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Abstract

Proximity functions evaluate distances or similarities between
objects. Unlike the Euclidean distance, heterogeneous proximity
Sfunctions process variables differently according to their scale.
The correct evaluation of nominal variables, whose values are
unordered, is especially important. We compared five heteroge-
neous functions with the Euclidean distance to study whether
Jfunctions sensitive to scale are better than a function assuming
the same scale. In addition, we were interested of the relative
performance of the five heterogeneous functions. The perfor-
mance of the functions was measured with a nearest neighbor
classifier that was applied to 12 medical data sets characterized
with different scales. Unexpectedly, the performance of hetero-
geneous functions did not differ significantly from that of the Eu-
clidean distance. As expected, significant differences between
the Heterogeneous Value Difference Metric (HVDM) and the
Jour value-matching-based heterogeneous functions favored
HVDM. Additional research is needed to explain why heteroge-
neous functions did not outperform the Euclidean distance.
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Introduction

Proximity functions [1-5] are an important component of many
statistical and machine learning methods. These functions are
typically applied to compute distances or similarities between
pairs of objects (cases or examples). Methods that employ prox-
imities include many clustering algorithms [1-3] and instance-
based learning systems [4] for grouping and classification of ob-
jects such as patient cases. The choice of a proximity function is
of utmost importance, because an unsuitable function may dra-
matically degrade the performance of a method that operates on
proximities.

This work considers the use of different proximity functions in
the classification of heterogeneous data, i.e. data described both
with nominal and quantitative (ordinal, interval, and ratio)
scaled variables. The scale [2,5] of a variable indicates the infor-
mation available on relations between variable values. Since
nominal values have no meaningful order, nominal scale carries
clearly less information than quantitative scales, whose values
can be arranged. Of a pair of unordered values one can only ob-
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serve whether values are equal: A physician may compare two
cases, for example, by examining whether the location of tinni-
tus is the left ear in both cases.

Heterogeneous data is problematic for proximity functions as-
suming the same scale for all the variables. Application of the
well-known Euclidean distance function to nominal values is
questionable, because arithmetical operations for the unordered
values are meaningless. As an example, consider values “no tin-
nitus”, “left”, “right”, and “bilateral” with scores 0, 1, 2, and 3.
The Euclidean distance would rate “right” twice as distant from
“no tinnitus” than “left”, which might not be reasonable from the
medical point of view.

‘When a proximity measure is to be applied to the heterogeneous
data, there are basically three approaches. Firstly, the nature of
the data may simply be ignored. Soundness of results largely de-
pends on the method and the task, but problems described above
are likely to emerge.

Secondly, variables can be transformed to meet scale assump-
tions. If the nominal scale is the simplest in the data, the catego-
rization of interval and ratio scaled variables is needed. Deciding
the number of categories is difficult, and more importantly,
when categories are treated as nominal the order information is
lost. Transformations from a lower to a higher scale are impos-
sible, but a k-valued nominal variable can be coded as & binary
or k-1 dummy variables [6] for which arithmetical operations are
legal. Dummy coding is often used to facilitate multivariate sta-
tistical methods when multi-valued nominal variables are in-
cluded in models. The obvious drawback of dummy coding is
the increased data dimensionality.

Thirdly, one can analyze the heterogeneous data as it is by apply-
ing a heterogeneous proximity function that is able to handle dif-
ferent scales. This approach requires no transformations thus
avoiding the loss of information, as well as the increase of di-
mensionality.

In the following, we compare six proximity functions with two
aims in mind. Five heterogeneous functions were weighed
against the Euclidean distance to assess whether heterogeneous
functions are better than a function assuming the same scale. In
addition, we wished to study the performance of typical value-
matching-based heterogeneous functions with respect to the
Heterogeneous Value Difference Metric (HVDM) function [5]
of Wilson and Martinez. HVDM utilizes class information and
has shown to be a competitive approach to evaluate proximities



[5]. We have found this function useful in classification tasks in-
volving medical data [7,8]. However, there are also tasks, such
as clustering, where class labels are unknown and one cannot ap-
ply HVDM, but value-matching-based functions are appropri-
ate. Performance of the functions was evaluated using a nearest
neighbor classifier and a collection of heterogeneous medical
data sets.

Methods

Nearest neighbor classification

Nearest neighbor technique is a classic instance-based machine
learning method [4] which classifies the unseen examples in a
testing set 7' into C mutually exclusive classes on the basis of the
k nearest examples in a learning set L. Each test example is la-
beled as belonging to the most frequent class of its neighbor-
hood.

The proximity functions were evaluated with a three-nearest
neighbor classifier (3-NN) which is less sensitive to noise than
the common 1-NN classifier [4]. To make tests more repeatable,
breaking ties randomly was avoided. Most ties were determinis-
tically broken by considering the distances between a test exam-
ple and its neighbors.

Proximity functions

Function f: E X E R is a proximity function in a space E, if for
every example x, y € E, there exists a lower or upper bound f;
for f so that flx,x) = fy and f{x,y) = fly,x) [3]. Next, we shortly
describe the proximity, i.e. distance and similarity, functions
evaluated in this study.

Heterogeneous functions were compared to probably the most
well-known proximity measure — the Euclidean distance [1-5], a
variant of the general Minkowski function. The Euclidean dis-
tance (EUCL) is defined as:

n
Y G-y
i=1
where m is the number of variables and the value of the ith vari-
able for an example x is denoted x; (1 < i < m). In these experi-
ments, each quantitative variable was normalized by dividing it
by four standard deviations (4s;) as in [5]. The nominal variables
were similarly normalized with their standard deviations, to
make the Euclidean distance wholly insensitive to scales.

Dy(x,y) = M

Heterogeneous proximity functions
Aha’s Heterogeneous Euclidean-Overlap Metric [5] (HEOM)

m
2
Z h,'(x i~V i)
i=1
is a distance function that treats nominal and quantitative vari-
ables differently:

HEOM(x,y) = @

1
Ip(a, b)
(la—-bl/rngy)

if a or b is missing
hia,b) = if ith variable is nominal

if ith variable is quantitative
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where rng; is the range of the ith variable and I, is an overlap
function

0 if a=b
1 . otherwise

Ip(a,b) = { @

Gower’s similarity function [1] (GOW) is defined as:
m m

GOWER(x,y) = Zg,-(xi,y,-)/zl,,‘(x,-,y,-) )
i=1 i=1
where g is
0, if a or b is missing
gia, b) = 1-1Ip(a, b) if ith variable is nominal
1—(la—bl/rng;) if ith variable is quantitative

and I, is an indicator function for observed values

1 ifaandb
0 otherwise

I(ab) =
o0 { N¢
Gower’s function differs from HEOM in that the Manhattan dis-
tance is computed instead of the Euclidean distance, and values
are normalized by definition into range [0,1] by dividing the sum
of similarities by the number of observed value pairs. It is as-
sumed that the sum is greater than zero.
Another similarity measure of this study is Estabrook-Rogers
similarity function [9] (ER):
m
ER(x,y) = Z 3",'(")'.)’,‘) ®
i=1
where missing values and nominal values of the ith variable are
treated as in Gower’s function:
0,
1-Ipta,b)
2u;+1- la~b|
2u;+2+ |a—b|ui’

if a or b is missing
if variable nominal,

eri(a, b) =
if variable quantitative, (la—b}<u p)

1 otherwise

®

However, the Manhattan distance for quantitative variables has
an upper bound u;, values over which are considered maximally
dissimilar. We chose u; = rng; — 2 which is the largest reasona-
ble value [9].

Ichino-Yaguchi generalized Minkowski metric [10] (GEM) is
based on the Cartesian space model and can compute distances
for sets and intervals of attribute values by utilizing the Cartesian
join and meet operators. Below, GEM is very briefly described
in its Euclidean data point form with parameter value g = 0.5:

m
GEM(x,y) = | ¥ gem(x, )’ 10)
i=1
0 if a=b
1/dmn; if ith variable is norminal
gem(a,b) =4, _ bl/dmn, if ith variable discrete (11)
la—bl|/rng, if ith variable is continous



where dmn; is the size of value domain of the ith variable. In con-
trast to the other heterogeneous functions, GEM normalizes the
difference in a nominal variable with the size of value domain.

Also Heterogeneous Value Difference Metric [5] (HVDM) has
a main function that resembles the Euclidean distance:
m
HYDM(x,y) = | Y, hvdm,(x;+y)’° (12)
i=1

Treatment of nominal variables differs greatly from that of the
heterogeneous functions described above. Instead of simple val-
ue matching, HVDM makes use of the class information to com-
pute conditional probabilities. Function Avdm; is evaluated for
the nominal values with the normalized and simplified Value
Difference Metric [5] defined as:

C
2
vdm(x, y;) = Z |Ni,x, c/Ni,x_Ni,y,c/Ni,,v| a3
c=1

In equation (13) N; , . is the number of examples in the learning

3. No missing values or few enough of them to allow the
completion of the data.

The aids2 [12], depression [13], low birth weight [14], postoper-
ative nausea and vomiting (PONV) [15], and VA lung cancer
[12] data sets were complete. To avoid treatment of missing data
in functions, variables having missing values were excluded
from the PONV data. For the same reason, the missing values of
acute appendicitis [16] (1.3%), benign breast disease [14] (3%),
muscular dystrophy carriers [17] (0.7%), prostate cancer [14]
(0.2%), and vertigo [8] (11%) data sets were imputed within
classes with modes and medians. Missing data in the Cleveland
heart disease data [18] (0.2%) were filled in with the modes and
medians of the whole data.

Total of 564 and 3 examples were excluded from the aids2 and
VA lung cancer data sets, because these cases had been censored
before one year and 90 days, respectively.
Table 2: Accuracies (%) of proximity functions in 10-fold
cross-validated 3-NN classification

set L with value x; and class ¢, N;, , is the number of examples in Data set GITETETGIHTH
L that have value x;, and C denotes the number of classes. Dis- E{R| U|O]|E |V
tance Avdm; for other than nominal attributes is [x; - y;| / 4s;. The M C|{W|O0|D
missing values are processed as in HEOM. L M| M
Table 1: The data sets used in the experiments. N, C, and V are ~Acute appendicitis > 6 6 6 6 6
the numbers of cases, classes, and variables, respectively. B, M, 9 2 0 0 0 2
and O refer to the numbers of binary, multi-valued nominal, AidsZ > > > >3 >
: . s . . 9 6 8 7 8 8
and ordinal variables. Q is the number of interval and ratio B
. enign breast dis- 7 7 7 7 7 7
scaled variables case 4 1 5 5 3 2
Data set N CT V]I B M] O] Q Depression T 138 3 8 8 8
Acute appendicifis 3BITT [T |9 [4 [T |2 9 3 0 3 2 1
3 3 1|6 Heart disease 8 7 8 7 7 8
Aids2 229 12 5 2 1 0712 3 8 3 9 9 1
7 Tow birth weight 6 6 6 6 6 6
“Benign breast disease | 200 | 2 I I 1 217 2 8 5 6 6 7
1 Muscular dystrophy 8 7T 8 8 8 8
Depression 29412 (1T 7 (3 [27]2 9 8 6 6 3 9
4 PONYV (placebo) 9 9 9 8 8 9
“Heart disease 303 2 T3 173 7T7]6 2 0 2 9 9 2
3 PONYV (prophy- 9 9 9 9 9 8
Low birth weight B9 12 7 13 7TT (0714 laxis) 0 0 0 1 0 9
Muscular dystrophy 12572 16 [0 I TO TS Prostate cancer 7 7 7 7 7 7
PONV (placebo) BT 2 [T [8 [4 [0 ]2 1t lol3 11114
4 Vertigo T8 |7 |7 17 |7
PONV (prophylaxis) 166 | 2 1 8 14 []0[2 3 0 5 8 8 9
4 VATung cancer 6 |6 |7 (6 |6 |7
Prostate cancer 380 [2 17 12 1 T 13 6 9 3 9 8 1
Vertigo 914 11 3 1 1 TTT Median T 7 7 T i T
0 |8 |1 016
VA Tung cancer 137 T2 16 12 1 013 3 4 5 ! 6 6
Materials Results

Total of 12 heterogeneous medical data sets were used as test
material (see Table 1). These data passed the following criteria:

1. At least one multi-valued nominal variable with statisti-
cally significant (p<0.05) dependency on the class vari-
able as measured with Cramér’s V' [11].

2. Large enough for 10-fold cross-validation.

The six proximity functions were evaluated experimentally us-
ing a 3-NN classifier and 10-fold cross-validation. Cross-valida-
tion is a technique where the data is divided into k disjoint sets
of equal size and each set is used once as the test set and the
union of other k-1 sets as the learning set. Prediction accuracy,
the ratio of correctly classified test examples to all the test exam-
ples, and true-positive rate (TPR), the ratio of correctly classified



positive test examples to all the positive test examples, were
used to evaluate the nearest neighbor classification.

The results were dependent, because the comparison required
the same 10-fold partition to be used with all the proximity func-
tions. Due to the small sample size the two-tailed Wilcoxon
signed ranks test [11] was used instead of the paired ¢ test to ex-
amine whether differences between the pairs of proximity func-
tions were significant (p<0.05). Since the Wilcoxon signed ranks
test was repeated 15 times, a Bonferroni correction [11] was also
made to the probability associated with each test by multiplying
it with the number of tests.

Table 2 shows the prediction accuracies of the 3-NN classifier
using different proximity functions on the 12 data sets. Medians
did not differ much, and neither the original nor the Bonferroni
corrected p values of the paired tests were statistically signifi-
cant.

Table 3: Median TPRs (%) of proximity functions in 10-fold
cross-validated 3-NN classification

Data set GTE GTH
E | R O | E
M wW| O
M
Acute appendicitis 8 8
AldsZ

Benign breast dis-
ease
Depression

Heart disease

Low birth weight

Muscular dystrophy

PONYV (placebo)

PONYV (prophy-
laxis)
Prostate cancer

Vertigo

VA'Tung cancer

O YW IO Y g0 O ~JI] U100 I3 Vi — YO\ Wy

Median

SO N DO I3 N G o I g LI Oy~ W —
N OO 3 OO0 YW O oo O] W00 I N T i —
AN NI ~JO NNV GO odqn ~J A (O ~JWn LI\O W -a U

~

Table 3 presents the median TPRs of the 3-NN classifier using
different proximity functions on the 12 data sets. Medians are
quite similar (64-67%), except that of HVDM (73%). The paired
tests deemed most differences statistically insignificant. Signifi-
cant differences were in favor of the HVDM function (HVDM >
ER and HVDM > HEOM) at the adjusted a level. An additional
significant difference at original a level was HVDM > GOW.
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Discussion

Five heterogeneous functions and the Euclidean distance were
compared by means of the prediction accuracies and TPRs of the
3-NN classifier. Four of the functions (HEOM, Gower, ER, and
GEM) treat nominal values simply by comparing their equality.
The fifth heterogeneous function (HVDM) is more sophisticated
than the four value-matching-based functions. HVDM function
evaluates distances between nominal values using conditional
probabilities based on the class information.

The first objective of the comparison was to verify the intuitive
hypothesis that heterogeneous functions would be more appro-
priate for computing proximities in the data sets described with
a mixture of nominal and quantitative attributers than functions
insensitive to scales.

There were no statistically significant differences in the predic-
tion accuracies and the medians of TPRs of the Euclidean dis-
tance and the five heterogeneous functions. The results were
clearly not in the expected direction and differed from the results
of the previous studies. The Euclidean distance outperformed
HEOM in [5] and [19], where it also was better than Gower’s
function. We also found earlier HVDM better than the Euclidean
distance [19].

The second objective was to compare the value-matching-based
heterogeneous functions with HVDM. The use of the class infor-
mation is also a weakness, because the HVDM function can be
applied only when the classes are known. Therefore, it was of in-
terest to know how the ER and GEM functions, which we have
not evaluated earlier, would perform compared to HVDM.

Results showed, as expected [19], that the HEOM produced low-
er TPRs than HVDM. Furthermore, at the original less stringent
a level, HVDM outperformed Gower’s function as in the previ-
ous study [19]. ER was significantly worse than HVDM at the
adjusted a level. Although GEM and HVDM did not differ sig-
nificantly, it is obvious, knowing the similar nature of the value-
matching-based functions, that HVDM was better than the other
heterogeneous functions of the present study. The ability to
make use of the external information is clearly an important fac-
tor behind the good relative performance of HVDM.

Explaining why the relative performance of the Euclidean func-
tion was better than expected in the earlier [5,19] and present
studies, is an interesting subject for future study. This requires
additional, more controlled experiments. For example, normal-
ization should be as similar as possible in the different functions.
Future experiments should include data sets with larger numbers
of multi-valued nominal attributes. To reach this goal, genera-
tion of synthetic data sets is possibly needed. Future work should
also include additional classification methods utilizing proximi-
ty functions.

The limitation of this study was the small number of data sets.
We selected the data more carefully than in the previous studies
[5,19], where missing values were allowed to affect the results
and the prediction capability of the nominal variables was not
considered. Since it was difficult to meet all the requirements,
the collection of data sets was not as large as we had wished. Ac-
curacies have earlier [5,19] shown significant differences be-



tween functions, and it is likely that a larger collection would
have produced more significant results.

To summarize, the Euclidean distance was as good as, and the
HVDM function better than, the value-matching-based HEOM,
Gower, ER, and GEM functions.
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