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Abstract

As cross-disciplinary research escalates, researchers are facing
the challenge of linking disparate biomedical databases that
have been developed without common indexes. Manually index-
ing these large-scale databases is laborious and often impracti-
cal. Solutions involving mediating terminologies have been
proposed, but coordination of terms from the databases of inter-
est to these mediating terminologies is also laborious, and reg-
ular synchronization between indexes is an additional problem.
In this study we describe a novel method of linking heteroge-
neous databases using terminology networks constructed with
automated mapping methods. Linkage was established between
two disparate biomedical databases (SNOMED-CT and HDG),
using two relevant intermediating databases (UMLS and
OMIM). One gold standard of 514 distinct matches is used as
proof-of-principle. In our study, the fully manually curated net-
work (baseline index) and one automated terminological path-
way (HDG-OMIM-SNOMED) perform at high precision and
low recall, while the direct automated terminological pathway
(HDG-SNOMED) provides higher recall and lower precision. In
conclusion, as hypothesized, 1) Manually curated pathways pro-
vide high precision, but offer low recall, 2) the automated termi-
nology pathways can significantly increase recall at acceptable
precision. Taken together, our conclusion may suggest the com-
bined manual and automated terminology networks could offer
recall and precision in an incremental manner.
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Background and Significance

One of the important goals of biomedicine is to represent and in-
tegrate knowledge in the fields of molecular biology and clinical
medicine comprehensively so that the databases and applica-
tions of each field can enrich one another [1,2]. However, rap-
idly evolving biomedical databases present an unprecedented
problem of integration in order to retrieve useful information
across different domains.

The difficulty in tackling the database interoperation problem
can be attributed to various reasons [3, 4]. First, data is repre-
sented heterogeneously in different databases since each data-
base maintains its own data and provides its own interface
independently. This problem of heterogeneous data afflicts the
representation schema, as well as the scale and the granularity of
the data. In addition, capabilities and formats of each database
vary. Finally, naming conventions and standards are so different
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across fields that common indexes and terminology are rarely
co-developed and shared. For example, linking biological termi-
nologies to medical terminologies is quite different from linking
medical terminologies among themselves [5]. On the other hand,
the Unified Medical Language System (UMLS") is addressing
this problem by providing relationships across an increasing
number of medical and biological terminologies (e.g. Gene On-
tology” ( http://www.geneontology.org) has been integrated into
the UMLS in 2003 AB version of the UMLS). However, concur-
rency and synchronization between ever evolving terminologies
remains an important, costly and time-consuming issue in met-
athesauri.

The database intermediation problem can be addressed via the
creation of a mediated schema - a set of virtual relations and
mappings among 2 or more diverse data sources. The mediated
schema can be used to translate a single query into the appropri-
ate format for each specific resource, and then consolidate the
various return values into a single, easily interpretable result set.
Such strategies can capitalize on the increasingly comprehensive
UMLS as a mediating terminology. Towards this end, an earlier
work investigated the linkage of MIM, GENEBANK and the
UMLS [6]. However, updates in source terminologies occur
more frequently than updates to the UMLS, leading to a mediat-
ed schema that lags behind updates in source databases. In addi-
tion, our group has also undertaken a variety of lexico-semantic
techniques, including the incremental use of hybrid techniques
intended to automatically link two terminologies [7]. Limited ef-
fort has been deployed for the development of high throughput
methods for the linkage of rapidly evolving biomedical databas-
es, and to our knowledge, none have explored computational
methods involving automated networks of terminologies to dy-
namically generate putative indexes.

The objective of this feasibility study is to demonstrate the sig-
nificance of automated terminology networks to dynamically
map rapidly evolving heterogeneous biomedical databases that
do not share complete cross-indexes.

Materials

Databases to be cross-indexed:

(i) SNOMED-CT [8] is a comprehensive concept-based health
care terminology. We used the version released in July 2002.
This version of SNOMED-CT contains 333,325 concepts.
SNOMED-CT contains a cross-index with the older version of
SNOMED 3.5 which contains about half as many concepts. For
each SNOMED concept, there is one concept term and there may



be several synonym terms associated with the concept as well.
SNOMED-CT will be added to UMLS- Metathesaurus and
available under certain conditions worldwide.

(i) HDG [9] is a manually compiled database of human disease
genes. For each distinct disease gene record, HDG contains at
least one disease name (term); each of the 921 disease gene
records of HDG is also mapped to an OMIM unique identifier
(concept). The full database has been published in the journal
Nature, and is available publicly [9].

Intermediating Terminologies:

(iii) OMIM [10] is a catalog of human genes and genetic disor-
ders. OMIM focuses primarily on inherited and heritable genetic
diseases. We used the 2002 version of OMIM which contains
14280 entries, including 8733 human gene loci. Each OMIM
unique concept identifier contains two distinct fields in which
disease terms are found: the “Title”, and the “Disorder”. The
“Title term” field contains gene products and diseases with no
semantic class to distinguish between the terms, while all disor-
der terms can be considered as one semantic class subsumed by
“diseases”.

(iv) UMLS. We used the 2002AB version of the UMLS, created
and maintained by the National Library of Medicine. This ver-
sion consists of 871,584 unique concepts over 60 diverse termi-
nologies. For each UMLS concept, there is one concept term and
there may be several synonym terms associated with the concept
as well. Disease terms of UMLS are grouped together as a se-
mantic class. The UMLS Metathesaurus includes 208,454 con-
cepts linked to SNOMED International 3.5 (1998 version) and
250 concepts linked directly to terms of OMIM (1993 version).

Methods

Creating networks to link disparate databases

Networks between databases can be manually curated (e.g. via
shared cross-indexes) or automated (e.g. via lexical or semantic
computational methods). When concept mapping occurs at the
stage of indexing or cataloging and is conducted manually, we
will refer to this practice as “manual curation” (MC). In con-
trast, “automated mapping” (AM) will refer to the mapping of
terms associated with the concepts of two terminologies using
computational methods. Figure 1 illustrates a network of termi-
nology relationships between the databases to be cross-indexed
(HDG, SNOMED-CT) and the intermediating terminologies
(OMIM, SNOMED 3.5, UMLS). The arrows in the figure show
the available types of mapping (MC, AM). Automated mapping
was conducted using previously published methods that include
lexical and semantic constraints as described below. Several
properties of the terminology network have been explored in-
cluding types of mapping and number of intermediaries. Distinct
mapping strategies generate different types of terminology paths
that we categorized as follows: (a) purely MC-based (Table 1,
P1), (b) purely AM-based (table 1, P2-7). Combined AM-based
and MC-based pathways are beyond the scope of the current
study. Similarly the number of intermediating terminologies in-
vestigated were: (a) zero (Tablel, P2), (b) one (Tablel, P3, P4,
P5), (b) two (Tablel, P6, P7), and (b) three (Tablel, P1).

556

’
’
,
’

-I\

—» Manual Curation (MC)
---»  Automated Mapping (AM)

Figure I - The network created to link disparate databases

Automated Mapping is performed using two widely published
lexical methods: exact matching (EM) and the National Library
of Medicine Normalization (Norm) matching categorization of
both the original terms & the target concepts to exclude seman-
tically irrelevant mappings. EM and Norm have been used with
semantic constraints and the resulting lexico-semantic methods
have been shown to be more accurate in Bodenreider’s laborato-
ry [15] and in ours [7, 13). For this project, valid AM is seman-
tically relevant when SNOMED-CT terms are diseases/disorders
(descendants of SNOMED-CT code 64572001).

Evaluation of terminology pathways

A Gold Standard (GS) linking HDG to SNOMED was produced
by the agreement of two experienced knowledge engineers
working independently at mapping every HDG concept to
SNOMED concepts, which were used as GS. Agreement was
observed for 514 distinct HDG records.

First Quantitative evaluation: Accuracy of Concept Maps
(ACo). We measured the accuracy of each of the mapping meth-
ods described in Table 1 using precision, recall and general ac-
curacy in the resulting HDG-SNOMED concept pairs. As
lexico-semantic methods evaluate term-pairs, they are further
transformed in a concept-oriented view (since multiple terms
can be associated in one concept in SNOMED-CT and in HDG).
Each of the mapping methodologies was compared to the gold
standard. Relevant pairs (‘True Positive’; TP) are pairs found
by the linking method that are also in the GS; non-relevant
(‘False Positive’; FP) matches are those that are not found in the
GS; relevant, but not retrieved (‘False Negative’; FN) are in the
GS but not matched by the linking method. Non-relevant, but
not retrieved pairs (‘True Negatives’; TN) are neither in the GS
nor matched by the linking method. In this experimental setup,
TN = (total HDG-SNOMED_pairs)-(TP+FN+FP), where the
total_HDG-SNOMED_pairs are the combinations between all
HDG and SNOMED concepts used in the mapping experiment
(514 HDG concepts and 70,831 disease concepts in SNOMED-
CT). Recall was calculated as the ratio of the number of distinct
HDG-SNOMED concept pairs that were identified by the map-
ping method that match HDG-SNOMED concept pairs in the
Gold Standard (GS), divided by the total number of pairs In the



Table 1: Linking Paths derived from the network

e [ i

P1 3 HDG = OMIM = UMLS = SNOMED3.5=SNOMED-.CT

P2 0 HDG > SNOMED-CT

P3 1 HDG > UMLS -> SNOMED-CT

P4 1 HDG > OMIM (Disease terms) > SNOMEDCT

Ps o HDG > OMIM (Title terms) > SNOMED-CT

Ps 2 HDG > UMLS -> OMIM > SNOMED-CT

P7 2 HDG - OMIM > UMLS > SNOMED-CT
A=B Manual Curation / Mapping of terms viaa common index between databases A and B.
A9B Automated Mapping / lexico-semantic mapping of ter ms between databases A and B.

GS, TP/(TP+FN) [16]. Precision was measured as the ratio of the
number of distinct HDG-SNOMED concept pairs returned by
the mapping method that match HDG-SNOMED concept pairs
in the GS, divided by the total number of putative HDG-
SNOMED concept pairs found by the mapping method, TP/

(TP+FP) [16]. General accuracy is calculated as (TP+TN)/
(TP+TN+FP+FN).
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Figure 2 - Precision versus recall of each of the linking paths
in the network

The computational methods that we propose each provide one-
point outputs on a precision-recall graph, which remains a suc-
cinct and clear way of presenting our results. While the tradition-
al use of the precision-recall graph generally requires methods
that can produce an 11-point curve, more than one point output
per method is not applicable in this experimental setup.

Second Quantitative evaluation: Accuracy of Class-Based Map
(Acl). Due to the high level of granularity of the SNOMED ter-
minology, an additional accuracy score was calculated for the
class of a concept. For the purpose of this score, the mapping of
a HDG concept to an ancestor or a descendant of the associated
SNOMED concept in the GS was considered a “True-positive”
class-based mapping. Recall, precision and general accuaray
were calculated on this basis.

Qualitative evaluation. Intermediating terminology pathway

terms and concepts are not evaluated in the accuracy score based
on HDG-SNOMED concept pairs. We have therefore manually
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analyzed the full pathway maps of the manual curation pathway
(P1) and sample that of the automated mapping techniques.

Results

Concept-based Quantitative Evaluation. As described in Figure
1 and Table 1, manual curation utilizes the internal mapping of
OMIM and SNOMED 3.5 in UMLS, which simulates the linking
of HDG and SNOMED via a common and pre-existing index,
and hence sets the baseline for the performance of paths derived
from the network. The accuracies of concept map and class-
based map using the network are summarized in Figure 2. As
how the CoM and CIM are defined in this study, CoM is a sub-
class of CIM and therefore not independent. Our analysis shows
that the manually curated pathways provided the highest preci-
sion (62.7% and 76.2% for CoM and CIM, respectively), and the
poorest recall (7.1% for CoM, 8.7% for CIM). The direct map-
ping of HDG to SNOMED (P2) provided an intermediate accu-
racy as compared to other techniques (42.9% for recall and 50%
for precision using CoM). Paths involving one level of interme-
diating terminologies either gave higher recall (such as P3 and
P4) with the sacrifice of precision, or vice versa (P5), as com-
pared to the direct path (P2). Both paths (P6 and P7) containing
two levels of intermediating terminologies give higher recall but
lower precision, compared to the direct path.

Class-based Quantitative Evaluation. The ancestor-descendent
relationships in SNOMED-CT allow us to explore the class-
based mapping when an exact matching pair is not available
from source to target databases. As is seen in Figure2, all path-
ways show increased recall and precision with the class-based
accuracy, some showing better improvements than other (e.g.
P5’s precision increases from 54.5% to 63.6%, P7’s recall in-
crease from 47.47% to 65.75%).

The general accuracies of all the terminology pathways are
99,99X%, where X varies from one terminology pathway to an-
other. The reason for which the general accuracy is of little value
to discriminate between different terminological pathways is
that the enormous TN count (ref. Methods) appears both at the
numerator and denominator of the calculation, for each pathway.

Qualitative Evaluation. Every mismatched (according to the
GS) HDG-SNOMED-CT pair of concepts was manually re-
viewed in the MC set P1.



Table 2: Categories of Mismatches Observed in the P1 pathway from the terminology network

Category of
Example of Each Cat
Mismatch P esory
Count . SNOMED Diseasein the SNOMED Disease in the
Name {%) HDG Disease automating matching GoHld Standard
Ret 36 Galactosemia (230400) Galactosemia (disordes) [Ambiguous] | Galactosemia (disorder) (190745006)
(38177000)
CBI 42 Pseudchypoparathyroidisn typeIa | Pseudohypoparathyroidian (disorder) | Pseudohy poparathyroidism typel A
(103580) (58976002) (disorder) (38833000)
Amb 12 Meningiom a,NF2 relfated, sporadic, | Neurofibromatosis, type 2 (disorder) Intracranial m eningiom a (disorder)
Schwannoma, sporadic (101000) (92503002) (302820008)
Red 10 Apert syndrome (101200} Apert's syndrom e (disorder) Acrocephalosyndactyly (di sorder)
(63661009) (268262006)

In addition, a subset of the mismatched pairs of other sets was
also manually curated. Table 2 shows examples of these mis-
matches taken from P1 that can be categorized in four classes: (i)
retired concepts (Ret) in SNOMED [17]. 36% of mismatches in
P1 are attributable to concepts in SNOMED 3.5 (UMLS con-
cepts that have been retired in SNOMED-CT) (e.g. Table 2 Ret,
an ambiguous concept (38177000) in SNOMED 3.5 has been re-
placed in SNOMED-CT with a new concept 190745006, which is
not reflected in UMLS), (ii) Class-based indexing (CBI} in MC
(e.g. Table 2, the network finds the ancestor of the matching con-
cept in SNOMED-CT), 42% of mismatches fall in this category
for CoM, and are considered matched by the CIM; (iii) Ambigu-
ity (Amb) in HDG. More than one concept shares the same code
in the database (e.g. Table 2 Amb, two disease sharing the same
MIM number in HDG), 12% of mismatches in P1 are ambigu-
ous; and (iv) Redundancy in SNOMED (Red). More than one
concept shares the same meaning in a terminology and is repre-
sented by multiple codes (e.g. Table 2, “Apert syndrome * has
been modeled in two different concepts in SNOMED-CT).
About 10% of mismatches in P1 are redundant.

Discussion

As hypothesized, the manual curation provided high precision
and low recall, probably due to the rapidly evolving OMIM and
SNOMED-CT terminologies, (each terminology has more than
doubled since its inclusion in UMLS). Generally, in the automat-
ed maps, multiple pathways did not lead to higher precision,
probably due to increased noise for each successive automated
map. In contrast, in the manually curated map the precision re-
mained high regardless of its highest number of intermediating
terminologies. Interestingly, one automated pathway (P5) pro-
vided a precision approaching that of the manual curation. Nota-
bly, P4 and P5 used the same intermediary pathway but different
terminology fields. P4 used a field containing unique diseases
and disorders, while P5 used a term field which also contained
gene products. Surprisingly, P5 outperformed P4 while no se-
mantic constraints could be fabricated over P5 since OMIM does
not have semantic classes. One explanation could be that the “Ti-
tle” field of OMIM is more often explored than the “Disease”
field and therefore more “normalized” due to increased feedback
from the community of OMIM users.
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We have also demonstrated that terminology pathways are non-
commutative methods. In P6 and P7 the same terminologies
were used in different sequence resulting in better precision for
P6 and better recall for P7. This specific result might be ex-
plained by the fact that concepts in OMIM did not benefit from
as much feedback and knowledge HDG, which engineering as
the ones in UMLS, thus coupling has known ambiguities, with
OMIM leads to lower precision than coupling HDG with UMLS.

Our group has previously reported increased accuracy using
multiple strategies with automated direct mapping methods be-
tween two terminologies [7, 13]. Using this previously published
incremental approach combined with terminology pathways
(e.g. P1, PS5, P6), increases the recall to 48.1% and the accuracy
to 53%, results comparable to P2. The class-based evaluation
measures the mapping of one terminology to a class of the sec-
ond. Every mapping technique from MC to AM, regardless of its
number of intermediating terminologies, was improved, which
probably indicate that HDG and SNOMED have different gran-
ularities or scope for their concepts and that mapping conceptu-
ally from one to another is impractical for many concepts, while
classifying a concept of one terminology into the other is attain-
able as shown by the higher accuracy rate of the class-based
evaluation. This observation also brings up an intrinsic problem
with conceptual mapping, including MC methathesaurus-based
approach.

Limitations. The precision of the P1 mapping could be improved
by translating retired SNOMED 3.5 concepts into current ones
using relationships from SNOMED-CT which point retired con-
cepts to their current equivalents (when available). Another lim-
itation of the study was that we did not evaluate concepts from
HDG which could be mapped to SNOMED-CT using multiple
terms. Therefore the problem of AM in a compositional termi-
nology has not been addressed with these methods. Our results
suggest that additional research is required for automated link-
age of databases with terminology networks. Additional path-
ways should also be explored and additional mediation of
databases in order to draw conclusions and develop reliable pre-
dictors of increased precision.



Conclusions

While the manual curation (e.g. UMLS Methathesaurus) ap-
proach remain the gold standard for integrating terminologies, it
is rate limiting. This study reveals the feasibility of using auto-
mated networks of terminologies to accomplish terminology in-
tegration in support of database intermediation. More
specifically, incremental usage of terminology pathways can in-
crease the overall precision of an automated multi-strategy
method intended to intermediate databases. Automated termi-
nology pathways allow for high-throughput linkages between
disparate biomedical databases when manual curation is prohib-
itive. While sampling a subset of the automated network would
present affordable means to evaluate the precision and recall of
distinct automated pathways, automated predictive algorithms
could also be used to further improve the throughput and reduce
the cost [18]. Considering the escalating number of biomedical
databases, the potential to accelerate discovery science warrants
further investigations. We are currently conducting additional
studies 1) to investigate the accuracies of combined MC and AM
terminology paths: the primary analysis shows that both recall
and precision increase in an incremental manner; and 2) to sup-
port compositional mapping, such as when one concept in
OMIM is completely and non-redundantly represented by the
composition of 2 SNOMED concepts; and 3) to predict the accu-
racy of alternate terminology pathways of large-scale networks.
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