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Abstract

Word-finding difficulty (anomia) is the most common linguistic
deficit in dementia. It is often measured by picture naming tasks
as naming a picture taps all the major processes in word produc-
tion, i.e., activation of a concept, retrieval of lexical-semantic in-
formation on that concept, retrieval of the corresponding word
form and articulation. Naming and naming errors have exten-
sively been simulated by neural network models of lexicalization
(see e.g. [1,2]). A common feature of these models is that they
are static, i.e. non-learning. However, naming is a dynamic pro-
cess that changes as a function of normal learning or re-learn-
ing after neural damage. These important patterns cannot be
caught by the static models of lexicalization. Therefore we have
developed a learning model of lexicalization based on multi-lay-
er-perceptron (MLP) neural networks. We tested the model by
fitting it to the naming data of 22 Finnish-speaking dementia pa-
tients and 19 neurologically intact control subjects. The tests
showed an excellent fit between the model's and the subjects
naming response distributions. Thus our model seems be suit-
able to simulate naming disorders of dementia patients.
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Introduction

Anomia (word-finding difficulty) is the most common linguistic
deficit in dementia. This difficulty is often documented by a pic-
ture naming task where the subject is to name (i.e., say aloud)
single pictures. The main reason for the popularity of this meth-
od is the fact that this simple task calls for all the major process-
ing stages involved in word production: activation of a concept,
retrieval of lexical-semantic information on that concept, re-
trieval of the corresponding word form, and articulation. Besides
a quantitative measure (number correct), the types of errors pro-
duced during picture naming are of interest as they may shed
light on the underlying reasons of a patient’s anomia. Examples
of commonly encountered error types include semantic errors
(cat > dog), formal errors (cat > cap), neologistic (nonword)
errors (cat > neet) and omission errors (patient utters nothing
or says “I don’t know” etc.).

Leaving the visual perception of the picture and the articulation
of the word aside, naming process can be considered as a process
of lexicalization. During lexicalization we translate a semantic
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representation (meaning) of a target concept into its phonologi-
cal representation (sound structure). It is widely accepted that
lexicalization is a two-stage process [3]. In the first phase we re-
trieve an abstract lexical-semantic representation of the word
(lemma). During the second phase the retrieved lemma is trans-
lated to the corresponding phonological word form (lexeme).

Although researchers commonly agree on the two phases in-
volved in lexicalization, the relationship between these phases is
still being disputed. The Discrete Two-Stage (DTS) theory of
lexicalization states that the two phases of lexicalization are in-
dependent, all lexical-semantic processing is performed before
phonological processing, and that in a task like picture naming
only the single selected lemma is translated into its correspond-
ing lexeme [1]. The Interactive Activation (IA) theories of lexi-
calization propose that lexical-semantic and phonological
processing overlap in time and can influence each other [2].

Naming and naming errors have been simulated by both DTS
and IA neural network models of lexicalization (see e.g. [1,2,4]
for models and [3,4] for discussion). A common feature of these
models is that they are static, i.e. non-learning. However, there
are important aspects of naming that cannot be modelled by the
static models of lexicalization. These include word learning in
children and re-acquisition of naming ability after brain damage
due to spontaneous recovery and/or systematic rehabilitation.

We have previously constructed and evaluated a DTS model for
simulating naming errors of Finnish-speaking aphasia patients
suffering from focal brain lesions [5,6]. The critical difference to
the previous models of lexicalization is that our model is imple-
mented using MLP neural networks, i.e., it is a learning model.
Here we extend our research by fitting the model to the naming
data of 22 Finnish-speaking dementia patients suffering from ei-
ther probable Alzheimer’s disease (AD) or vascular disease
(VaD), and 19 neurologically intact control subjects described
by Laine et al. in [7]. Even though episodic memory deficits
dominate the symptomatology in dementia, anomia is also com-
mon in these patients. The nature of anomia in dementia has re-
ceived considerable research interest, and the prevailing view
has been that semantic disorders play a central role in the pa-
tients’ naming problems.

The model

The architecture of our simulation model is shown in Figure 1.
Based on the DTS theory of lexicalization, the model consists of



two subnetworks: lexical-semantic network and phoneme net-
work. Lexical-semantic network simulates the lemma access and
phoneme network simulates the phonological access. The pho-
neme subnetwork is further divided into separate consonant and
vowel networks since in both normal and pathological speech er-
ror data, consonant-vowel substitutions are non-existent. All
networks are auto-associative, i.e. their target outputs are same
as their inputs. The number of hidden layers and nodes in them
was decided experimentally (see [5]).
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Figure 1 - Architecture of the simulation model

Because all three subnetworks of the model are standard MLP
neural networks with sigmoid activation function, normal com-
putation rules and equations of MLP neural networks were ap-
plied (see e.g. [8]). However, to simulate disturbed word
production we added a random noise parameter dey to every
weight w;; between the nodes i andj. The parameter e; is derived
from normal distribution N(0,1) and 4 is a positive scaling fac-
tor. The total input v; for node i is then calculated as in Equation
(1), where x; is an output of node j connected to the node iand n
is the number of the nodes in the current layer (x,=1 is a bias sca-
lar)..

v, = 2 (wy; +0oey) - x;
j=0
Naming errors can now be simulated by increasing the scaling
factor d in Equation (1). This randomizes the outputs of the net-
work. For instance severe anomic disorders can be simulated
with large values and slight disorders with small values of d. In
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the model there is a separate scaling factor for the lexical-seman-
tic subnetwork (d; to simulate semantic disorders) and for the
phoneme subnetwork (dp to simulate phonological disorders).

To simulate omissions we applied a threshold value 7 between
the subnetworks. The threshold discards outputs of the lexical-
semantic network that are too far from any word taught to it. Let
0 be the output vector of lexical-semantic network and n the
nearest vector (in the Euclidean sense) to o taught to the model.
The thresholded result r of lexical-semantic network is then cal-
culated with Equation (2), where dg{o,n) is an Euclidean dis-
tance between vectors n and o and c is a scaling factor. During
the simulations we set ¢ = 100.
Eq. (2)
n ifrs—b
c-d;(o,n)

if d.(o,m)=0,
otherwise undefined

d,(o,n)>0,

r=1n,

The output of the model was interpreted as an omission when the
output vector r of the lexical-semantic subnetwork becomes un-
defined.

Based on the previous equations the result of the whole network
is computed as follows:

1. Compute the output vector o of the lexical-semantic net-
work.

2. Use the threshold 7 as in Equation (2) to decide the
result r of the lexical-semantic network (lemma).

3. Compute the lexeme by processing the phonemes corre-
sponding to the selected lemma in the phoneme network
one at a time.

A more detailed description of the model and the coding of its
inputs and outputs is available in [5,6].

Results

We tested the model by fitting it to the naming data of 12 Finn-
ish-speaking probable Alzheimer’s disease patients, 10 vascular
dementia patients, and 19 neurologically intact control subjects
described by Laine et al. in [7]. The subjects’ naming distribu-
tions were based on the half of the items (i.e. 30) in the Finnish
version of the Boston Naming Test [9] but Laine et al. [7] al-
lowed 45 seconds for spontaneous naming to produce enough
scoreable data. Thus most subjects’ error distribution is based on
over 30 answers.

To automatize the error classification we reduced the errors to
three error classes: omissions, semantic errors and other errors.
The following rules were applied to the error classification:

1. An output was an omission if the lexical-semantic sub-
network generated no response to a given input word.

2. An output was a semantic error if an output word of the
lexical-semantic subnetwork was different from its input
word.

3. An output was other error if an output word of the pho-
neme subnetwork was different from its input word, i.e.
output of the lexical-semantic network.



Table 1: Empirical naming tests results and corresponding average results of the simulations

Patient | o T ap Correct % Semantic % Other % Omission %
Patient § Simul. | Patient [ Simul. | Patient | Simul. | Patient | Simul.
ADI 0.225 1 0.138 | 0.104 | 25.4 26.3 62.7 61.9 11.9 11.6 0.0 0.1
AD2 0.163 1 0.115 ] 0.082 | 37.1 38.0 54.8 54.7 8.1 7.3 0.0 0.0
AD3 0.324 | 0.152 ] 0.337 §0.0 4.0 85.3 81.3 14.7 14.7 0.0 0.0
AD4 0.050 | 0.049 ]0.043 | 76.7 76.9 233 22.9 0.0 0.0 0.0 0.2
ADS 0312 {0.178 | 0.149 | 14.0 14.8 68.0 66.6 18.0 18.4 0.0 0.2
AD6 0.054 | 0.088 | 0.046 1 80.6 81.6 16.1 15.9 3.2 2.5 0.0 0.0
AD7 0.080 | 0.107 [ 0.080 | 62.5 63.9 25.0 24.0 6.3 5.8 6.3 6.2
ADS 0.153 1 0.091 |0.077 | 40.0 41.1 54.0 53.1 4.0 3.5 2.0 2.3
AD9 0.105 { 0.101 | 0.081 | 50.0 51.5 32.5 32.0 5.0 4.7 12.5 11.9
ADI10 0.157 | 0.118 | 0.079 | 37.8 38.7 533 53.0 8.9 8.1 0.0 0.2
ADI11 0.069 | 0.307 | 0.250 |98 10.5 73.2 71.9 9.8 10.4 7.3 7.2
AD12 0.098 | 0.170 ] 0.091 | 43.2 41.7 27.0 28.1 13.5 14.1 16.2 16.1
VaD1 0.056 1 0.299 ] 0.237 [ 8.9 8.3 75.6 75.8 8.9 8.5 6.7 7.3
VaD2 0.039 | 0.050 | 0.050 | 62.5 62.6 37.5 35.8 0.0 0.0 0.0 1.6
VaD3 0.112 1 0.097 |0.243 | 46.5 46.3 30.2 29.6 18.6 19.6 4.7 4.4
VaD4 0.045 | 0.145 ] 0.118 | 42.6 42.4 53.2 54.2 2.1 1.7 2.1 1.7
VaD$5 0.049 | 0.089 | 0.197 | 60.0 58.9 32.5 34.1 7.5 7.0 0.0 0.0
VaDé6 0.044 | 0.113 | 0.209 | 48.7 48.6 43.6 44.4 7.7 7.0 0.0 0.0
VaD7 0.048 | 0.099 |0.218 | 54.1 56.5 35.1 35.5 10.8 8.0 0.0 0.1
VaD8 0.048 1 0.074 | 0.095 {73.0 74.3 27.0 25.7 0.0 0.0 0.0 0.0
VaD9 0.069 | 0.085 |0.134 | 64.1 65.8 30.8 29.6 2.6 2.4 2.6 2.2
VaD10 | 0.049 | 0.072 ] 0.167 | 70.0 68.8 23.3 23.6 6.7 7.6 0.0 0.0
Control 10.018 | 0.050 | 0.076 | 78.8 79.9 17.6 18.6 2.6 2.0 0.0 0.0

If the model first gave a semantic error and then other error, this
was simply posed as other. To assess the generality of the results
we trained 11 networks for each patient with different random
starting weights. The training set consisted of 279 Finnish nouns,
most of them from our data, but 89 were translated from the cor-
pus of Snodgrass and Vanderwart [10]. During the simulations
each word was used as a target for five times. Thus the naming
distributions produced by the model are based on 1395 words.
This smoothed out the results of the noisy model and allowed us
to utilize a formal fitting process (see [6]).

Actual picture naming error patterns of individual patients and
corresponding averaged simulation results are presented in Ta-
ble 1 (“control” is averaged over all neurologically intact control
subjects and corresponding simulation data). On the average, the
linguistic abilities of VaD patients (57.1 % correct answers)
were better preserved than those of AD patients (38.9 % correct
answers). The differences between the patient groups are due to
semantic errors, which AD patients had considerably more than
VaD patients (53.7 % vs. 33.8 % on the average). In other errors
(AD 8.5 %, VaD 7.1 %) and in omissions (AD 0.0 %, VaD 0.0
%) the average differences between the patient groups are slight.
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The resuits in Table 1 show that the model’s fit to the simulated
data was excellent. Although the results in the Table 1 represent
the average, the variations between tests were slight, a few per-
cent typically. The differences between the patient data and the
simulated data were tested with the x> test. We did not find a sta-
tistical difference between them in any patient case. Consequent-
ly, the model seems to be capable to simulate naming errors of
Finnish-speaking dementia patients.

In the Figure 2 the subjects are plotted with respect to the simu-
lation parameters o, O,p, and 7. The squares represent AD pa-
tients, the circles VaD patients and the diamonds represent the
intact control subjects. The intact control subjects form a tight
cluster, but the clusters of AD and VaD patients are more dis-
persed. Generally, according to the noise parameter o/, the VaD
patients are closer to the intact control subjects than AD patients
(see Table 2). This is the consequence of the fact that the simu-
lated AD patients tend to make more semantic errors than the
simulated VaD patients. On the other hand AD patients are usu-
ally closer to the intact control subjects with respect to the noise
parameter 0ip. The differences between the AD and VaD patients
are not significant with respect to the thresholdz.



Figure 2 - Plotting the subjects with respect to the simulation
parameters

Discussion

We have presented a neural network model for simulating the
anomic naming errors of Finnish-speaking AD and VaD pa-
tients. The tests showed that the model was able to simulate the
naming distributions of different dementia patients as well as
those of intact control subjects very precisely. This indicates that
our simulation model could be useful also in the field of demen-
tia research. The patient data in Table 1 and the medians of the
simulation parameters in Table 2 suggest that on the average lin-
guistic abilities were better preserved in VaD patients than in
AD patients (see also [7]). The clearest distinction between the
patient groups can be made in terms of semantic errors, which
AD patient had considerably more than VaD patients. This dis-
tinction is present also at Table 2, in which AD patients have av-
eragely greater noise parameter 4; values than VaD patients.

Table 2: Medians of the simulation parameters

Group ap t ap
AD 0.129 0.17T6 0.082°
VaD 0.048 0.093 0.132°
Control 0.0T8 0.050 0.076

Our model was successful in simulating the naming patterns of
AD and VaD patients as well as those of intact control subjects.
There are some flaws in the model that should be addressed in
the future. For instance, the model did not simulate visual per-
ception of the picture that might be impaired in AD patients (but
see [11] for an alternative explanation). Also the classification of
the errors produced by the model should be specified to separate
different types of phonological errors from each other. This
would give further information about the model’s actual abilities
to simulate various naming response patterns in anomija. More-
over, there are various robust patient data findings that are prob-
lematic for any DTS model of lexicalization [4].
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In this study we simulated the naming patterns of dementia pa-
tients. Our model was based on widely applied MLP neural net-
work architecture and thus it opens the way for modelling
recovery and rehabilitation of patients. This has not been possi-
ble with traditional non-learning models of lexicalization. Of
course, the learning capability is of secondary importance in the
present study. However, the strive towards more realistic simu-
lations of linguistic performance necessitates models that can
learn as humans do.
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