MEDINFO 2004

M. Fieschi et al. (Eds)
Amsterdam: IOS Press

© 2004 IMIA. All rights reserved

CliniViewer: A Tool for Viewing Electronic Medical Records Based on Natural Language
Processing and XML

Hongfang Liu?, Carol Friedman®

“Department of Information Systems, University of Maryland at Baltimore County
bDepartment of Biomedical Informatics, Columbia University

Abstract

With the evolving use of computers in healthcare, the electronic
medical record (EMR) is becoming more and more popular. A
tool is needed that would enable physicians to accurately and ef-
ficiently access clinical information in multiple medical records
associated with a particular patient. Both natural language pro-
cessing (NLP) and the eXtensible Markup Language (XML)
have been used in the clinical domain for capturing, represent-
ing, and utilizing clinical information and both have shown
great potential. In this paper, we demonstrate another use of
XML and NLP through CliniViewer, a tool that organizes and
presents the clinical information in multiple records. We also
describe the flexibility and capability provided when combining
XML and NLP to summarize, navigate, and conceptualize struc-
tured information. The tool has been fully implemented and test-
ed using patients with multiple discharge summaries.

Keywords

Natural Language Processing, XML, Electronic Medical
Record, Summarization

Introduction

With the evolving use of computers in healthcare, the electronic
medial record (EMR) is becoming more and more popular.
However, the promise of the EMR for saving physicians time in
chart review is far from achieved because of the lack of tools that
enable physicians to quickly identify and locate information they
need for a particular patient when the information occurs in mul-
tiple medical records.

To avoid medical errors and improve health care, it is critical for
physicians to be familiar with a patient’s clinical history so that
they can quickly ascertain previous problems, medications, and
procedures. One way for a physician to obtain this information
would be to manually review all the medical records associated
with the particular patient. However, that is generally very time-
consuming and impractical. An alternative way would be to use
an automated system to retrieve and summarize all the pertinent
information, and to present it using an effective user interface.
For example, WebCIS [1], a Web-based clinical information
system used at New York Presbyterian Hospital (NYPH), allows
physicians to electronically view individual reports. However,
more intelligent processes would be needed to summarize the

639

data and to organize it according to concepts, such as medica-
tions, and problem lists, etc.

Currently, with the growing need for exchanging clinical infor-
mation, XML [2,3] has been used for the representation and uti-
lization of clinical information. For example, Health Level 7
(HL7) [4] has published an ANSI accredited document standard
CDA (clinical document architecture) using XML [5], where
CDA is a three-level clinical document architecture with each
higher level adding more specificity to the markup of the docu-
ments. An XML marked up report has been shown to offer great
potential for sharing and exchanging clinical information across
different organizations {3,5].

NLP information extraction systems in the clinical domain offer
unique opportunities for extending the use of the EMR because
they structure and encode narrative text in the EMR so that the
information can be used by various automated systems [6,7].
However, most NLP systems in the clinical domain are used to
deliver information in narrative text to decision support systems,
or coding systems [8,9], and the end users are rarely physicians.

In this paper, we present a novel method for displaying clinical
information to physicians that involves combining XML and
NLP techniques. This method offers flexibility when viewing,
summarizing and navigating information extracted from multi-
ple reports of a single patient. This method was implemented in
a system named CliniViewer, an electronic medical record view-
er, which utilizes an NLP system, MedLEE [9], and an XML
navigation interface called TreeViewer [10].

There has been some work on presenting, summarizing and nav-
igating EMRs associated with a single patient. In a paper written
by Estrada et al. {11], a tool called Puya was described that was
used to attract a physician’s attention to abnormal physical find-
ings in clinical notes by eliminating sentences describing normal
physical findings. Krauthammer et al. [12] designed a knowl-
edge model to condense the rich representation of information
generated by MedLEE as a result of processing a single report in
order to present different predefined views according to the de-
sired level of granularity. One view was designed for clinical
purposes and the other for data mining. QCIS [13], which is a
multiple-view generation system, could also generate views with
multiple orientations (i.e., source-oriented, time-oriented, and
concept-oriented) from multiple reports associated with a given
patient A user must first type the term of interest and then select
a concept from a list of matched controlled vocabulary concepts

that is subsequently provided. Thus, it only provides clinical in-
formation associated with the selected concept and the informa-
tion can only be displayed according to the three predefined
orientations. CliniViewer is different from related work in sev-
eral ways: 1) it utilizes XML tree structure to provide a view that
summarizes all clinical findings identified by NLP and a view
that arranges original text reports in a tree structure; ii) it con-
tains a feature that enables the two views to communicate with
each other; and iii) users can specify orientations of views dy-
namically. In the following, we first present background infor-
mation of the method. We then describe the design and the
implementation of the CliniViewer system. The experiment and
the results are discussed next. Finally, we provide a discussion
and conclude the paper.

Background

AtNYPH, an NLP system, MedLEE [9], is used to extract, struc-
ture, and encode clinical information in domains that include ra-
diology reports, pathology reports, and discharge summaries.
MedLEE was also integrated with automated systems and used
for decision support [9] and vocabulary development [10].

The output format of MedLEE is XML, and is organized accord-
ing to sections of the report, where each section contains two
children: one contains structured conceptual representations of
the clinical findings and the other contains XML tagged text (tt)
of the original report. For example, for a section of a discharge
summary (i.e., history of present illness) with one sentence, as
shown in Figure 1(a), the XML formatted output of MedLEE is
shown in Figure 1(b). A clinical finding is categorized using an
XML tag (e.g., problem) and the associated value (e.g., pain) is
recorded using an attribute v. A clinical finding can have modi-
fiers (e.g., bodyloc arm or status develop), where each modifier
can also have modifiers. For example, bodyloc arm in Fig 1b)
also has a modifier region right. Additionally, references (e.g.
idref) to the original text are also included in the structured out-
put. For example, the problem pain in Fig 1b) has an idref at-
tribute p2, which refers to the tagged textual portion. In this
example, it refers to the text with the phr tag which has an id at-
tribute with the value p2, and which occurs in the sentence cor-
responding to sentence identifier sid s/.1.1. The original text of
the report is enriched with tags to delineate and identify the ele-
ments sent (marking sentences), phrases phr (marking textual
phrases), and undefined words undef. Each occurrence of the el-
ements sent and phr is associated with an identifier so that the
element can be referenced by the structured conceptual compo-
nent.

A tree is an effective navigation structure, and can be seen in ap-
plications, such as Windows Explorer or registry editors. In a
tree, the information is displayed in a hierarchical order, usually
with the broader topic displayed at the top level while related
items are displayed as children. An XML document, by nature,
forms a tree. We have previously developed a JAVA application
called TreeViewer [10] which presents a tree containing terms
physicians use in reports. It provides a navigation interface that
allows users to view and sort the tree for the purpose of vocabu-
lary development and maintenance. It enables users to locate
items easily, to see compositional components of the terms, and

640

to see their frequencies. The tree displayed by TreeViewer is
generally obtained from multiple trees, which were originally
XML structured output generated by MedLEE as a result of pro-
cessing a large corpus of reports associated with many patients.
The current implementation of TreeViewer [14] allows users to
dynamically obtain views with different orientations. For exam-
ple, a list of clinical findings can be viewed based on their main
semantic categories (e.g., problem, finding, etc) or can be
viewed based on body locations or certainty information of these
findings.

History of present illness: Intermittent pain in right arm (@)
developed on 12/1/99.
<section ¢ = “history of present illness” >
<structured form = “xm1”>
<problem v = “pain” idref = “p2>
<bodyloc v = “arm” idref = “p5”>
<region v = “right” idref = “p4”/>
</bodyloc>
<onset v = “intermittent” idref = “p1”/>
<status v = “develop” idref = “p6”/>
<date v = “19991201" idref = “p8”/>
<sid idref = “s1.1.17/> (b)
</problem >
</structured>
<tt>

History of present illness: <sent id = “s1.1.1”> <phr id
= “p1”> Intermittent </phr> <phr id = “p2”"> pain </
phr> in <phr id = “p4”> right </phr> <phr id = “p5”>
arm </phr> <phr id = “p6”> developed </phr> on <phr
id = “p8”> 12/1/99 </phr>. </sent>

</tt>
</section>

Figure 1 - An example of the structured component of the out-
put form generated by MedLEE

System Design and Implementation

Figure 2 depicts an overview of CliniViewer. It contains four
functional components: MedLEE, Tree Generator, TreeViewer
and Communicator. MedLEE and Tree Generator run on the
server side while TreeViewer and Communicator run on the cli-
ent side. On the server side, the original textual reports are first
parsed using MedLEE, and the XML output of MedLEE is then
modified, transformed, and merged into two different XML trees
by Tree Generator: one tree is a conceptual tree that provides a
summarized view of the concepts in all the reports, and the other
tree is a report tree that consists of the original reports, organized
as XML trees. These two trees are then transferred to the client
side, and each tree is loaded using the TreeViewer interface. A
communicator is also constructed, which enables the two trees to
communicate with each other.

The input to the system is a set of medical reports for a single pa-
tient, where each report is identified by a corresponding event
start date (sd), event end date (ed), exam type (et) and report

type (rt). The reports are parsed using MedLEE to generate
structured XML output. Report identifiers and the XML output
of MedLEE are used by Tree Generator to generate the two trees.
In order to create the conceptual tree, the structured clinical in-
formation extracted by MedLEE from all the reports is merged.
In order to create the report tree, the reports are arranged accord-
ing to report identifier, sections and sentences. In the conceptual
tree, positive findings are separated from negative findings. This
is possible because the findings generated by MedLEE have pos-
itive and negative modifiers. A finding is shown as negative in
the conceptual tree if it appears with negative modifiers (e.g.,
certainty with the value no) in all reports; otherwise, it is shown
as positive.

Medical Reports

.
l TreeViewer! ‘Communicator|
T &

Report Tree

Client

Server

Figure 2 - The overview of Cliniviewer

Figure 3a) illustrates the conceptual tree that was generated from
the structured component shown in Fig 1a). A tag called item
was inserted to separate an original tag (i.e., problem) from its
v attribute (i.e., pain). This was done so that multiple values for
the same type of clinical finding could be summarized and
viewed as children for that type using TreeViewer. For example,
in order to represent a different problem fender in Fig. 3a), an
item whose value is tender would be inserted as a sibling of pain.
A tag named modifier was also created and for each modifier tag
an attribute was generated where the value of the attribute was
the original v value. For example, the modifier bodyloc became
an attribute bodyloc with a value arm. Additionally, an element
called report, which is associated with the identifier attributes
(ie., et, rt, sd, and ed) was inserted between the clinical findings
and the corresponding modifiers in order to associate the find-
ings to particular reports. Section information and source infor-
mation corresponding to the findings were also attached after the
modifiers. In the report tree as shown in Fig. 3b), text is arranged
according to the document hierarchy (i.e., report, section and
sent) captured by MedLEE.

After the two trees are generated, they are transferred to the cli-
ent side and displayed using TreeViewer. The communicator is
established when loading the trees so that they can communicate
the shared information with each other (i.e., report, section, sid,
and phr). The communicator becomes activated by the interface
when the user clicks the right button of the mouse. When a node
is selected in the conceptual tree, a click on the right button caus-
es all sentences that contain the selected concept to be displayed
and the appropriate phrase to be highlighted. Similarly when a

641

node is selected in the report tree, a click on the right button
causes the conceptual tree corresponding to that sentence to be
displayed.

<concepttree>
<positivelist>
<problem>
<item v = “pain™>
<report sd = “1999-12-037 ed="1999-12-07"
= “dsum” et = “dsum™>
<modifier>
<item bodyloc = “arm”
bodyloc_region = “right”
onset = “intermittent”
status ="develop™
date = “19991201" >
<section ¢ = “history of present illness™
sectiontext = “History of present
illness:™>
<source sid = “s1.1.17
phrset = “pl p2 p4 p5 p6 p&7/>
<section> <item> <'modifier></report>
<item></problem></positivelist></concepttree>

@)

<reportiree>
<report sd =%1999-12-03" ed="1999-12-07"
= "dsum” et = “dsum”>
<section ¢ = “history of present illness”
sectiontext = “History of present illness:™>
<sentid=“s1.1.1"> <phr id = “p1"> Intermittent </phr> <phr

id= “p2"> pain </phr> in <phrid = “p4™> right </phr> <phr id =
“p57> arm <iphr> <phr id = “p6”> developed </phr> on <phrid=
“p87> 12/1/99 </phr>.

<‘sent> </section></report></reporttree>

&)

Figure 3 - An example of the conceptual tree (a) and the report
tree (b) generated from Figure 1.

Experiment and Result

We conducted an experiment to determine whether the system
functioned properly and promptly. We used all discharge sum-
maries associated with three different patients who were ran-
domly selected where each had more than 10 discharge
summaries in the clinical data repository. Pseudo medical record
numbers (i.e., 1234567,2345678, and 3456789) were created for
the patients. There were 15, 31, and 38 discharge summaries for
each of the three patients respectively. CliniViewer generated
the default views for each patient in less than 30 seconds, where
the server and the client were running on different computers lo-
cated in two adjacent buildings. The PC configurations for the
server and the client are 3.0Ghz Pentium 4 with 512 MB RAM
and 2.4GHz Pentium 4 PC with 512 MB RAM respectively. Fig-
ure 4 a) shows a snapshot of CliniViewer after requesting views
for patient 1234567. The top frame in Figure 4 shows the con-
ceptual tree.

Note that there were 294 occurrences of medication items in all
the discharge summaries of patient /1234567, where the most fre-
quent occurrence of a medication was /asix.

Ty (
¢ Positive Information {1480}
O problem {622}

& fastinfo (385}

- medication {294)

@ fiasix] O {42}

®- fmedication] ({25}
o [vasute:] 0{25)

o {dig

& [coumadin] 0{1 7
@~ [aspirin} 0-{15}

o [dobutamine} 0{11}
® [prilosec] 0{10}

® Imeavacor] ({8}

©- [proventill-Q (8}

pn‘ns {
o~ ReporType:dsum ExamType:dsum StariDate:1999-08:21 ‘EndDate:1998-09-01
@ ReporfType:dsum” ExamType:dsum StartDate:1898-08-14 EndDate:1888-08-18
- Unknown Section

Status BOSt craniotomy for meningioma years ago.
ion-of non-insuli mellitus; e]etnnnfracnon 25

o ALLERGIES

Q- MEDICATIONS:

: - "BCASA, Lasix, Imdur, AeroBid, Vasatsc digoxin,

o SOC|ALHISTORY

© PHYSICAL EXAMINATION:

O LABORATORY DATA:

© HOSFITAL-COURSE: :
° ReportType.dsum ExamType dsum ‘BtartDate:1999-01-18 ‘EndDate’1999-01- 31
o dsum: ExamT StantDate:1998-12-10 EndDate:1998-12-19
©~ ReporiType:dsum ExamType:deum- StartDate:1998-07-18 ‘EndDats1998-07-26
©~ ReporTypeidsum ExamType:dsum StantDate:1998-05-31 EndDate 1998-06-04
@ -ReportType:dsum” ExamType:dsum StartDate:1998-05-15 EndDate:1998-05-20

@

? Pegative Information {21
- problem {2}
? [pyelonephritis} O {1}
e maodifier (certainty = "no” status-"previous“) {1}
“isaction (¢ = "reportpast history item” sectiontext
3 ©~ [tricuspid valve regurgitation] 0 {1}
Pnsmve Information {4}
@ probiem {2}
| © [diabetes mellitus] 0 {1}
@ [meningioma] 041}

1
@ procedure{1}
| - ® [craniotomy] 0 {1} .

©

Figure 4 - A snapshot for CliniViewer for patient 1234567 showing various diverse views of the information

In this application, the number of occurrences represents the to-
tal number of occurrences in all the reports, and not the total
number of reports the findings occur in. When the node /asix was
selected in the conceptual tree and the right mouse button was
clicked, all sentences containing the medication Jasix together
with the exact positions in the original reports were shown with-
in a second and the corresponding phrases were highlighted (see
Figure 4b). All reports together with their identifiers appear in
the report tree as the children of the root (see the bottom frame
of Figure 4 a). When the past medical history node was selected
in the report tree and the right mouse button was pressed, the as-
sociated concepts extracted by MedLEE were shown (see Figure
4¢).

Discussion

In this paper, we presented a tool for physicians to access multi-
ple reports associated with a particular patient using MedLEE
and TreeViewer. The tool provides two views of information in
the reports by using a communicator between the two trees,
which can easily be activated by a mouse click. In the experi-
ment, we only used discharge summaries. The tool could also be
used to view diverse types of reports related to the patient, such
as radiology reports or pathology reports.

During the implementation of the tool, we found that XML was
an extremely flexible mechanism. By transforming the XML

642

documents, the tool can dynamically present many different
views of the information according to the user’s preference. For
example, Figure 5 a) shows a different view of the conceptual
tree focusing on sections. Note that in that view congestive heart
Jailure occurred the most frequently in the diagnosis sections of
patient /234567. The communicator enables users to verify the
accuracy of the structured clinical findings and to easily navigate
between the two views (see Figure 5 b) and see the text corre-
sponding to congestive heart failure, which occurred in the dis-
charge diagnosis section).

Additionally, TreeViewer, which is used to view XML docu-
ments, is a flexible navigation interface. For example, the only
difference in the use of TreeViewer between the vocabulary de-
velopment tool [10] and CliniViewer is the input because for vo-
cabulary development the input includes reports associated with
many different patients.

Currently, the frequency information for each node corresponds
to the number of occurrences. Thus, findings that are mentioned
several times in one report are counted several times. However,
the number of different reports a finding occurred in could be
easily obtained by adding a new attribute or by changing the way
the number of occurrences is computed.

Organizing medical reports via a tree structure is advantageous
because physicians can navigate medical reports easily when
they are nodes of a tree. More knowledge could be added to the

conceptual viewer to provide more relevant information that
could be tailored to the physician's interest. Currently, individual
nodes (i.e., sections and sentences) in the report tree are obtained
using XML output generated by MedLEE. However, clinical re-
ports that are XML compliant, such as those consisting of CDA
formats, can also be loaded into the viewer because it is an inter-
face designed for any XML tree.

report hospital course item] 0 {448} B
report history of présent liness item] -0 {410}
report faboratory data’item] 0 {214}
report physical examination itern) ' {183}
report past historyitem] - Q(77}
report chief complaint item] -G (66}

eport item] (0 {49}
Ireport medication ftem] () {36} .-
freport discharge medications item] 0 {28}
Ireport diggnosis item] Q0 {22}
@ Positive informatian {22}
9o
Doem

[o

i@ [hypertension] 0'{2}
©-[cardiomyopathy) O {1}
- tdivetticulosisl 0 {1}

@~ fdigbetes) {1}

000 0PS

Figure 5 - A different view of the conceptual tree for patient
1234567

Conclusion

In this paper, we described a tool that allows physicians to con-
veniently identify and locate clinical information occurring in
multiple patient reports. This tool demonstrates that XML is a
very flexible mechanism. It also demonstrates that NLP can be
used to provide a conceptual level summarization of the infor-
mation in the EMR.

Acknowledgments

This study was supported in part by grant LM06274 and grant LM7659
from the NLM and Columbia Center for Advanced Technology.

Reference

[1] WebCIS https://webcis.cpme.columbia.edu. 2003.
[2] XML Web-site. 1998. http://www.w3.org/XML.

[3] Sokolowski R, Dudeck J. XML and its Impact on Content
and Structure in Electronic Healthcare Documents. Proc.
AMIA 1999:147-151.

643

[4] HL7. 1998. http://hl7.org.

[5]1 Dolin RH. An Update on HL7's XML-based Document
Representation Standards. Proc. AMIA 2000:190-194,

[6] Spyns P. Natural Language Processing in Medicine: An
Overview. Meth Inform Med 1996; 35:285-301.

[7] Chuang J, Friedman C, Hripcsak G. A Comparison of the
Charlson Comorbidities Derived from Medical language
Processing and Administrative Data. Proc. AMIA 2002:160-
164.

[8] Fiszman M, Chapman WW Aronsky D, Evans RS, Haug PJ,
Automatic Detection of Acute Bacterial Pneumonia from
Chest X-ray Reports. J Am Med Inf Assoc 2000 7(2):593-
604,

[9] Friedman, C. and Hripcsak, G. Natural language processing
and its future in medicine. Academic Medicine.
1999;74(8):890-895.

[10]Liu H, Friedman C. A Method for Vocabulary Develop-
ment and Visualization based on Medical Language Pro-
cessing and XML. Proc AMIA 2002:502-506.

[11]Estrada WD, Murphy SN, Barnett G. Puya: A Method of
Attracting Attention to Relevant Physical Findings. Proc.
AMIA 1997:509-513.

[12]Krauthammer M, Hripcsak G. A Knowledge Model for the
Interpretation and Visualization of NLP-parsed Discharge
Summaries. Proc. AMIA 2001:339-343.

[13]Zeng Q, Ciminoj. Providing concept-oriented views for
clinical data using a knowledge-based system: an evalua-
tion. JAMIA 2002; 9(3) : 294-305

[14]Friedman C, Liu H, Shagina L. Vocabulary Development
Visualization Tool based on Natural Language Processing
and the Mining of Textual Patient reports. JBI 2003; 36 189-
201

Address for correspondence
Department of Information Systems,
University of Maryland at Baltimore County,
1000 Hilltop Circle, Baltimore 21250

