
1 Corresponding Author: G.Hunter@kingston.ac.uk

Intelligent Assistive Interfaces
for Editing Mathematics

Dilaksha ATTANAYAKEa, James DENHOLM-PRICEb , Gordon HUNTERb,1,
Eckhard PFLUEGELa, Angela WIGMOREa,c
a

 School of Computing & Information Systems
b

 School of Mathematics
Kingston University, KT1 2EE, U.K.

c
 ESS Ltd., U.K.

Abstract. In this paper, we discuss the need for improved user interfaces for
editing mathematical text, focusing of three types (individuals suffering from
various disabilities, people relying heaving on on-line learning systems and ones
relying on using portable devices) of people for whom conventional editing
approaches are not very satisfactory. After reviewing various recent approaches,
we focus on describing the development and evaluation of our own intelligent
web-based interfaces, TalkMaths and SWIMS for editing mathematical text. The
former is a speech-based editing interface, the latter a system which assists the
user through the predictive and corrective power of statistical language models. It
offers options for predicting what will appear next (analogous to predictive text for
SMS messages) and identifying likely errors due to simple mistakes on the user's
part in order to assist in correcting the errors. Using text-stream input, we
investigate the utility of the error identification by studying the proportion of times
the correct version of the complete mathematical expression appears within the M
most likely alternatives suggested by our system. These systems are currently
independent of each other, but we aim to integrate the facilities they provide into a
simple intelligent assistive interface.

Keywords. statistical language model; web-based mathematical editors; assistive
technology

Introduction
Information and Communication Technology (ICT) has been having a greater and
greater impact on education, in the classroom and elsewhere over the last few decades.
For example, nowadays, teachers can use smartboards and similar facilities to annotate
notes in front of their class, then save the resulting “hybrid” document for their students
to download and review in their own time. This greatly reduces the burden on students
for taking accurate notes at high speed during classes, which was normal 20 years ago.

However, in some ways, mathematics – which is a core subject of study in the
school curriculum in most countries and proficiency in which, at least at an elementary
level, is essential for success in a wide range of scientific, technical and commercial
fields - is perhaps much less suited to be taught via modern educational ICT than many
other disciplines. It is a subject which many students find difficult, partly due to its
specialized language and notation. These make working with mathematical equations
and formulae a problem for a large proportion of people. This is even more notable
when the mathematical expressions to be manipulated are to be included in electronic
documents. Typing and editing ordinary text can be both slow and error-prone for non-
experts, and this is even more the case for mathematical text, with its non-alphanumeric
symbols and typically somewhat complicated two-dimensional layout. Furthermore,

Workshop Proceedings of the 8th International Conference on Intelligent Environments
J.A. Botía et al. (Eds.)

IOS Press, 2012
© 2012 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-61499-080-2-286

286

creating, editing and reading mathematical text (in its conventional form) is particularly
difficult for three types of groups of people : individuals suffering from various
disabilities [5], people relying heavily on on-line learning systems [24, 25] (particularly
distance-learning students), and people relying on using portable devices, such as
smartphones and tablet computers, to access learning resources. These factors can
severely limit the educational and career opportunities of such groups.

In this paper, we first review some existing recent approaches to addressing these
problems. We then focus on our own approaches, namely using spoken input as an
option for creating and editing mathematical text in electronic documents, and
providing an “intelligent assistant” to aid the user by predicting what may come next
and offer a semi-automatic correction facility to rectify mistakes.

Spell checkers, automated correcting facilities and predictive text have been
familiar features of word processing and text messaging systems for a number of years.
These have aimed to provide “intelligent assistance” to the user in order to make the
task of creating and editing ordinary text easier. In this paper, we discuss the
development of similar features for an editing system for mathematical text. Although
the prototype prediction and correction system described here is a “proof of concept”, it
is proposed to integrate it with our existing editor, TalkMaths [6], which now supports
both spoken and typed input and editing commands, and is available online [6].

1. Problems Accessing and Creating Mathematical Content
As noted above, mathematical text tends to have a complicated layout, with a notation
which is not simply related to “regular” natural language. Complicated and/or multi-
dimensional mathematical expressions cannot easily be conveyed in narrative terms
[26]. Österholm [27] performed a study to find out if reading a mathematics textbook
with symbols required different skills from reading one without symbols. He concluded
that, whilst the use of non-alphanumeric symbols gave mathematics great strengths,
saving time and space, comprehending texts using this specialised language and
notation, and also translating written words into algebraic equations, required particular
skills which students needed time and considerable effort to acquire [27]. Furthermore,
established ways of creating, formatting and editing mathematical text in electronic
documents – including LaTeX and MathML, and even the GUI-based equation editors
embedded in many modern word processors – are not particularly easy for novices to
learn to use. These issues are even more relevant for the three types of people
mentioned previously : individuals with many types of disability [5], on-line and
distance learners [24, 25], and people relying on portable devices with small screens
and keyboards which make accessing and typing mathematical content very difficult
indeed. Some previous authors have tried to address these issues by taking novel
approaches. We briefly review some of these here.

2. Previous Approaches to Addressing the Problems
2.1. Solutions using Tactile Output
Braille has been a successful tactile medium for nearly 200 years, enabling the blind to
read and write. Conventional Braille codes use a two-dimensional representation for
each alphanumeric character, but these are arranged in a “linear” format, much like the
normal orthography of English, to represent words, phrases and sentences. This is not
particularly well-suited to represent mathematics. However, novel extensions and
modifications to Braille have allowed blind and other visually-impaired students a

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics 287

much wider access to mathematical resources (e.g. [37]). Nevertheless, all of these
coding schemes need to be learned by both the students and teachers, which is a
problem for most teachers since they (except specialist teachers of the blind) will
probably only teach a rather small number of blind students over many years.

2.2. Solutions using Optical Character Recognition (OCR)
For some groups, typing, but not writing, mathematics is a problem. These would
include people with certain types of repetitive strain injuries, people using small mobile
devices and, in some cases, on-line distance learners [25]. For such people, an
appropriate option might be to write the necessary mathematical expressions using a
smart pen or stylus. The characters used could then be identified using an optical
character recognition system, and converted into (correctly) typeset mathematical text
in electronic form. Some previous authors [38, 39] have developed systems following
this approach. However, two remaining issues are how to deal with the possibilities of
misidentified symbols (potentially a big problem, since many people have poor “on-
screen” handwriting) and mistakes by the user. Previous researchers have used
syntactic [40] or statistical [41] approaches in attempts to resolve these issues. The
latter approach is to some extent similar to the methodology we use in this paper (see
section 4.1 below).
2.3. Solutions using Head Motion or Eye Gaze Direction Monitoring
Although we are not aware of these approaches having been applied to the editing of
mathematical text, severely disabled people, including tetraplegics, can interact with
computers using systems which monitor motions of their head, eyes, or possibly facial
muscles [44]. One such system of particular note is Dasher[43], which uses statistical
language models (see section 4.1 below) to allocate an appropriate area of a display
screen according to the likelihood of the character, word or symbol displayed there
being the next item in the sequence being input. Dasher can be controlled using a
mouse, pointer or any motion or graze tracking system. It should be possible to adapt
Dasher for use with mathematical editors.
2.4. Solutions using Spoken Input and/or Output
Several groups, including the visually impaired, people with limited use of their hands
or arms, and people using portable devices, could benefit by the input and/or output
modalities being through speech. There have been a variety of systems attempting to
provide synthetic speech descriptions of mathematical text, including AsTeR (Audio
Systems for Technical Readings [31], MathGenie [42], REMathEx [28], the
commercial system MathPlayer™ [29], and AudioMath [36]. The latter system is
open-source, but unfortunately only functions in Portuguese. Previous approaches to
allowing spoken input of mathematics include the research prototype systems of
Bernareggi & Brigatti [30] (which only works in Italian) and Hanakovič and Nagy [34]
(which is restricted to use with the Opera web browser), plus the commercial systems
MathTalk™ [32] (which is only compatible with certain commercial editiors) and
Math Speak & Write [33] (which has a rather limited mathematical vocabulary). All of
these systems allowing spoken input of mathematics have serious limitations,
prompting us to develop our own system, TalkMaths.

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics288

3. The TalkMaths System
3.1. Overview
The TalkMaths system initially started as a desktop application for creating and editing
mathematical text, but allowing input by speech alone [4]. With recent developments to
the project, the current TalkMaths system is now a web-based application [3] and the
additional facility for typing input has been added to make the system more useful to a
wider audience. The system currently uses a commercial speech recognition system as
a front-end. However, since TalkMaths works by using a context free grammar to parse
a text stream resulting from the speech recognition process, other speech recognition
systems could also be employed. Several different editing paradigms (see Figure 1)
proposed as a result of earlier work [4, 15] have also been incorporated into this new
web-based solution. Three such methods, highlighting all sub-expressions, all
individual symbols and all operators, respectively, are illustrated in Figure 1. The
appropriate box, corresponding to a particular sub-expression, of the user’s choice can
then be selected for further editing by specifying the number indexing it.

Figure 1. Different editing paradigms for editing mathematics by speech.

3.2. Speaking Mathematics
Attempts at providing standards for speaking mathematics have been given by various
previous authors [16, 14]. These have been specified as formal languages aiming to
model, to as great an extent as possible, the natural spoken language constructs that
people may use when dictating or teaching mathematics. Our approach, slightly
extending that of [14, 4], has been to design our formal language in order to be as close
as possible to how mathematically proficient people speak or read mathematical
equations and formulae. This should make the formal language relatively easy to learn
and use but certain compromises have to be made to avoid potential ambiguities. In
particular, for dictating single alphabetical characters (a-z), the names from the NATO
pronunciation alphabet [12, 15] must be used. An example of a simple mathematical
expression is the equation for velocity under uniform acceleration v = u + at which in
our spoken mathematical language would be read as: “victor equals uniform plus alpha
tango”. A more complex example is the formula for the solutions of a general quadratic
equation:

which would be spoken as “minus bravo plus or minus square root of bravo squared
minus four alpha charlie all over begin two alpha end”. Greek characters, such as α , β ,
etc. can be inserted using the prefix “greek” before the name of the character. For
example, the trigonometric identity : sin(α + β) = sin α cos β + cos α sin β would
be read as “sine begin greek alpha plus greek beta end equals sine greek alpha cos
greek beta plus cos greek alpha sine greek beta”.

3.3. User Evaluation of TalkMaths Version 1.0
The original version of TalkMaths was tested on a group of users, none of whom had
any disability. The results of that evaluation, which indicated that non-disabled users,
who were more used to using the keyboard and mouse than a speech recognition
system, were faster and made fewer errors when creating and editing mathematical text

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics 289

using a conventional editor than when using TalkMaths [4, 15]. However, they did find
learning to use TalkMaths interesting and relatively straightforward. We also had one
participant who suffered from Duchenne Muscular Dystrophy and was wheelchair-
bound. He was able to use the keyboard and mouse, but found this unpleasant, and he
did have some previous experience of using automatic speech recognition systems. He
performed much better using TalkMaths than did the non-disabled group, and on many
tasks was faster using our system than he was with the conventional editor [4]. This
illustrates the potential of TalkMaths as a useful tool, particularly for people for whom
conventional types of interface are not very satisfactory.

4. New Intelligent Features for Prediction and Correction
4.1. Background
A wide variety of existing technological systems employ prediction and/or correction
methodologies in an attempt to make the systems more useful and usable. These
include automatic (or semi-automatic) correction systems found in word processors and
internet search engines (“Showing results for … Search instead for …”) and the
prediction systems used in Automatic Speech Recognition (ASR) systems and SMS
text message editors on mobile telephones. Although manufacturers of commercial
products rarely reveal exactly their secrets, it is understood that correction systems look
for “close matches” to what was entered from a database of common words or phrases,
whilst prediction systems use statistical models. These models give probabilities of
words and word sequences, using information from a large set of previously observed
data and evidence from the current situation together with an “inference rule”, such as a
Bayesian framework, in order to combine information from more than one source [9].
It has been noted that the majority of human typing and spelling errors are quite minor,
often involving just the omission or addition of a single character, typing two
characters in the wrong order, or accidentally substituting one character for another
(often one adjacent to the correct symbol on the keyboard). The Damerau–Levenshtein
distance [1, 2] between two character strings measures how different the strings are by
taking account of the minimum numbers of insertions, deletions, substitutions and
transpositions of characters required to transform one of the strings into the other.
Although one of the original motivations for the development of this metric was to
compare the similarity of short pieces of natural language text, it has also been applied
in fields such as genetics, for example to study how similar two fragments of DNA are
to each other. However, we believe that our present paper is the first application of this
metric to descriptions of mathematical expressions.

Statistical language models (SLMs) [18] have been at the core of ASR systems for
many years [9, 10] where they use statistics from “past experience” to predict the
likelihood of what will be spoken next, and combine this with evidence from the
acoustic signal of the speech to decide what words were actually said. More recently,
such SLMs have been incorporated into innovative systems for automatic translation
between languages, such as Google Translate [11].

The simplest types of SLMs are N-gram models, which use statistics of the
occurrences of specific sequences of N consecutive words within a database (or
“corpus”) of training material observed in the past. Individual words (N=1) are
referred-to as unigrams, pairs of consecutive words (N=2) as bigrams and triplets of
consecutive words (N=3) as trigrams (see [19] for more details on use of trigram and
similar models). Longer N-grams are not commonly used [9, 21]. N-gram models can
be used both for analyzing how likely or common an observed sequence of words is

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics290

(for example, is a given piece of text more typical of author A or of author B?), or for
predicting the most likely candidate words or words to next appear in a sequence. This
latter case is used in both ASR systems and in predictive text systems.
4.2. Datasets and Building the SLMs
Some ASR systems require the user to enroll (the process of adapting the system to a
specific user, before it can actually be used for speech). In order to do this, a user has to
provide samples of his or her speech input, which is then used to train the ASR.
However, these samples do not cover all possible speech patterns and hence speech
recognition programs tend to find “out of vocabulary” words or improbable word
sequences when put to work. We hope our predictive and corrective language models
will impose constraints which can be efficiently used in combination with those
language and acoustic models built-in to the ASR system to correct these errors, with
the aid of minimal intervention by the user, as perhaps the best source of knowledge on
what was actually said by the user is the user him/herself.

For the work presented in this paper, we built various trigram-based SLMs for
spoken mathematics generated from content extracted from a variety of “tutorial” web
sites on elementary and intermediate level mathematics. We obtained approximately
4100 equations from such web sites and converted these to the simplest equivalent
“spoken” forms using the formalized language described in Section II B. Table shows
the most frequent words found in this corpus of spoken mathematics. The SLMs were
built from this data using the CMU Toolkit [7], applying Good-Turing discounting [13]
and then evaluated for perplexity, as in our previous work [8]. The complete set of
distinct words found in the corpus formed the vocabulary of the system.
Table 1. The most frequent words in our “spoken mathematical expressions” corpus. “x-ray” is the spoken
form of the symbol “x”.

Word end begin x-ray of two power equals bracket

Frequency % 7.58 7.57 7.3 7.26 4.82 3.93 3.79 3.61

5. SWIMS Prototype System
In this section, we introduce our prototype web-based mathematical document editor,
SWIMS (Speech-based Web Interface for Mathematics using SLMs), as a proof of
concept. SWIMS was developed as a separate module which can be later integrated into
the TalkMaths system following successful evaluation. The goal of SWIMS is to assist
the user by predicting and/or correcting his/her input using SLMs prior to parsing,
required in order to display the output on the screen using suitable mathematical
rendering technology such as MathML. For ease of evaluation and for better
performance, SWIMS has been divided into two units, one to predict the next word(s) in
the input and the other to correct user mistakes. The former interface is called
“Predictive Mathematics” and the latter “Alternative/Corrective Mathematics”. We
used JSON to store trigram probabilities for our SLM, JavaScript for calculating
probabilities, and jQuery library to communicate between the browser and the
TalkMaths parsing server. See [8] for a high-level diagram of the system’s architecture.
5.1. Predictive Mathematics Interface
The predictive mathematics interface predicts one or two words ahead of the currently
typed or dictated mathematical text. In order to predict one word ahead, the system uses
the last two words of the input to match trigram probabilities. In the case that the input
is less than two words or there is no matching trigram, then the system will back-off

1

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics 291

[17, 20] to bigram probabilities and if this is not successful, unigram probabilities will
be used. Two word prediction is a recursive extension of the one word prediction
mechanism. Figure 2 shows this applied to the formula for the voltage across a
capacitor which is being discharged through a resistor.

Figure 2. Predictive Mathematics Interface in use. In the top-ranked suggestion, the SLM predicts that

“charlie” will be followed by “end”.

5.2. Alternative/Corrective Mathematics Interface
To realize correction of errors, we implemented another web interface called
Alternative/Corrective Mathematics. Once an “out of vocabulary” (OOV) word is
detected, the Damerau – Levenshtein algorithm [1, 2] is used to calculate the
Levenshtein distance of the typed word relative to each word in the vocabulary, in
order to find suitable candidates for correction of the OOV word in question. Once a
list of such candidates has been obtained, SLM probabilities can be used to re-rank the
resulting new sequences of words. To illustrate this concept, we designed three variants
of correction methods in the Alternative/Corrective Interface of SWIMS. These use
Damerau – Levenshtein only, SLM only, and both in combination, respectively. To
date, only the first of these has been developed and tested, but we intend to implement
and evaluate the other two methods in future work.

Figure 3. Alternative/Corrective Mathematics Interface in use. In the top-ranked suggestion, the OOV word

“pluck” is replaced with “plus”.

6. Initial Evaluation
In order to evaluate the predictive power of our statistical language models in the
context of our alternative predictive mathematics system (SWIMS), we set up three
experiments. From our previous studies of perplexities [8], we demonstrated that such

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics292

SLMs have the potential to be useful for prediction of mathematical text. The current
study empirically evaluates these models when put into practice. For the first two
experiments, A1 and A2, we trained a SLM using 90% of our database of spoken
mathematical equations (≈3700 expressions). The remaining 10% (≈400) was then used
to test the predictions offered by the system, based on the trained model, comparing
these with the complete version of each expression. For the third experiment, A3, we
varied the size of the training and test data sets in order to monitor the consequential
change in the system’s prediction performance. In experiment A4, the correction
algorithm of the SWIMS system has been evaluated by artificially introducing a
controlled selection of mistakes into otherwise “correct” expressions.
6.1. Experiments A1 and A2- prediction success rate depends on number of alternatives
Each expression in the test set was run through the interface with the last one
(Experiment A1) or two (Experiment A2) word(s) omitted. We then observed the next
word(s) predicted by the system, to see if one of highest ranked predictions (by
probability) contained the actual missing word(s). The word “end” is normally used as
a “context cue” within our specialized language for spoken mathematics, resulting in it
being the most common word (see Table 1). Hence, we did not test expressions ending
with “end” (A1) or ones which had “end” in the last two words (A2). Table 2 illustrates
the percentages of times the correct prediction was included in the list of M “best”
suggestions being offered to the user, and how this varied with M. In order to check
that the results obtained were consistent, we performed 10 fold cross validation by
dividing the complete dataset into 10 “folds”, using one fold as the test set whilst the
other 9 folds were used to build the SLM in each trial. The results of Experiment A1
are also represented graphically in Figure 4, which shows that the success of the one
word ahead prediction increased as the number of suggestions shown to the user was
increased, but with diminishing return.
Table 2. Experiment A1: Variation of success rate of one word ahead prediction with number of suggestions
offered to the user.

 Size of Training Set Size of Test Set Number of Suggestions
5 10 15 20 25

Min 3684 407 62% 74% 79% 85% 88%
Mean 3691.8 410.2 63.2% 77.6% 84.4% 88.9% 91.1%
Max 3695 418 66% 81% 87% 91% 94%

Figure 4: One word ahead prediction success rate increasing

with the number of suggestions offered to the user

Experiment A2 evaluated the two words ahead prediction within SWIMS, in a similar
manner to Experiment A1. The results are summarized in Table 3, and graphically in
Figure 5. The trend is similar to that for A1, but the success rates in A2 are lower for a
given number of suggestions.

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics 293

Figure 5: Two word ahead prediction success rate increasing

with the number of suggestions offered to the user
Table 3. Experiment A2: Variation of success rate of two word prediction with the number of suggestions
offered to the user.

Size of Training Set Size of Test Set

Number of Suggestions
5 10 15 20 25

Min 3684 407 17% 24% 28% 29% 30%
Mean 3691.8 410.2 24.3% 30.2% 33.6% 35.2% 36.2%
Max 3695 418 31% 36% 39% 42% 44%

6.2. Experiment A3- prediction success rate depends on size of training dataset
In Experiment A3, we observed how the success rate for one word prediction varied as
different sized data sets were used to train the SLM. The results are summarized in
Table 4.
Table 4. Experiment A3: Variation of success rate of one word ahead prediction with SLM size
(5 suggestions per trial). MTrSS is Mean Training Set Size, MTSS Mean Test Set Size and M% Mean %

MTrSS 3691.8 3281.6 2871.4 2461.2 2051 1640.8 1230.6 820.4 410.2

MTSS 410.2 820.4 1230.6 1640.8 2051 2461.2 2871.4 3281.6 3691.8

M% 63.10% 62.60% 62.30% 62.10% 61.30% 60.30% 59.00% 56.50% 52.70%

6.3. Experiment A4- how successful the correction system is at correcting errors
In order to evaluate the performance of the correction algorithm, we artificially
introduced some controlled errors into each of 100 expressions selected from a test
expressions, then observed the proportion of these where the “correct” version was
found within the 5 top ranked alternatives offered by our correction system. This was
carried out for each of introducing R characters per expression, deleting R characters
per expression and swapping R pairs for adjacent characters, for each of R = 1, 2, 3.
The percentage of expressions which were successfully corrected using this approach
for each trial are shown in Table 5. It can be seen that our method is extremely
successful in correcting up to 3 insertions or transpositions of characters per expression,
and fairly successful in correcting cases where up to three characters have been deleted
from an expression. However, investigation of its performance in cases involving more
complex or larger number of errors will require further experiments.
Table 5. Experiment A5: Variation of success rate (%) of correction using Damerau-Levenshtein method
(5 suggestions offered per trial)

Number of Changes 1 2 3
Deletion of characters
Insertion of characters
Swapping pairs of adjacent characters

95
100
100

92
98
95

68
97
91

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics294

7. Discussion and Conclusion
From Experiment A1 and A2, we observe that one word ahead and two word ahead
prediction success rates can be improved by increasing the number of alternatives, M,
suggested to the user. However, the rate of increase of success rate diminishes as M
increases, and it would appear that the maximum possible rates are about 90% for one
word prediction, but around just 40% for two word prediction. However, if the user has
to read too large a number of suggestions, the cognitive load imposed will very great.
Thus, the number of options displayed must be limited. Based on our results, we
propose that between 5 to 10 suggestions should be offered for one word prediction,
giving success rates from 63 to 80%. Displaying the alternative expressions rendered
into standard mathematical notation may help ease the reading burden on the user.
However, two word prediction is rather less useful unless a large number of
suggestions is presented. Experiment A3 showed that a small increase in success rate
for one word ahead prediction could be achieved by increasing the amount of training
data used, whilst M remained fixed. This is consistent with other studies of the
predictive power of models based on other types of text [4, 22 and 23]. Finally,
according to the results we obtained in Experiment A4, the Damerau-Levenshtein
based correcting method is highly successful at correcting up to 3 errors at the character
level errors in an expression. However, when the number or complexity of such errors
is increased, the efficiency of correction declines.

At present, the predictions are limited to the vocabulary of the SLM. This implies
that each time a new word (in our case, a spoken name of a mathematical entity) is
encountered it will need to be added to the system’s vocabulary. This should be
relatively straightforward for the Damerau-Levenshtein based method. However, in
order to modify the SLM, the corpus of mathematical expressions will have to be
extended to reflect the change. Although possible in principle, this is not
straightforward as one would have to find a considerable additional amount of data in
order to update the model. Online learning within an adaptive system may be the
solution to this issue.

Our work to date has indicated that the prediction/correction assistive facilities
incorporated into SWIMS have potential to help make mathematical editing systems,
including TalkMaths, more powerful and user-friendly. Improving such systems in this
manner should in turn make writing and editing mathematics in electronic documents
much easier for three groups – the disabled, on-line (particularly “at a distance”)
learners and people relying heavily on the use of portable devices – for whom these
tasks are currently very difficult or even near impossible.

8. Future Work
Our method should be easily adaptable to use in several other closely related domains.
For example, computer algebra systems such as Maple and Mathematica have their
own language and syntax for mathematical expressions. It should be fairly
straightforward for our predictive and corrective system to be integrated with these
systems, assuming that enough data on past usage is available to train the models.

We have noted the issue of the high cognitive load on the user when having to read
a large number of possible alternatives offered by the system. We aim to provide
previews each of these, rendered into standard mathematical format, which should be
make the user’s task of identifying the correct version easier.

The corrective method we have used is currently not based on probabilities given
by SLMs. Our next goal is to make use of SLMs to further enhance the current

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics 295

Damerau-Levenshtein based correcting method, re-ordering candidate expressions by
“likelihood”. We also consider possibilities of incorporating a user’s own “common
usage” statistics, or specialized topic dependent models, in addition to our baseline
SLM, so that an adaptive approach can be implemented into our system, fine-tuning it
to be appropriate to the current need. Previous authors have tried to improve on N-gram
models by combining these with “cache” or “word trigger” models [18, 45] in an
attempt to incorporate longer-range statistical relationships between words. These
approaches may prove fruitful for our system. We also aim to investigate ways we can
adapt the Damerau-Levenshtein algorithm to correct speech recognition errors by
applying a phonetically-weighted version to the phonetic transcription of the
recognized words. For example, we would expect a higher rate of confusion between
two similar phonemes, such as voiceless fricatives /s/ (“s”) and /ʃ/ (“sh”), or between
voiced plosives /d/ and /g/, than between two phonemes of different types [35].

References
[1] F. Damerau, A technique for computer detection and correction of spelling errors. Communications of

the ACM, 1964, Vol. 7, Issue 3, pp. 659-664.
[2] V. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics-

Doklady, 1966, Vol. 10, Issue 8, pp. 707-710.
[3] D.R. Attanayake, E. Pfluegel, J. C. W. Denholm-Price, G. J. A. Hunter, Architectures for Speech-Based

Web Applications, Proc. 4th International Conference on Semantic E-business and Enterprise
Computing (SEEC2011), July 20-22, U.K. 2011

[4] A. Wigmore, Speech-Based Creation and Editing of Mathematical Content. Ph.D. Thesis, Kingston
University, U.K., 2011

[5] A. I. Karshmer, Access to mathematics and science, Proc. 11th International Conference on Computers
Helping People with Special Needs (ICCHP), 2008, Vol. 5105, pp. 873–874.

[6] TalkMaths Project, http://www.TalkMaths.org
[7] P. Clarkson, R. Rosenfeld, Statistical Language Modeling using the CMU-Cambridge Toolkit , Proc.

Eurospeech 1997, Vol. 5, 2707-2710. Toolkit available on-line
http://www.speech.cs.cmu.edu/SLM_info.html

[8] D.R. Attanayake, G. J. A. Hunter, J. C. W. Denholm-Price, E. Pfluegel, Interactive error correction
using statistical language models in a client-server interface for editing mathematical text, Designing
Inclusive Systems – Designing Inclusion for Real-World Applications, Ed. P Langdon et al. Springer
Verlag, London, Chapter 13, pp. 125-132.

[9] S. Young, Large Vocabulary Speech Recognition : A review, IEEE Signal Processing Magazine, 1996,
Vol. 13, Issue. 5, pp. 1-4.

[10] S. Young, Talking to Machines – Statistically Speeching, Proceedings of the International Conference
on Spoken Language Processing (ICSLP), Denver, Colorado, U.S.A, 2002

[11] Google, Inside Google Translate, 2011, http://translate.google.com/about/index.html
[12] G. Law, Phonetic alphabets (alpha bravo charlie delta), 2007 http://www.faqs.org/faqs/radio/phonetic-

alph/full/
[13] I.J. Good, The population frequencies of species and the estimation of population parameters, 1953,

Biometrika, Vol. 40, (3–4), pp. 237–264
[14] R. Fateman. How can we speak math? www.cs.berkeley.edu/~fateman/papers/speakmath.pdf, 2012.
[15] A. Wigmore, G. Hunter, E. Pfluegel, J. Denholm-Price, M. Colbert TalkMaths Better ! Evaluating and

improving an intelligent interface for creating and editing mathematical text. Proceedings of 6th
International Conference on Intelligent Environments, July 2010, Kuala Lumpur, Malaysia.

[16] L. A. Chang, Handbook for spoken mathematics (Larry's speakeasy). Lawrence Livermore National
Laboratory, University of California, USA, 1983.

[17] S. Katz, Estimation of probabilities from sparse data for the language model component of a speech
recognizer, IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, Vol. 35, pp. 400-401

[18] R. Rosenfeld, Two decades of statistical language modeling: where do we go from here?, Proc. of the
IEEE, 2000, Vol. 88 (8) (August), pp. 1270 – 1278

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics296

[19] L.R. Bahl, F. Jelinek & R.L.Mercer, A maximum likelihood approach to continuous speech recognition,
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1983.

[20] R. Kneser and H. Ney, Improved backing-off for m-gram language modeling, Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 181 - 184 , 1995

[21] F. Jelinek, Up from trigrams ! - the struggle for improved language models, Proceedings of
EuroSpeech, 1991

[22] R.K. Moore, There’s No Data Like More Data - but when will enough be enough ? Proceedings of the
Institute of Acoustics, 2001, Vol. 23 (3), pp. 19-26

[23] G. Hunter, M. Huckvale, Is it Appropriate to Model Dialogue in the Same Way as Text? A
Comparative Study Using the British National Corpus, Proc. 2006 European Modelling Symposium,
London, U.K, pp. 199-203

[24] T. Sancho-Vinuesa et al, Automatic verbalization of mathematical formulae for web-based learning
resources in an on-line environment, INTED2009 Proceedings, 2009, Valencia, Spain, pp. 4312–4321

[25] J. Cuartero-Olivera et al, Reading and writing mathematical notation in e-learning environments, 2012,

eLC Research Paper Series, Universitat Oberta de Catalunya, Spain,
http://elcrps.uoc.edu/ojs/index.php/elcrps/about

[26] Y. Solomon & J. O’Neill, Mathematics and Narrative, Language and Education, 1998, Vol. 12 (3), pp.
210-221

[27] M. Österholm, Characterizing Reading Comprehension of Mathematical Texts, Educational Studies in
Mathematics, 2006, Vol. 63 (3), pp. 325-346

[28] P. Gaura, REMathEx - Reader and Editor of the Mathematical Expressions for Blind Students,
Proceedings of 8th ICCHP 2002, Springer-Verlag, London, U.K, pp. 486-493.

[29] N. Soiffer, MathPlayer: web-based math accessibility. In Proc. of the 7th int. ACM SIGACCESS conf.
on Computers and Accessibility (Assets '05), 2005, ACM, New York, NY, USA, pp. 204-205

[30] C. Bernareggi & V. Brigatti, Writing mathematics by speech: A case study for visually impaired,
Proceedings of 11th ICCHP 2008, pp. 879–882

[31] T. V. Raman, Audio system for technical readings, 1998, Springer Verlag, Berlin
[32] Metroplex Voice Computing, Inc. mathtalk.com, http://www.mathtalk.com/
[33] C. Guy, M. Jurka, S. Stanek, and R. Fateman, Math speak & write, a computer program to read and

hear mathematical input, 2004, Technical report, University of California, Berkeley, Electrical
Engineering and Computer Sciences Department

[34] T. Hanakovic & M. Nagy, Speech recognition helps visually impaired people writing mathematical
formulas, Proceedings of 10th ICCHP 2006, pp. 1231–1234.

[35] P. Ladefoged & K. Johnson, A Course in Phonetics (Sixth Edition), Cengage Learning, 2010
[36] H. Ferreira, D. Freitas, Enhancing the Accessibility of Mathematics for Blind People: The AudioMath

Project, 2004, K. Miesenberger et al (eds.) Proc. ICCHP 2004, Springer LNCS, vol. 3118, pp. 678–685.
[37] Math in Braille Project, 2011, http://www.mathinbraille.at/en
[38] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, & T. Kanahori, Infty - an integrated OCR system for

mathematical documents. In C. Vanoirbeek, C. Roisin, E. Munson (eds.) Proceedings of ACM
Symposium on Document Engineering, 2003, pp. 95–104, http://www.inftyproject.org/en/index.html

[39] S. M. Watt and X. Xie, Recognition for Large Sets of Handwritten Mathematical Symbols , Proc. IEEE
Int. Conf. on Document Analysis and Recognition, (ICDAR 2005), Korea, IEEE Press, pp. 740-744

[40] A. Fujiyoshi, M. Suzuki, S. Uchida, Syntactic Detection and Correction of Misrecognitions in
Mathematical OCR, Proceedings of The 10th International Conference on Document Analysis and
Recognition, ICDAR 2009, Barcelona, Spain, pp.1360-1364

[41] E. Smirnova & S.M. Watt, Context-Sensitive Mathematical Character Recognition, Proc. IAPR Int.
Conf. on Frontiers in Handwriting Recognition, (ICFHR 2008), August 19-21 2008, Montreal, Canada,

[42] N. Jacobs, "MathGenie : User’s Guide and Teacher’s Manual", 2006, http://logicalsoft.net/MathGenie.pdf
[43] K. Vertanen & D.J.C Mackay, Speech Dasher: Fast writing using speech and gaze. Proceedings of CHI

2010, U.S.A., pp. 595-598.
[44] P. Zielinski, Opengazer: opensource gaze tracker for ordinary webcams, 2007,

http://www.inference.phy.cam.ac.uk/opengazer/
[45] R. Kuhn & R. D. Mori, A cache-based natural language model for speech reproduction, IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1990, Vol.12(6), pp. 570–583

D. Attanayake et al. / Intelligent Assistive Interfaces for Editing Mathematics 297

