, 1964, Vol. 7, Issue 3,  pp. 659-664. 
[2] V. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics-

Doklady, 1966, Vol. 10, Issue 8, pp. 707-710. 
[3] D.R. Attanayake, E. Pfluegel, J. C. W. Denholm-Price, G. J. A. Hunter, Architectures for Speech-Based 

Web Applications, Proc. 4th International Conference on Semantic E-business and Enterprise 
Computing (SEEC2011), July 20-22, U.K. 2011 

[4] A. Wigmore, Speech-Based Creation and Editing of Mathematical Content. Ph.D. Thesis, Kingston 
University, U.K., 2011 

[5] A. I. Karshmer, Access to mathematics and science, Proc. 11th International Conference on Computers 
Helping People with Special Needs (ICCHP), 2008, Vol. 5105, pp. 873–874. 

[6] TalkMaths Project, http://www.TalkMaths.org 
[7] P. Clarkson, R. Rosenfeld, Statistical Language Modeling using the CMU-Cambridge Toolkit , Proc. 

Eurospeech 1997, Vol. 5, 2707-2710. Toolkit available on-line 
http://www.speech.cs.cmu.edu/SLM_info.html 

[8] D.R. Attanayake, G. J. A. Hunter, J. C. W. Denholm-Price, E. Pfluegel, Interactive error correction 
using statistical language models in a client-server interface for editing mathematical text, Designing  
Inclusive Systems – Designing Inclusion for Real-World Applications, Ed. P Langdon et al. Springer 
Verlag, London, Chapter 13, pp. 125-132. 

[9] S. Young, Large Vocabulary Speech Recognition : A review, IEEE Signal Processing Magazine, 1996, 
Vol. 13, Issue. 5, pp. 1-4. 

[10] S. Young, Talking to Machines – Statistically Speeching, Proceedings of  the International Conference 
on Spoken Language Processing (ICSLP), Denver, Colorado, U.S.A, 2002 

[11] Google, Inside Google Translate, 2011, http://translate.google.com/about/index.html  
[12] G. Law, Phonetic alphabets (alpha bravo charlie delta), 2007 http://www.faqs.org/faqs/radio/phonetic-

alph/full/ 
[13] I.J. Good, The population frequencies of species and the estimation of population parameters, 1953, 

Biometrika, Vol. 40, (3–4), pp. 237–264 
[14] R. Fateman. How can we speak math? www.cs.berkeley.edu/~fateman/papers/speakmath.pdf,  2012. 
[15] A. Wigmore, G. Hunter, E. Pfluegel, J. Denholm-Price, M. Colbert TalkMaths Better ! Evaluating and 

improving an intelligent interface for creating and editing mathematical text. Proceedings of 6th 
International Conference on Intelligent Environments, July 2010, Kuala Lumpur, Malaysia. 

[16] L. A. Chang, Handbook for spoken mathematics (Larry's speakeasy). Lawrence Livermore National 
Laboratory, University of California, USA, 1983. 

[17] S. Katz, Estimation of probabilities from sparse data for the language model component of a speech 
recognizer, IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, Vol. 35, pp. 400-401 

[18] R. Rosenfeld, Two decades of statistical language modeling: where do we go from here?, Proc. of the 
IEEE, 2000,  Vol. 88 (8)  (August), pp. 1270 – 1278  

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics296



[19] L.R. Bahl, F. Jelinek & R.L.Mercer, A maximum likelihood approach to continuous speech recognition, 
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1983. 

[20] R. Kneser and H. Ney,  Improved backing-off for m-gram language modeling,  Proc. IEEE Int. Conf. 
Acoustics, Speech and Signal Processing (ICASSP),  vol. 1,  pp. 181 - 184 , 1995 

[21] F. Jelinek, Up from trigrams ! - the struggle for improved language models, Proceedings of 
EuroSpeech, 1991 

[22] R.K. Moore, There’s No Data Like More Data - but when will enough be enough ?  Proceedings of the 
Institute of Acoustics, 2001, Vol. 23 (3), pp. 19-26 

[23] G. Hunter, M. Huckvale, Is it Appropriate to Model Dialogue in the Same Way as Text? A 
Comparative Study Using the British National Corpus, Proc. 2006 European Modelling Symposium, 
London, U.K, pp. 199-203 

[24] T. Sancho-Vinuesa et al, Automatic verbalization of mathematical formulae for web-based learning 
resources in an on-line environment, INTED2009 Proceedings, 2009, Valencia, Spain, pp. 4312–4321 

[25] J. Cuartero-Olivera et al, Reading and writing mathematical notation in e-learning environments, 2012, 

eLC Research Paper Series, Universitat Oberta de Catalunya, Spain, 
http://elcrps.uoc.edu/ojs/index.php/elcrps/about 

[26] Y. Solomon & J. O’Neill, Mathematics and Narrative, Language and Education, 1998, Vol. 12 (3), pp. 
210-221 

[27] M. Österholm, Characterizing Reading Comprehension of Mathematical Texts, Educational Studies in 
Mathematics, 2006, Vol. 63 (3), pp. 325-346 

[28] P. Gaura, REMathEx - Reader and Editor of the Mathematical Expressions for Blind Students, 
Proceedings of  8th ICCHP 2002, Springer-Verlag, London, U.K, pp. 486-493. 

[29] N. Soiffer, MathPlayer: web-based math accessibility. In Proc. of the 7th int. ACM SIGACCESS conf. 
on Computers and Accessibility (Assets '05), 2005, ACM, New York, NY, USA, pp. 204-205 

[30] C. Bernareggi & V. Brigatti, Writing mathematics by speech: A case study for visually impaired, 
Proceedings of 11th ICCHP 2008, pp. 879–882 

[31] T. V. Raman, Audio system for technical readings, 1998, Springer Verlag, Berlin 
[32] Metroplex Voice Computing, Inc. mathtalk.com, http://www.mathtalk.com/ 
[33] C. Guy, M. Jurka, S. Stanek, and R. Fateman, Math speak & write, a computer program to read and 

hear mathematical input, 2004, Technical report, University of California, Berkeley, Electrical 
Engineering and Computer Sciences Department 

[34] T. Hanakovic & M. Nagy, Speech recognition helps visually impaired people writing mathematical 
formulas, Proceedings of 10th ICCHP 2006, pp. 1231–1234. 

[35] P. Ladefoged & K. Johnson, A Course in Phonetics (Sixth Edition), Cengage Learning, 2010 
[36] H. Ferreira, D. Freitas, Enhancing the Accessibility of Mathematics for Blind People: The AudioMath 

Project, 2004, K. Miesenberger et al (eds.) Proc. ICCHP 2004, Springer LNCS, vol. 3118, pp. 678–685. 
[37] Math in Braille Project, 2011, http://www.mathinbraille.at/en 
[38] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, & T. Kanahori, Infty - an integrated OCR system for 

mathematical documents. In C. Vanoirbeek, C. Roisin, E. Munson (eds.) Proceedings of ACM 
Symposium on Document Engineering, 2003, pp. 95–104, http://www.inftyproject.org/en/index.html 

[39] S. M. Watt and X. Xie, Recognition for Large Sets of Handwritten Mathematical Symbols , Proc. IEEE 
Int. Conf. on Document Analysis and Recognition, (ICDAR 2005), Korea, IEEE Press, pp. 740-744 

[40] A. Fujiyoshi, M. Suzuki, S. Uchida, Syntactic Detection and Correction of Misrecognitions in 
Mathematical OCR, Proceedings of The 10th International Conference on Document Analysis and 
Recognition, ICDAR 2009, Barcelona, Spain, pp.1360-1364 

[41] E. Smirnova & S.M. Watt, Context-Sensitive Mathematical Character Recognition, Proc. IAPR Int. 
Conf. on Frontiers in Handwriting Recognition, (ICFHR 2008), August 19-21 2008, Montreal, Canada, 

[42] N. Jacobs, "MathGenie : User’s Guide and Teacher’s Manual", 2006, http://logicalsoft.net/MathGenie.pdf 
[43] K. Vertanen & D.J.C Mackay, Speech Dasher: Fast writing using speech and gaze. Proceedings of CHI 

2010, U.S.A., pp. 595-598. 
[44] P. Zielinski, Opengazer: opensource gaze tracker for ordinary webcams, 2007, 

http://www.inference.phy.cam.ac.uk/opengazer/ 
[45] R. Kuhn & R. D. Mori, A cache-based natural language model for speech reproduction, IEEE 

Transactions on Pattern Analysis and Machine Intelligence (PAMI),  1990, Vol.12(6), pp. 570–583 

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics 297


