MEDINFO 2004

M. Fieschi et al. (Eds)
Amsterdam: IOS Press

© 2004 IMIA. All rights reserved

Extracting Phenotypic Information from the Literature via Natural Language Processing

Lifeng Chen, Carol Friedman

Department of BioMedical Informatics, Columbia University, NY, USA

Abstract

In recent years, the amount of biomedical knowledge has been
increasing exponentially. Several Natural Language Processing
(NLP) systems have been developed to help researchers extract,
encode and organize new information automatically from
textual literature or narrative reports. Some of these systems
Jfocus on extracting biological entities or molecular interactions
while others retrieve and encode clinical information. To exploit
gene functions in the post-genome era, it is necessary to extract
phenotypic information automatically from the literature as
well. However, few NLP projects have focused on this. We
present the development of a system called BioMedLEE that
extracts a broad variety of phenotypic information from the
biomedical literature. The system was developed by adapting
MedLEE, an 'existing clinical information extraction NLP
engine. A feasibility evaluation study of BioMedLEE was
performed using 300 randomly chosen journal titles. Results
showed that experts achieved an average precision rate of
65.4%, (95%CI: [58.0%, 72.8%)]) and a recall rate of 73.0%,
(95%CI: [66.2%, 80.0%)). BioMedLEE had 64.0% precision
and 77.1% recall respectively, according to expert agreements.
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Introduction

The fundamental aim of modern genetics is to connect pheno-
type with genotype. In the past decade, genomic sequencing, mi-
croarray analysis and electronic publishing have resulted in the
explosion of biomedical data and knowledge. The completion of
genome projects in human and several other organisms has
increased the amount of sequence information drastically. How-
ever, the role of many sequences is unknown. For example,
human inherited diseases, as a very small part of phenotypes,
undergo vigorous investigation. Currently although LocusLink
[1] and OMIM [2] record approximately 1,500 of the roughly
4,000 Mendelian inherited diseases with known genes, about
700 of the single-gene diseases do not have known associated
genes. On the other hand, complex conditions such as asthma,
diabetes and Alzheimer’s disease are more common and impact
millions of people. They are thought to result from the
combination of a set of “susceptible genes” and “risk factors”
from the environment. Nevertheless, the connections between
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the genes and complex disorders are by nature much harder to
establish.

Online literature has become an important resource for
investigating genotype-phenotype relationship. For example,
OMIM, an online catalog of human genes and associated genetic
disorders, is maintained by use of human curators manually
reading and extracting information from the online literature.
Other databases, such as FlyBase [3] and the Mouse Genome
Informatics (MGI) [4] are also curating phenotypic information
by manually extracting information from the published
literature.

Nevertheless, utilization of the online literature is problematic.
One issue is that current information from published literature is
generally stored manually into the knowledge base by human
curators. Thus, the maintenance of the knowledge base requires
a tremendous amount of human effort. The large volume of in-
formation makes it impractical for manual identification and en-
try of relevant information into a knowledge base. Secondly,
most databases are managed separately, and each represents a
single, well-defined area. This makes search by researchers over
different databases very time consuming. Thirdly, records in the
databases occur mainly in the form of free text, which although
convenient for human beings, is difficult for computerized
system to reliably access.

Natural language processing (NLP) has the potential to solve this
problem by extracting and structuring text-based biomedical in-
formation, making these data available for current use and future
analysis. Several NLP engines have been developed in the
clinical and biological domains. These systems are able to
extract clinical [5-7] or biological [8;9] [10] terms and
interactions from medical reports or biological literature,
respectively. Many of these systems have shown effectiveness
acquiring medical knowledge or genomic terms and interactions
from corresponding textual sources. Important as it is, however,
there is no NLP system to date dedicated to recognizing and
extracting phenotypic information.

There are multiple ways to address this problem. A brand new
system could be built. Alternatively, a current system may be
adapted to achieve the same goal. Clinical NLP systems, for
example, extract a variety of findings, such as diseases,
symptoms and body locations. Since those types of information
are essentially types of phenotypes, the success of extracting
different types of clinical information from medical reports
suggests the possibility of adapting a clinical NLP engine to



enable extraction of phenotypic information from online
literature. In this work, we present BioMedLEE, a system based
on adaptation of MedLEE, a clinical NLP engine to extract
phenotypic information from the online literature. The
feasibility of the adaptation was evaluated. Results are shown
and discussed.

Background

In the past few years, NLP systems have been developed and
implemented in many biomedical domains. In the clinical
domain, many of the systems (MPLUS [5], LSP [6], MEDLEE
[7], MENELAS [11}], and RECIT [12]) focus on processing
narrative medical reports such as discharge summaries and
radiology reports. The NLP systems extract clinical terms and
relations from the patient records. In the biological domain, NLP
knowledge extraction mainly focuses on two categories: 1) bio-
logical entities such as genes and proteins [8;9] and 2) biological
relations between those entities, e.g. protein-protein interaction
[13-15] or protein-drug interaction [16]. Most of these NLP
engines have shown promise; they report precision and recall
ranging from 60-80% in the biological domain (For review, see
[17]). Similar results were seen in the medical domain, with
specificity and sensitivity (or precision and recall) rates of 60-
90% [5;7;11].

There have been several projects that investigated gene-
phenotype relationships from the online literature. Perez-Iratxe-
ta has described a method using data mining to identify associa-
tion of genes to inherited diseases [18]. They established a
scoring system based on co-occurrence of curated MeSH
headings of MEDLINE articles, GO terms [19] and protein
functions recorded in RefSeq database. The main idea is that the
more frequent the co-occutrence, the stronger the association the
terms have. Using this method they were able to identify a set of
potential disease-related genes. Their evaluation with 100
known disease-associated genes showed that there were 25%
and 50% probabilities that the disease-associated genes would
be among the 8 and 30 best-scoring genes respectively, suggest-
ing there is a relationship between the score of a gene and its
likelihood of being associated with a particular disease in an
article.

Adamic described a similar statistical method that identifies sets
of genes associated with given diseases from the literature {20].
They initially obtained gene symbols and aliases from HUGO
(Human Genome Organization) [21], OMIM and LocusLink.
Then they performed automated searches of MEDLINE
abstracts to produce a “gene list” using a straightforward pattern
matching. Particular diseases, such as leukemia, were selected
for investigation. A scoring system was then used to calculate
scores for “gene-disease” pairs according to the frequencies of
their co-occurrences. They were able to identify most of breast
cancer genes in one of the human edited breast cancer gene
databases (http://tyrosine.biomedcomp.com) using this method.

However, these efforts mainly focused on diseases, which
constitute a small part of phenotypes. Our system BioMedLEE
differs from the above since we are focus on extracting a broad
variety of phenotypic information from the online literature, and
not just diseases. Additionally Perez-Iratxeta’s work depends on
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curated resources, such as MeSH headings and annotated GO
terms. BioMedLEE uses automated techniques and thus, does
not depend on manually curated data. Adamic’s system, while
obtaining a comprehensive gene list from several databases, was
limited to only a few diseases in implementation. Currently we
are only recognizing phenotypic information. In a separate
project, we refining a gene name recognition and identification
module, and plan on integrating the gene name recognition
module with BioMedLEE to facilitate interpretation of gene-
phenotype relationship.

Overview of MedLEE

Detailed descriptions of MedLEE have been previously pub-
lished [7;22]; in this paper, we present a brief summary.
MedLEE consists of a series of processing components that uti-
lize different knowledge components. This design enables ex-
tension to similar domains by augmenting or changing the
knowledge sources while leaving the processing components in-
tact. For example, a system GENIES, which extracts
biomolecular interactions and other relations, was adapted from
MedLEE by replacing the lexicon associated with the clinical
domain with one relevant for the biological domain and by
utilizing a new set of grammar patterns [13].

The relevant components for this paper are the preprocessor, the
parser, and the partial parsing components. The preprocessor de-
termines sentence boundaries, and also identifies and categorize
phrases in the sentences. Identification of phrases is accom-
plished by using a knowledge source in the form of a lexicon,
which contains entries for phrases associated with phenotypic
information, their corresponding semantic or syntactic catego-
ries, and target forms. The next component, the parser, recog-
nizes the structure of the sentences and generates the initial
target output form. The parser uses grammar rules that combine
semantic and syntactic patterns to recognize relevant clinical
findings and modifier relations, and to generate target forms. If
a parse cannot be obtained by strictly following the grammar
rules, partial parsing is used. The representation of the output is
in the form of frames, where the first element of a frame corre-
sponds to the type of information, the second to the value. The
remaining elements in the frame are modifier frames, which
have a similar “type-value-modifier” frame structure. For exam-
ple, the following frame was generated for the phenotypic infor-
mation developmental defects in the inner ear:
[problem,defect,[bodyfunc,development],[bodyloc,ear,[region,
inner]

In this example, the primary finding was a problem defect,
which was qualified by the function development, and which
occurred in the body location ear, in the region inner. The frame
is subsequently transformed into XML form, which is a
straightforward process.

Methods
Collecting a Corpus

We used the resources associated with the mouse model organ-
ism and automatically obtained all the abstracts from the MGI
website as of February 2003. A set of genes was associated



with each of the abstracts from manual curation, which was
specified in the website. In our current work, we focused on
extracting phenotypic information from the set of abstracts and
assumed that extracted phenotypes had some relationship with
the genes associated with the abstract.

Development of the BioMedLEE system

Adapting MedLEE to enable extraction of phenotypic informa-
tion requires less work than building a brand new system.
However, two tasks have to be accomplished: 1) grammar rules
associated with semantic and syntactic patterns in the new
domain have to be edited to adjust the context change from
medical narrative reports to biomedical literature; and 2) the
lexicon has to be modified to enable recognition of more pheno-
typic terms, such as cellular functions and model organism
anatomy.

To identify issues in adapting MedLEE to this new domain, we
first parsed 50 randomly chosen abstracts using the original
version of MedLEE, and then made incremental changes and
refinements, consisting of changes to the lexicon and grammar.
Terms associated with particular semantic categories were
removed from the lexicon because they were not relevant to
phenotypic information. For example, diagnostic procedures
(e.g. chest x-ray, biopsy), laboratory procedures (chem.-7, apgar
score), healthcare devices (catheter, surgical clips) and
medications (Tylenol, vitamin A) were removed. New terms
were added to the lexicon that were not frequently observed in
the clinical record. These terms were obtained from several
resources. One resource was the Unified Medical Language Sys-
tem (UMLS) [23]. Approximately 19,000 UMLS terms
associated with certain semantic categories were automatically
imported into the lexicon. For example, terms with classes
corresponding to cellular body functions (antibody formation,
cell adhesion, blastogenesis), cellular dysfunction (chromosome
deletion, neuron degeneration, polyploidy), and cellular
components (cell nucleus, cytoskeleton) were added. Seventy
anatomic terms were added according to terms found in the MGI
website that ‘were associated with anatomy (tail, whiskers,
hindlimb). The third resource was the Mammalian Ontology
[24], which specified morphological behavior (circling,
bobbing, compulsive biting), and other phenotypes (curly
whiskers, polydactyly). Three hundred and forty-four terms
were added from this resource. The fourth resource was
biological expertise. Two hundred and fifty terms that were
found to be relevant but missing were added, such as
corticogenesis, dysmorphology, cyclopia).

Changes to the grammar involved removing certain patterns. For
example, medication patterns, diagnostic procedure patterns, de-
mographic patterns, and recommendation for follow up exami-
nation patterns were removed from the grammar. Only one new
grammar rule was added, to accommodate absence of body
parts, and no changes to the other rules were made.

Since the revised version of MedLEE was designed to handle a
different domain, it was named BioMedLEE. The text was rep-
arsed using BioMedLEE and problems were noted and their
causes analyzed. Only simple corrections were made in subse-
quent rounds of refinement because our aim was to perform a
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feasibility evaluation early on to assess performance; if the re-
sults were promising, we aimed to spend more effort in refining
the system. For example, we removed about 30 lexical entries
because they had different senses in the biological environment
than in the clinical environment. For example, growth with a
sense tumor is rare in the biological domain. When the new re-
visions were completed, the same set of abstracts was parsed us-
ing them. Several rounds of refinements were made prior to the
feasibility study.

Evaluation

To perform the feasibility study, a test set of 300 titles was
randomly chosen from the set of MGI abstracts. Nine experts
were used as subjects to obtain a gold standard. Each title was
assigned in such a way that it was examined by three different
experts. Each expert was given instructions on how to read the
titles and highlight phenotypic information. In this study, we
were primarily focusing on diseases, functions and behaviors
above the molecular level, i.e. phenotypes on cellular, tissue,
organ, body system and organism level (e.g. skin carcinogene-
sis, epithelial migration). Examples were given to help the
experts understand the task. A set of 5 titles was provided for
self-testing before they read the titles from the test set. Then each
expert read 100 titles and highlighted terms that were judged to
contain phenotypic information. All the results were gathered
and examined by LC (first author of the paper) to build a gold
standard. If there was a disagreement between experts, a ma-
jority vote was used. Some words, such as “of”’, “in”, “a” and

“the” were not considered when comparing terms. In some -
cases, one expert highlighted a subset of terms chosen by anoth-

er, that was different only because of modifiers, e.g. “embryonic

death” and “early embryonic death”. This was considered to be

an agreement and the smallest relevant phrase was chosen for the

gold standard. In the example above, “embryonic death” was

considered as the phenotype in the sentence. The same set of ti-

tles was then processed by BioMedLEE and phenotypic infor-

mation extracted. The outputs were compared with the gold

standard using the same criteria that were used to judge the

experts’ opinions. We then calculated the recall and precision

measurements for both the experts and BioMedLEE. Recall was

calculated as the number of correct phenotypic relations extract-

ed by BioMedLEE or experts divided by the number obtained by

the gold standard. Precision was computed as the number of cor-

rect phenotypic relations extracted by BioMedLEE or individual

experts divided by all relations that were extracted. To avoid bi-

as, when evaluating individual experts, the particular expert was

excluded from the reference standard. For the cases where the

expert only agreed with one of the two other experts that were to

form the reference standard, a dice was thrown to decide if the

phenotypic relation should be considered a reference standard.

Results

Of the 300 titles, a total 0of 481 phenotypic relations were marked
up by the experts, among which the experts agreed completely
on 170 (35.3%) while they were unable to achieve an agreement
on 167 (34.7%). For the remaining 144 (29.9%) phenotypic
relations, 2 of the 3 experts agreed and a majority vote was used.



Therefore 314 phenotypic relations, for which complete
agreement or a majority vote was achieved, formed the gold
standard in our evaluation study. Of the 314 phenotypic rela-
tions, BioMedLEE correctly recognized 242 of them, giving a
recall of 77.1%. BioMedLEE also extracted 136 more pheno-
types that were not highlighted by the experts. The precision rate
was thus 242/(242+136), or 64.0%. At the same time, an average
precision rate of 65.4%, (95%CI: [58.0%, 72.8%]) and a recall
rate of 73.0%, (95%CI: [66.2%, 80.0%]) were achieved for indi-
vidual experts.

Discussion

Our feasibility evaluation showed promising results.
BioMedLEE was able to extract phenotypic information from
textual titles with comparable precision and recall to individual
experts. Also many of BioMedLEE’s problems appeared easy to
fix. We found that most false positives were caused by 6 general
sense terms (function, deficiency, development, disruption,
tissue and cell) that were extracted by BioMedLEE but not ex-
perts when these terms occur without any modification. It
seemed that BioMedLEE was penalized because these terms ap-
peared in the outputs frequently. We applied a simple filter that
required these terms be retained only when they have certain
types of modifiers. When this simple postprocessor was applied,
half (68) of the false positives were eliminated and the precision
rate was improved to 78.1% without affecting the recall rate.

Expert evaluation was costly. It took about 40-60 minutes for an
expert to highlight 100 titles while BioMedLEE required only 35
seconds to process the same set of titles using a Sun Blade 2000
workstation with 2 900 MHz 64-bit UltraSPARC III CPUs and
2G RAM.The disagreement among the experts seems very high
(~40%). This was probably due to the vague nature of the ques-
tion we addressed: what constitutes “phenotypic information™?
According to the Merriam-Webster dictionary, phenotype is “the
visible properties of an organism that are produced by the inter-
action of the genotype and the environment”. Thus, phenotype is
the outward, physical manifestation of an organism. This can in-
clude the physical parts, the sum of the atoms, molecules, mac-
romolecules, cells, structures, metabolism, energy utilization,
tissues, organs, reflexes and behaviors or anything that is part of
the observable structure, function or behavior of a living organ-
ism. Although instructions were given to the experts to help
them highlight the desired phenotypic information in this study,
that were the “higher levels” phenotypes than molecular
interactions, frequently the experts highlighted molecular
interactions such as “ti’anscn’ption” or “alternative splicing”. In
many cases, one expert would highlight the information while
another decided not to, resulting in the high disagreement rate.
Instructions given to the experts may have played a role in the
high disagreement rate. The instructions explicitly stated what
information should be highlighted but did not explicitly list what
should not be. In the future, more negative examples will be
provided, and we expect the disagreement rate will decrease.

Since MedLEE is an NLP engine for the clinical domain, when
we adapted it to extract biological information, some problems
occurred due to incorrect interpretation of terms. For example,
“interaction” was interpreted as “drug interaction”, which is
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incorrect in most biological environments. Also there were
excessive terms in the lexicon, which caused false positives. For
example, “autosomal homologue”, which is a molecular level
term, was captured by BioMedLEE. This occurred because
supplemental information associated with body functions were
automatically imported into the lexicon from the UMLS, which
did not differentiate between molecular and observable levels of
phenotypes. This can be fixed using knowledge engineering.
Another more difficult problem was due to ambiguity. For
example, the gene symbol “fat/far” was interpreted as the
phenotype “obesity”. Ambiguity represents 7% (10/136) of all
errors in our examples. However, this rate can be higher (up to
10/68 = 14%) if the general terms causing false positives are
fixed. Additionally, some types of phenotypic information were
not recognized by BioMedLEE because the corresponding terms
were not included in the lexicon. The “incompleteness™ of the
lexicon, however, is time consuming to deal with. Since we
derived our lexicon from certain sources, e.g., the UMLS
metathesaurus, the completeness and correctness of our lexicon
depends on the corresponding resources. The lack of a
comprehensive terminology for phenotypes of all organisms will
necessitate that relevant terms will have to be manually added,
which is a substantial amount of work. Thus, the lack of avail-
ability of a comprehensive resource may be a limiting factor in
our research. Many researchers have addressed this problem. For
example, some groups have used uncurated terminology, i.e.,
phrases dynamically extracted from the literature in combination
with a curated terminology to relieve this problem [16;25].
Majoros has described a model using a hidden Markov heuristic
to identify key concepts in biomedical literature, to help improve
speed and accuracy in ontology construction [26].

Although promising, our results showed, BioMedLEE will have
to undergo further revision. Future work will involve: (1) ex-
tending the lexicon; (2) integrating the module that extracts gene
or protein (GENIES) information with BioMedLEE so we can
capture and organize gene-phenotype relationships; (3) work on
resolving ambiguous words and acronyms. This is an important
but difficult task since ambiguity appears to be big problem even
in a single domain for a single species. It certainly gets more se-
vere when considering multiple species and domains [27; 28].

Conclusion

Genotype-phenotype relations are important in modern genetics.
NLP can facilitate extraction of this information automatically
from the biomedical literature. Phenotypic information is very
broad, and resembles clinical information in many ways. We de-
veloped an NLP system, BioMedLEE, which extracts phenotyp-
ic information from the biomedical literature and performed a
feasibility study. Our results showed that individual experts dis-
agreed on phenotypic information contained in the titles 40% of
the time. BioMedLEE provided comparable precision (64.0%)
and recall (77.1%) to experts. Future effort will be focusing on
refinement, improvement and evaluation of BioMedLEE to help
extract valuable phenotypic information from biomedical litera-
ture.
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