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Abstract

Cancer diagnosis is a major clinical applications area of gene
expression microarray technology. We are seeking to develop a
system for cancer diagnostic model creation based on microar-
ray data. We performed a comprehensive evaluation of several
major classification algorithms, gene selection methods, and
cross-validation designs using 11 datasets spanning 74 diagnos-
tic categories (41 cancer types and 12 normal tissue types). The
Multi-Category Support Vector Machine technigues by Cram-
mer and Singer, Weston and Watkins, and one-versus-rest were
found to be the best methods and they outperform other learning
algorithms such as K-Nearest Neighbors and Neural Networks
often to a remarkable degree. Gene selection techniques are
shown to significantly improve classification performance.
These results guided the development of a software system that
Sfully automates cancer diagnostic model construction with qual-
ity on par with or better than previously published results de-
rived by expert human analysts.
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Introduction

An important emerging medical application domain for microar-
ray gene expression profiling technology is clinical decision
support in the form of diagnosis of disease as well as prediction
of clinical outcomes in response to treatment. The two areas in
medicine that currently attract the greatest attention are manage-
ment of cancer and infectious diseases [1,2]. A necessary prereq-
uisite for the creation of clinically successful microarray-based
diagnostic models is a solid understanding of the relative
strengths and weaknesses of available classification and related
(i.e., gene selection and cross-validation) methods. While prior
research has established the feasibility of creating accurate mod-
els for cancer diagnosis, the corresponding studies conducted
limited experiments in terms of the number of classifiers, gene
selection algorithms, number of datasets, and types of cancer in-
volved (e.g., [3,4]). In addition, the results of these studies can-
not be combined into a comprehensive comparative meta-
analysis because each study follows different experimental pro-
tocols and applies learning algorithms differently. Thus, it is not
clear from the literature which classifier (if any) performs best
among the many available alternatives. It is also currently poorly
understood what the best combinations of classification and
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gene selection algorithms are across most array-based cancer
datasets. Another major methodological concem is the problem
of overfitting; that is creating diagnostic models that may not
generalize well to new data (from the same cancer types and data
distribution) despite excellent performance on the training set.
Since many algorithms are highly parametric and datasets con-
sist of a relatively small number of high-dimensional samples, it
is easy to overfit both the classifiers and the gene selection pro-
cedures especially when using intensive model search and pow-
erful learners. Indeed recently, a number of reports appeared in
the literature raising doubts about the generalization ability of
classifiers produced by major studies in the field [5,6]. In recent
meta-analytic assessment of 84 published microarray cancer out-
come predictive studies [2] it was found that 74% of studies did
not perform independent validation or cross-validation of pro-
posed findings, 13% applied cross-validation in an incomplete
fashion, and only 13% performed cross-validation correctly.

The major motivation of this research is to build a fully-automat-
ed software system that generates high-quality and robust (i.e.,
non-overfitted) diagnostic and prognostic models for use in clin-
ical applications. For such a system to be successful, it must im-
plement classification and gene selection algorithms for the
domain, guide model selection by enforcing sound principles of
data analysis. Hence, to inform the development of such a sys-
tem, the goals of the present work are to: (a) investigate which
one among the many powerful classifiers currently available for
gene expression diagnosis performs the best across many cancer
types; (b) how classifiers interact with existing gene selection
methods in datasets with varying sample size, number of genes,
and cancer types; (c) how to parameterize the classifiers and
gene selection procedures so as to avoid overfitting.

Methods and Materials

Classification algorithms

We consider only classification algorithms that can handle mul-
tiple classes and a large number of variables. We also consider
only algorithms that are fairly insensitive to noise and large vari-
able-to-sample ratios (as is appropriate in gene expression array
analysis). Given the above and based on the results of prior stud-
ies in this domain, we selected for our experiments Multi-Cate-
gory Support Vector Machines (MC-SVMs), Neural Networks
(NN ), and K-Nearest Neighbors (KNN). We also conducted ad-
ditional experiments with Decision Tree (DT) Induction,
Weighted Voting (WV), and various flavors of Ensemble Clas-
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Figure 1 - (a) A binary SVM selects a hyperplane (bold line) that maximizes the width of the «gap» (margin) between
the two classes. New cases are classified according to the side of the hyperplane they fall info. (b) Multi-category SVM
algorithm DAGSVM construct a decision tree on the basis of one-versus-one binary SVM classifiers. (¢} MC-SVM algo-

rithms WW and CS maximize margin between all classes simultaneously

sification (EC) methods (the detailed results can be found in [7]).
The main idea of Support Vector Machines (SVMs) [8] is to map
the data (implicitly) to a higher dimensional space via a kernel
function and then identify the maximum-margin hyperplane that
separates training instances. New instances are classified ac-
cording to the side of the hyperplane they fall into (Figure 1a).

Multi-Category SVMs (MC-SVMs) extend the idea behind bi-
nary SVMs to multiple categories (classes). Two algorithmic
families of MC-SVMs were used in the present study. The first
family includes algorithms based on the solution of binary SVM
problems: one-versus-rest (OVR) [9] which separates each class
from all others and constructs a combined classifier incorporat-
ing tie-resolution strategies; one-versus-one (OVO) [9] which
separates all classes pairwise and constructs a combined classi-
fier using voting schemes and tie-breaking strategies; and
DAGSVM [10] which constructs a decision tree on the basis of
all binary OVO classifiers (Figure 1b). The second family in-
cludes methods based on consideration of all classes at once: the
method by Weston and Watkins (WW) [11] and the one by
Crammer and Singer (CS) [12] (Figure 1c). Details in [7].

Parameters for the classification algorithms

Parameters for the classification algorithms were chosen by
nested cross-validation procedures (details presented in the ex-
perimental design subsection) to optimize performance while
avoiding overfitting. For all five MC-SVM methods we used a
polynomial kernel and performed classifier optimization over
degrees={1,2,3} and costs={0.0001,0.01,1,100}. We optimized
the KNN classifier over all values of K (number of neighbors)
ranging from 1 to total number of instances in the training
dataset. We used feed-forward NNs with one hidden layer. The
number of units was chosen heuristically from the set
{2,5,10,30,50}. We employed gradient descent with adaptive
learning rate backpropagation, mean squared error performance
goal set to 108 (an arbitrary value very close to zero), fixed mo-
mentum of 10‘3, and an optimal number of epochs chosen from
the range [100,10000] based on the error on the validation set.

Datasets and data preparatory steps

The 11 datasets used in this work are described in Table 1. They
had 2-26 distinct diagnostic categories, 50-308 samples (pa-
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tients), and 2308-15009 variables (genes). In total the 11 datasets
span 74 diagnostic categories (41 cancer types and 12 normal tis-
sue types) and are available for download from [7]..
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Figure 2 - Pictorial simplified example of Design I. The data

are split into mutually exclusive sets Pi. The performance is
estimated in the outer loop by training on all splits but one,
using the remaining one for testing. The inner loop is used to
discover the optimal value of parameter C for training in the
outer loop.

No new methods to preprocess gene expression data were in-
vented. We relied instead on standard normalization and data
preparatory steps performed by the authors of the primary
dataset studies. In addition, we performed a simple rescaling of
gene expression values (to be between 0 and 1) to speed up train-
ing of SVMs. The rescaling was performed based on the training
set in order to avoid overfitting.

Experimental design for model selection and evaluation

Two experimental designs were employed to obtain reliable per-
formance estimates and avoid overfitting. Both experimental de-
signs are based on two loops. The inner loop is used to determine
the best parameters of the classifier (i.e. values of parameters
yielding the best performance on the validation dataset). The
outer loop is used for estimating the performance of the classifier
built using the previously found best parameters by testing on
the independent set of patients. Design I uses a stratified 10-fold
cross-validation in the outer loop and a stratified 9-fold cross-



validation in the inner loop [13]. See Figure 2 for a simplified
pictorial example of a 3-fold Design I applied to 3 patient groups
(P1, P2, P3) with optimization of parameter C (which takes val-
ues “1” or “2”) of some classifier (Note, that in reality we do not
optimize just one parameter but, rather, a large set of combined
parameters). Design II uses leave-one-out cross-validation
(LOOCYV) in the outer loop and a stratified 10-fold cross-valida-
tion in the inner loop. We chose to employ both designs because
there exists contradictory evidence in the machine learning liter-
ature regarding whether N-fold cross-validation provides more
accurate performance estimates than LOOCV and vice-versa for
zero-one loss classification [14]

Gene selection

To study how dimensionality reduction can improve classifica-
tion performance, we applied all classifiers with subsets of 25,
50, 100, 500, and 1000 top-ranked genes (following the example
set by [15]). Genes were selected according to four gene selec-
tion methods/metrics: (1) ratio of genes between-categories to
within-category sums of squares (BW) [4]; (2-3) signal-to-noise
(S2N) scores [3] applied in a one-versus-rest (S2N-OVR) and
one-versus-one (S2N-OVO) fashion; and (4) Kruskal-Wallis
nonparametric one-way ANOVA (KW). The ranking of the
genes was performed based on the training set of samples to
avoid overfitting.

Performance metrics

We used two classification performance metrics. The first metric
is accuracy since we wanted to compare our results with the pre-
viously published studies that also used this performance metric.
Accuracy is easy to interpret and simplifies statistical testing. On
the other hand, accuracy is sensitive to the prior class probabili-
ties and does not fully describe the actual difficulty of the deci-
sion problem for highly unbalanced distributions. For example,
it is more difficult to achieve an accuracy of 50% for a 26-class
dataset /4_Tumors (with prior probability of the major class=
9.7%) compared to an accuracy of 75% for a binary dataset DL-
BCL (with prior of the major class=75.3%).

Table 2: Performance results (accuracies and RCI) whitout gene
selection obtained using a nested stratified 10-fold crossvalida-
tion desing. These results are further improved by gene selection

(see figure 3)
Aﬁliracy l_lCI

Method Average Range Average Range

OVR 88.46% 65.1% - 100% 87.54% | 71.14% - 100%
E (e)¢) 80.64% | 47.07% - 100% 84.72% | 64.99% - 100%
8 DAGSVM] 80.71% | 47.35% - 100% 84.55% | 65.64% -100%
= |ww 86.52% | 62.24% - 100% ] 86.29% | 71.14% -100%

cS 88.69% 65.33% -100% 87.17% | 71.14% - 100%
E KNN 74.44% | 43.9%-89.64% | 69.74% | 51.09% - 83.93%
W
§ NN 59.49% | 11.12%-91.03% | 58.97% |} 16.24% - 87.50%

The second metric is relative classifier information (RCI),
which corrects for differences in base-rates of diagnostic catego-
ries, as well as the number of categories. RCI is an entropy-based
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measure that quantifies how much the uncertainty of a decision
problem is reduced by a classifier relative to classifying using
the priors [16]. We also considered using (1) generally-accepted
misclassification functions, but could not identify any for the
cancer domain, (2) emerging multi-class extensions of the area
under ROC curve [17,18]. We decided against them because
such methods are not well-suited to the problem characteristics.

Overall research design

To maintain the feasibility of this study, we pursued a staged
Jactorial design: in stage 1, we conducted a fully factorial design
involving datasets and classifiers without gene selection; in
stage II, we focused on the datasets for which the full gene sets
yielded poor performance and applied (in a factorial fashion)
gene selection. In addition, we optimized algorithms using accu-
racy only and limited the possible cardinalities of selected gene
sets to only five choices (see subsection on gene selection).

While the above choices restricted the number of models gener-
ated, the resulting analyses still generated a total of ~2.6P10°
diagnostic models. The total time required was 4 single-CPU
months (platform used: Intel Xeon 2.4 GHz).

Notice that, despite the very large number of examined models,
the final performance estimates are not overfitted. This is be-
cause only one model is selected per split for the estimation of
the final performance and it is applied to previously unseen cas-
es. Thus, regardless of how much performance is overestimated
in the inner loop (which, in the worst case, may result in not
choosing the best possible parameters’ combination), the outer
loop guarantees proper estimation of performance.

Statistical comparison among classifiers

Totestifdifferences inaccuracy between the best method (i.e. one
with the largest average accuracy) and all remaining algorithms
are non-random, we need a statistical comparison of observed
differences in accuracies. We used random permutation testing
(with an alpha level of 0.05), which does not rely on indepen-
dence assumptions (that are clearly violated in cross-validated
datasets) and can be applied to several datasets [19]. The specific
details of how this test works can be found in [7].

Implementation

We used the MC-SVM algorithms implemented by the LibSVM
team [20], since they use state-of-the-art optimization methods
for the solution of MC-SVM problems. The implementations of
NN and DT classifiers were based on the Matlab Neural Net-
works and Statistics toolboxes, respectively. We used our own
implementations of KNN, WV, and EC algorithms, as well as
gene selection and statistical comparison.

The prototype analysis system GEMS (Gene Expression Model
Selector) based, on the results and analyses reported here, was
built using Matlab R13 and MS Visual C++ 6. GEMS has a
graphics user interface consisting of a single form and is freely
available for download from [7]. Most fields are automatically
filled out with default values. All experiments in this study can
be replicated using the system with a few clicks of the mouse.



Table 1: Cancer-related human gene expression datasets used in this study. In addition to 9 multicategory datasets, 2 datasets
with two diagnoses were included to empirically confirm that MC-SVM methods behave as well as binary SVMs in binary
classification tasks (as theoritically expected)

Results

The performance results (accuracies and entropy-based measure
RCI) of experiments using Design I without gene selection are
summarized in Table 2. Results for Design II are very similar
and due to space limitations are provided only in [7]. The fact
that we obtained similar results with two different experimental
designs is evidence in favor of the reliability of the performance
estimates.

In 8 out of 11 datasets, MC-SVMs perform cancer diagnoses
with accuracies > 90% and in 7 datasets with RCI > 90%. Over-
all, all MC-SVMs outperform KNN and NNs significantly. MC-
SVM methods CS, OVR, and WW yield the best results (and are
not statistically significantly different from each other). OVO,
DAGSVM, KNN, and NNs have poorer performance than the
above three methods to a statistically significant degree.

The summary of classification with four gene selection methods
(BW, S2N-OVR, S2N-OVO, and KW) applied to the most chal-
lenging datasets (9_Tumors, 14_Tumors, Brain_Tumorl, and
Brain_Tumor2) is presented in Figure 3.

The results show that gene selection improves classification ac-
curacy of KNN and NNs significantly (up to 14.97% and
59.78%, in absolute terms respectively). Although KNN and
NNs with gene selection performed closer to MC-SVMs than
without gene selection, MC-SVM algorithms still outperformed
KNNandNNs in most cases. Gene selection also improves accu-
racy of MC-SVMs (up to 9.53%) and, hence, it improves accu-
racy of the overall best classifier. Neither of the four gene
selection methods performs significantly better than the other
ones. The analysis of gene selection results with RCI perfor-
mance measure leads to the same set of conclusions [7].

The reported classification results are equal to or better than
those of previously published models on the same datasets [7].

Finally, all MC-SVM algorithms have the same accuracy for the
two  binary classification problems (DLBCL and
Prostate_Tumor) as expected. In additional classification exper-
iments with DT, WV and EC methods, we found that both with
and without gene selection, DTs perform significantly worse
than MC-SVMs, worse than KNN, and similarly or worse than
NNs. Similarly, WV classifiers are significantly outperformed

Number of Max
Dataset name Diagnostic Task Sam- | Variables| Cate- | Variables / L
ples Lgena) gories | Samples prior
11_Tumors _ |11 various human tumor types 1741 12533 | 11 72 15.5%
14_Tumors __|14 various human tumor types and 12 normal tissue types 3081 15009 | 26 49 9.7%
9 Tumors 9 various human tumor types 60 | 5726 9 95 15.0%
Brain_Tumor] |5 human brain tumor types 90 | 5920 5 66 66.7%
Brain_Tumor2 |4 malignant glioma types S50 | 10367 | 4 207 _130.0%
. Acute myelogenous leukemia (AML), acute lympboblastic leukemia o
Leukemial (ALL) B-cell. and ALL T-cell 72 | 5327 3 74 52.8%
Leukemia? |AML, ALL, and mixed-lineage leukemia (MLL) 72 | 11225 3 156 38.9%
Lung Cancer |4 lung cancer types and normal tissues 2031 12600 | 5 62 68.5%
SRBCIL Small, round blue cell tumors (SRBCT) of childhood 83 | 2308 4 28 349%
Prostate _Tumor |Prostate tumor and normal tissues 1021 10509 | 2 103 151.0%
‘ DLBCI Diffuse large b-cell lymphomas (DLBCL) and follicular lymphomas | 77 | 35469 2 71 75.3%
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by MC-SVMs and do not perform better than KNN and NNs. EC
does not improve performance of the best non-ensemble models.
The details of these additional experiments can be found in [7].

Conclusions and Limitations

The emergence of new cancer gene expression datasets in our in-
stitution and elsewhere will allow us to conduct a prospective
evaluation of the GEMS system to study its ability to facilitate
creation of powerful diagnostic models. We also plan to aug-
ment the preliminary version of the system with a wizard-like
graphics user interface that will make GEMS usable by research-
ers with limited expertise in data-analysis.

A particularly interesting direction for future research is to im-
prove our existing gene selection procedures by multivariate
Markov blanket and local neighborhood algorithms. These tech-
niques have been previously successfully applied to cancer gene
expression domain and have the advantage of causal interpret-
ability under fairly broad assumptions [21].

The contributions of the present study are two-fold. The first
contribution is that we conducted the most comprehensive sys-
tematic evaluation to date of multi-category diagnosis algo-
rithms applied to the majority of multi-category cancer-related
gene expression human datasets publicly available. Based on re-
sults of this evaluation, the following conclusions can be drawn:

- Multi-Category Support Vector Machines is the best family of
algorithms for this type of data and medical tasks. They outper-
form other popular non-SVM machine learning techniques by a
large margin.

- Among MC-SVM methods, the ones by CS and WW, and one-
versus-rest have superior classification performance.

- The performance of both MC-SVM and non-SVM methods can
be moderately (for MC-SVMs) or significantly (for non-SVM)
improved by gene selection.

We believe that practitioners and software developers should
take note of these results when considering construction of dec-
sion support systems in this domain, or when selecting algo-
rithms for inclusion in related analysis software.

The second contribution is that we created the fully-automated
software system GEMS that automates the experimental proce-
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Figure 3 - Average absolute improvement of classification accuracy (lefi) and RCI (right) (averaged over 4 datasets) by performing
gene selection. Minimum and maximum absolute improvement is shown with error-bars

dures described in this paper to (1) develop optimal classifica-
tion models for the domain of cancer diagnosis with microarray
gene expression data and (2) estimate their performance in future
patients. The results obtained by the system in a labor-efficient
manner appear to be on par with or better than previously pub-
lished results in the literature on the same datasets. Although
several commercial and academic software tools do exist for
gene expression classification [22] to the best of our knowledge
GEMS treats the task in the most comprehensive manner and is
the first such system to be informed by a rigorous analysis of the
available algorithms and datasets. We hope that the methodolo-
gy presented in the present paper may encourage similar princi-
pled treatment of other software development efforts in clinical
bioinformatics. The system is freely available [7].
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