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Abstract. Cyclic instability is a problem that, despite being shown to affect intelli-
gent environments and in general any rule-based system, the strategies available to
prevent it are still limited and mostly focused on centralized approaches. These ap-
proaches are based on topological properties of the Interaction Network (IN) asso-
ciated, and locking a set of agents. In this paper we present a comparative study of
the performance of different optimization techniques when solving the problem of
cyclic instability in synthetic scenarios. Instead of using the Interaction Network of
the System (which can be computationally expensive, specially in very dense sys-
tems). We introduced the concept of Average Change of the System (ACS) in or-
der to measure the oscillatory behavior of the system and an optimization strategy.
In particular Particle Swarm Optimization (PSO), Micro-Particle Swarm Optimiza-
tion (μ-PSO), Bee Swarm Optimization (BSO), Artificial Immune Systems (AIS)
and Genetic Algorithms (GA) were considered. The results found are very promis-
ing, as they can successfully prevent unwanted oscillations. Additionally, some of
these strategies could be implemented using parallel and distributed processing, in
order to be used in real-time scenarios.
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Introduction

Intelligent Environments are systems that are affected by errors, as any other computer
system. Among the problems affecting rule-based multiagent ambient intelligence sce-
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narios we find cyclical instability [1]. This behavior is characterized by the presence of
unexpected fluctuations caused by the interaction of the rules governing the different
agents [1].

In the literature there are several approaches to the problem of cyclic instabil-
ity [2], [1], showing good results. However, these approaches require a large number of
calculations, therefore the possibility to be applied to real-time scenarios are very lim-
ited. Bio-inspired algorithms have been successfully applied to the problem of cyclic
instability, using the Game of Life as a scenario [3].

In this paper we present two functions to measure the oscillatory behavior of the sys-
tem. Several optimization techniques were applied to these functions, in order to compare
their performance preventing oscillatory behavior. Among the optimization techniques
used we can mention Particle Swarm Optimization (PSO), Micro Particle Swarm Op-
timization (μ-PSO), Bee Swarm Optimization (BSO), Immune Artificial Systems (AIS),
and Genetic Algorithms (GA). These algorithms were applied to well known scenarios
where the strategy INPRES has successfully prevented oscillatory behavior [1]. In our
experiments the number of locked agents was used to measure the performance of the
algorithms applied. The strategy with the minimum number of agents locked was con-
sidered the best.

1. Cyclic Instability in Intelligent Environments

Rule-based systems play an important role in Ambient Intelligence. In particular, multi-
agent systems can provide different functionalities to the final user, generating complex
interactions between a large number of connections in the system. Under some conditions
(in particular the presence of feedback in the rules), unwanted oscillations of the agents
can affect the expected performance of the system. These changes over time can even
cause interference with other devices or unwanted behavior [1, 4–6].

The state of the system s (t) (see eq. 1 is defined as the logarithm base 10 of the
decimal representation of the binary state of the agents involved. An agent can have two
states on (1) and off (0).

s (t) = log (s) (1)

where:
s (t) is the state of the system at time t.
s is base-10 representation of the binary vector of the agents.

2. Measuring the cyclical instability

In order to measure the oscillatory behaviour of the system, two functions are used:
Average Cumulative Oscillation (ACO) and Average Change of the System (ACS).

Average Cumulative Oscillation (ACO) [3] measure the difference between s (t)
and s (t+ 1) on the assumption that if a system is unstable difference will always exist
among the states which will cause the value of the ACO will increase as increases the
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number of generations of the system, however if the system is stable this value will tend
to 0.

o =

∑n−1
t=1 |S (t)− S (t+ 1)|

n− 1
(2)

where:
o: average cumulative oscillation
n : number of generations (total time of testing)
S (t): state of system at time t
S (t+ 1): tate of system at time t+ 1
In this paper we introduce another function, called Average Change of the System

(ACS). This equation means that an unstable system will remain constantly changing ie.
the state s (t)) is always different from the state s (t+ 1) this implies that if a system is
unstable the value of ACS obtained is close to 1, while if the system is stable this value
is approximated to 0.

p =

∑n−1
i=1 xi

n− 1
(3)

where:
p: average change in system
n : number of generations of scenario to test (total time of test)

xi =

{
1 si S (t) �= S (t+ 1)

0 in other case
with S (t) being the state of the system in time t and S (t+ 1) being the state of

system in time t+ 1
In the case of a stable system, these two equations will show a flat line. Due to the

previous, it is possible to use them as objective functions in a minimization algorithm.

3. Optimization Algorithms

3.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [7, 8] algorithm was proposed by Kennedy and Ev-
erhart. It is based on the choreography of a flock of birds [7–12]. The basic PSO algo-
rithm [8] uses two equations. The first one 4 finds the velocity, describes the size and
direction of the step that will be taken by the particles and is based on the knowledge
achieved until that moment.

vi = wvi + c1r1 (lBesti − xi) + c2r2 (gBest− xi) (4)

where:
vi is the velocity of the i-th particle.
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i = 1, 2 . . . , N and N is the number of the population.
w is the environment adjustment factor
c1 is the memory factor of neighborhood
c2 is memory factor
r1 and r2 are random numbers in range [0, 1]
lBest is the best local particle founded for the i-th particle
gBest is the best general particle founded until that moment for all particles
The equation 5 updates the current position of the particle to the new position using

the result of the velocity equation.

xi = xi + vi (5)

where xi is the position of the i-th particle.

3.2. Binary PSO

Binary PSO [12, 13] was design to work in binary spaces. Binary PSO select the lBest
and gBest particles in the same way as PSO. The main difference between binary PSO
and normal PSO are the equations that are used to update the particle velocity and posi-
tion. The equation for updating the velocity is based on probabilities in the range [0, 1].
For that mapping is established for all real values of velocity to the range [0, 1]. The
normalization function 6 used is a sigmoid funcion.

vij (t) = sigmoid (vij (t)) =
1

1 + e−vij(t)
(6)

and equation 7 is used to update the new particle position.

xij (t+ 1) =

{
1 if rij < sigmoid (vij (t+ 1))

0 in other case
(7)

where rij is a random vector with uniform values in the range [0, 1].

3.3. Micro PSO

Micro-PSO (μ-PSO) algorithm [14, 15] is a modification made to the original PSO al-
gorithm in order to work with small populations. PSO and μ-PSO are very similar, but
μ-PSO has more exploratory power. In order to avoid local optimum (exploring the
configuration space), μ-PSO includes the concepts operators of replacement and muta-
tion [15, 16].

3.4. Bee Swarm Optimization

This algorithm is based on PSO and Bee algorithm [13] and uses a local search step to to
improve the performance. This algorithm was proposed by Sotelo [13]. The local search
is made around gBest in each iteration of the algorithm.
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Another variant of the algorithms consists in applying the local search around lBest
after comparing it with a bee.

In the future we will refer to BSO algorithm with the gBest enchancer as BSO1
while BSO algorithm with the lBest enhancer will be known as BSO2.

3.5. Artificial Immune System

The Artificial Immune System (AIS) [17] is a metaheuristic based on the Immune System
behavior of living things [13], particularly of mammals [17].

One of the main functions of the immune system is to keep the body healthy. A
variety of microorganisms (called pathogens) could invade the body, which could be
harmuful. Antigens are molecules that are expressed on the surface of pathogens that can
be recognized by the immune system and are also able to initiate the immune response
to eliminate them [17].

Artificial immune systems have various types of models, in this work we use the one
that implements the clonal selection algorithm that emulates the process by which the
immune system in the presence of a specific antigen, stimulates only those lymphocytes
that are more similar, then they are cloned and mutated [17].

3.6. Genetic Algorithm

Genetic algorithms (GAs) [18] proposed by John Hollan based on the theory of evolution
by Darwin [18–20]. This technique is based on the selection mechanisms that nature
uses, according to which the fittest individuals in a population are those who survive, to
adapt more easily to changes in their environment.

A fairly comprehensive definition of a genetic algorithm is proposed by John Koza
[21]:

"It is a highly parallel mathematical algorithm that transforms a set of individual
mathematical objects with respect to time using operations patterned according to the
Darwinian principle of reproduction and survival of the fittest and after naturally have
arisen from a series of genetic operations from which highlights the sexual recombina-
tion. Each of these mathematical objects is usually a string of characters (letters or num-
bers) of fixed length that fits the model of chains of chromosomes and is associated with
a certain mathematical function that reflects their ability”.

The GA seeks solutions in the space of a function through simple evolution. In
general, the individual fitness of a population tends to reproduce and survive to the next
generation, thus improving the next generation. Either way, inferior individuals can, with
a certain probability, survive and reproduce.

3.6.1. Clones and Scouts

In order to increase the performance of the GAs the concept of clones and explorers is
considered [22]. A clone is an individual whose fitness is equal to the best individual fit-
ness. When it reaches a certain percentage of clones a percentage of the worst individuals
in the population is then mutated. Mutated individuals are named scouts. The application
of clones and explorers is in addition to the mutation carried out by the GA generation.
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4. Experimental Results

In order to test the performance of the previous algorithms 5 diferent well known topolo-
gies were used: 1) iDorm [1], 2) Strong coupling [6], 3) Week coupling [6] 4) non-
coupled cycles [1], and 5) cycles coupled in two points [1]. In iDorm topology the max-
imum allowed percentage of locked agents was 30% while in other was 20%.

If a solution generated by any of the algorithms was good with respect to the metric
used but the percentage of locked agents exceeded the maximum allowable then the
solution is penalized by increasing the value of the metric obtained by a constant value.

In our experiments we set as a parameter, 3000 functions calls as a measure of
success of the algorithms i.e. the system has 3000 opportunities to find a better solution.
If after 3000 functions calls a better solution is not found, the system has failed.

The best solution not only minimizes the value of the metric used but also minimizes
the number of locked agents. In the experiments the percentage of agents that can be
blocked is set also as a parameter. This is important because if this percentage grows the
system can be disabled.

Interaction Networks test instances [1] are showed on Table 1.

Table 1. Benchmark

Instance # of Agents ACO ACS

1 (iDorm) 4 0.07183234371149662 1.0

2 (Strong coupling) 7 0.26938367763858284 1.0

3 (Week coupling) 7 0.1362409906735542 1.0

4 (Non-coupled) 64 0.35847554949972144 1.0

5 (Coupled in 2 points) 64 1.1840427653926249 1.0

A summary of the parameters used in our experiments is shown in Table 2.
Based on the previous parameters Tables 3 and 4 shows the results obtained in the

case of the function ACO, for each algorithm.

Table 5 shows the results obtained when using the function ACS.

All algorithms were tested using well know topologies and rules, and where the
strategy INPRES had been previously successfully applied [1, 6]. In order to have a fair
comparison, we considered only the number of agents locked (as is the only parameter
considered by INPRES).

Table 6 shows the number of locked agents, when the ACO is applied (see Tables 3
and 4.

Table 7 shows the number of locked agents corresponding to the results obtained
with the ACS (shown in Table 5).
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Table 2. Algorithms Parameters

Algorithm Parameter Value

Particles 45
PSO w 1
BSO c1 0.3

c2 0.7

Particles 6
w 1

μ-PSO c1 0.3
c2 0.7

Replacement generation 100
Number of restart particles 2

Mutation Rate 0.1

Antibodies 45
AIS Antibodies to select 20

New Antibodies 20
Beta Factor 2

Chromosomes 30
Mutation percentage 0.15

GA Elitism 0.2
Clones percentage 0.3
Scouts percentage 0.8

Table 3. ACO Results (A)

Instance Average Cumulative Oscillation

PSO BSO1 BSO2

1 (iDorm) 8.628730269198046E-4 0.0 0.0

2 (Strong coupling) 0.0032242818868545857 0.0 0.0

3 (Week coupling) 0.003153206791536531 0.0 0.0

4 (Non-coupled) 0.002508031766729257 3.8389318144437694E-4 7.7867850781205E-9

5 (Coupled in 2 points) 3.022378356262937E-4 5.27630744376312E-15 0.0

In order to show how the oscillations are succesfully removed, in Figures 1 to 5
the evolution of the system is shown. In figure 1a the oscillatory behavior of instance 1
(iDorm) is showed and in figure 1b the instabilities are successfully removed. For the
instance 2 (Strong coupling) the evolution of the system is shown in figure 2. For the
instance 3 (Weak coupling) the behavior is whown Figure 3. In figure 4a the oscillatory
behavior of the instance 4 (Non-coupled) is showed, and behavior without oscillation is
showed in figure 4b. The oscillatory behavior of the instance 5 (Coupled in 2 points) is
showed in figure 5a, and behavior without oscillation is showed in figure 5b.

Table 8 shows the results obtained by the algorithms considered in this paper. In
order to determine whether an algorithm outperforms another one, the Wilcoxon test was
applied for both the number of agents locked and the oscillatory functions ACO and
ACS.
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Table 4. ACO Results (B)

Instancia Average Cumulative Oscillation

AIS GA μPSO

1 (iDorm) 0.0 0.0173 0.0

2 (Strong coupling) 0.0 0.0 0.0

3 (Weak coupling) 0.0 0.00253 0.0

4 (Non-coupled) 7.63419134025501E-6 0.0 0.008354842172152571

5 (Coupled in 2 points) 0.0 0.0 3.2806731364235696E-4

Table 5. ACS Results

Instance Average Change of the System

PSO BSO1 BSO2 AIS GA μ-PSO

1 (iDorm) 0.0 0.0 0.0 0.0 0.0 0.0

2 (Strong coupling) 0.02 0.0 0.0 0.0 0.0 0.0

3 (Weak coupling) 0.03 0.0 0.0 0.0 0.0 0.0

4 (Non-coupled) 0.03 0.0 0.0 0.03 0.0 0.03

5 (Coupled in 2 points) 0.07 0.0 0.0 0.0 0.0 0.07

Table 6. ACO Locked Agents

Instance Number of Locked Agents

Permited INPRESS PSO BSO1 BSO2 AIS GA μ-PSO

1 (iDorm) 1 1 1 1 1 1 1 1

2 (Strong coupling) 1 3 1 1 1 1 1 1

3 (Weak coupling) 1 1 1 1 1 1 1 1

4 (Non-coupled) 12 16 6 9 12 6 5 7

5 (Coupled in 2 points) 12 28 7 12 9 9 5 5

Table 7. ACS Locked Agents

Instance Number of locked agents

Permited INPRESS PSO BSO1 BSO2 AIS GA μ-PSO

1 (iDorm) 1 1 1 1 1 1 1 1

2 (Strong coupling) 1 3 1 1 1 1 1 1

3 (Weak coupling) 1 1 1 1 1 1 1 1

4 (Non-coupled) 12 16 9 12 12 9 3 12

5 (Coupled in 2 points) 12 28 5 9 7 6 2 6

From Table 8 it was found that GAs were able to obtain smaller for ACO and ACS
but if we take into account the number of locked agents the algorithms PSO and μ-PSO
were the best.

All the algorithms used were able to prevent cyclic behaviour and showed low values
(good performance) in the different parameters involved. However the most important
parameter is the number of locked agents. In this case, μ-PSO showed the best perfor-
mance in the experiments performed.
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(a) Oscillatory behavior of the system (b) Instabilities are successfully removed

Figure 1. Evolution of the system for the case of 1 (iDorm)

(a) Oscillatory behavior of the system (b) Instabilities are successfully removed

Figure 2. Evolution of the system for the case of 2 (Strong coupling)

(a) Oscillatory behavior of the system (b) Instabilities are successfully removed

Figure 3. Evolution of the system for the case of 3 (Weak coupling)

5. Conclusions and Future Work

From our experiments we found that bio-inspired algorithms can successfully minimize
the oscillations when applied to different well-known test instances. These results are
very encouraging, as bio-inspired algorithms could be applied to real-time scenarios
where rules of interactions could be changing on time, and where the agents could be
nomadic (with the corresponding changes of the rules). Additionally, this approach pre-
vents having a large number of agents locked, disabling the system. The metrics used
in our experiments Average Cumulative Oscillations ACO and Average Change of the
System ACS showed good results. However it was found that for ACO when the relation
of change between states is very small the system can have oscillation values close to 0
or significantly below than the original oscillation value and cyclic instability was still
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(a) Oscillatory behavior of the system (b) Instabilities are successfully removed

Figure 4. Evolution of the system for the case of 4 (Non-coupled)

(a) Oscillatory behavior of the system (b) Instabilities are successfully removed

Figure 5. Evolution of the system for the case of 5 (Coupled in 2 points)

Table 8. Algorithms Compared Using the Wilcoxon Test

Algorithm Number of Algorithms (Metric AAO) Number of Algorithms (Metric ACS)

by Value by # of Agents by Value by # of Agents

Overcome Not Overcome Overcome Not Overcome Overcome Not Overcome Overcome Not Overcome

PSO 0 5 4 1 1 4 5 0

BSO (1) 1 4 2 3 3 2 1 4

BSO (2) 2 3 2 3 4 1 2 3

μPSO 4 1 5 0 0 5 4 1

AIS 4 1 3 2 2 3 3 2

GA 5 0 0 5 5 0 0 5

present. In the case of ACS we found that if you have oscillations close to 1 the instability
is present, but if the oscillations are equal or close to 0 the system is stable.

From the experiments performed it was found that PSO and μ-PSO are the most
likely to be implemented in real-time scenarios. Additionally, a parallel implementation
of these algorithms could improve the results obtained in these experiments. More re-
search is needed in these directions, in particular more complex scenarios and dynamic
conditions (rules and nomadic agents), and additional optimization techniques. We hope
to report our results in future publications.
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