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Abstract

Since the widespread adoption of mammographic screening in

the 1980°s there has been a significant increase in the detection

and biopsy of both benign and malignant microcalcifications.

Though current practice standards recommend that the positive
predictive value (PPV) of breast biopsy should be in the range of
25-40%, there exists significant variability in practice. Micro-

calcifications, if malignant, can represent either a non-invasive
or an invasive form of breast cancer. The distinction is critical
because distinct surgical therapies are indicated. Unfortunate-

ly, this information is not always available at the time of surgery
due to limited sampling at image-guided biopsy. For these rea-

sons we conducted an experiment to determine whether a previ-

ously created Bayesian network for mammography could
predict the significance of microcalcifications. In this experi-

ment we aim to test whether the system is able to perform two re-

lated tasks in this domain: 1) to predict the likelihood that
microcalcifications are malignant and 2) to predict the likeli-

hood that a malignancy is invasive to help guide the choice of
appropriate surgical therapy.
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Introduction

Early diagnosis of breast cancer through screening mammogra-
phy is the most effective means of decreasing the death rate from
this disease. [1, 2] The widespread adoption of mammography
screening in the 1980’s introduced the diagnosis and manage-
ment of clinically occult abnormalities that signified cancer that
had never been dealt with before. A large proportion of these ab-
normalities were microcalcifications. Malignant microcalcifica-
tions on mammography most commonly represent ductal
carcinoma in-situ (DCIS). Prior to the adoption of mammogra-
phy, DCIS was a rare diagnosis. In the late 1990’s DCIS ac-
counted for approximately 18% of breast cancer diagnosis.[3] In
fact, in 1993, the total number of DCIS cases in the US was
200% higher than expected based on trends established in the
previous decade; the majority of these cases attributable to mam-
mographic screening.[4] DCIS is a non-invasive malignant con-
dition with a very favorable prognosis. Involvement of the
axillary lymph nodes is rare. Surgical therapy consists of
lumpectomy without axillary node sampling. Unfortunately,
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malignant microcalcifications may also indicate the presence (or
future potential development) of invasive malignancy. Invasive
breast cancer has an increased risk of axillary node metastasis
and depending on the size and grade of the malignancy, axillary
node sampling is usually necessary. Microcalcifications can
also represent several benign conditions including fibrocystic
changes, a fibroadenoma and fat necrosis.

It has been surmised and confirmed in the literature that the
mammographic appearance as described by the radiologist can
predict the histology of breast cancer.[5] Unfortunately, there is
significant variability in this predictive ability; subspecialist, fel-
lowship-trained mammographers perform superiorly. We have
demonstrated that our probabilistic expert system, a Bayesian
network (BN), can predict the most likely diagnoses and there-
fore the likelihood of malignancy based on demographic factors
and mammography findings as well as expert mammogra-
phers.[6] Our system uses predictive imaging features to deter-
mine the likely underlying breast disease by using the
standardized lexicon established in breast imaging, the Breast
Imaging Reporting and Data System (BI-RADS), which defines
mammogram feature distinctions and the terminology used to
describe them.[7]. BI-RADS arose in part from a study of the
common terms used to describe mammography abnormalities.
The descriptors most highly associated with a benign or malig-
nant diagnosis were considered the most predictive.[8] Subse-
quently, these terms were incorporated in the BI-RADS lexicon.

For these reasons, we believe that our expert system will be able
to predict the likelihood of benign and malignant disease under-
lying microcalcifications on mammography. This is a more
challenging task than our first experiment in which we tested the
BN on cases in a teaching atlas.[6] The performance for the
teaching cases was equal to that of an expert mammographer as
described in the literature but the cases were not representative
of true clinical practice. In this experiment, we chose to test our
system on a more challenging dataset: a consecutive series of
patients selected to undergo biopsy for microcalcifications. This
retrospective review of clinical cases tested the hypothesis that
our system would be able to accurately predict the likelihood
that microcalcifications are malignant and assess whether the
microcalcification represent in situ or invasive breast cancer to
aid in preoperative planning.



Materials and Methods

The Model

Some of the details of the construction of our BN have been re-
ported previously, but are repeated here in part for the conve-
nience of the reader.[6] We subsequently refined our system by
modifying our probability assessments. From the literature, we
identified 26 diseases of the breast (Table 1) that represent the
most likely diagnoses to be made on mammography. Twelve of
these diseases are malignant and fourteen are benign.

Malignant Benign
Ductal carcinoma (DC) ¢ | ©¥st
Ductal carcinoma in sifu® Fibroadenoma
DC/DCIS & € Papilloma
Lobular carcinoma (LC) ¢ ¢ [Fibrocystic change
LC/LCIS &€ Hamartoma
Tubular carcinoma © Lymph node

Papillary carcinoma ° Focal Tibrosis

Medullary carcinoma © Fat necrosis

Colloid carcinoma © Secretory disease

Phyllodes tumor © Post-operative change

Metastasis Skin Iesion

Radial scar

Atypical ductal hyperplasia

Lobular Carcinoma in situ (LCIS)

2 Signify two individual diagnoses present simultaneously.
b Represents in situ disease. © Represents invasive disease.

We assume that there is a single uncertain variable, “Disease,”
which can take on one value corresponding to exactly one of the
26 diseases or “Normal.” We assume that it is impossible that
two unrelated breast diseases occur concomitantly, but in situ
and invasive breast cancers exist on a spectrum and are com-
monly present simultaneously. For example, the most common
breast malignancy, ductal carcinoma (DC), is generally thought
to develop from ductal carcinoma in situ (DCIS). Though the
rate of transformation is not well known, the causal relationship
between these entities is accepted. We therefore represent these
two diseases in our model as three mutually exclusive states in
the disease node: DCIS, DC, and DC/DCIS. The third state rep-
resents a case in which DC and DCIS are both present in the le-
sion seen on mammography. Similarly, lobular carcinoma and
its noninvasive counterpart lobular carcinoma in situ (LCIS) ex-
hibit the same pathophysiology.

The standardized lexicon for breast imaging, BI-RADS, consists
of descriptors organized in a hierarchy. These terms describe the
density of the breast tissue, and all possible findings on mam-
mography. The most common findings on mammograms are

14

microcalcifications and masses. In our experiment, the charac-
terization of microcalcifications is of interest. When microcal-
cifications are identified, the radiologist must describe the
morphology of the microcalcifications as well as their distribu-
tion in the breast.

To construct our belief net and perform inference we used the
GeNle modeling environment developed by the Decision Sys-
tems Laboratory of the University of Pittsburgh (http:/
www.sis.pitt.edu/~dsl). We began construction assuming that
all of the BI-RADS descriptors except breast density would be
children of the disease node. (Figure 1) We modeled the calcifi-
cation descriptors as conditionally independent manifestations
of disease. The distribution, or spatial orientation, descriptors of
each type of calcifications are the mutually exclusive states of
the corresponding calcification nodes when appropriate. The de-
terministic (double bordered) node in the belief network has four
states, “Benign,” “Non-invasive,” “Invasive,” and “Mets.” The
probabilities of non-invasive (analogous to in situ disease), inva-
sive disease, and metastases comprise the total probability of
malignancy.

Figure I - Bayesian network structure
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Note: P/A/O = present, absent, or obscured; Ca ** = calcifi-
cations; Inv. = invasive breast cancer, Mets = metastasis

We made probability assessments from the medical literature
and expert opinion. We obtained pretest probabilities, the age
specific and risk factor specific distribution of diseases from
census data and large randomized trials. We derived many of the
joint probabilities from studies of the radiologic/pathologic cor-
relation of individual breast diseases.

Study Design

Our study included 44 consecutive image-guided biopsies per-
formed for microcalcifications detected and deemed suspicious
by radiologists. The patient population consisted of women be-
tween the ages 0f 26 and 71 (mean=53.9; SD=10.1). Patients un-
dergoing biopsy procedures between November 2001 and
March 2002 were analyzed. 11-gauge stereotactic biopsies and
needle localizations done for diagnosis were included in this
project. Patients with a known cancer diagnosis undergoing ther-



apeutic needle localization were excluded. Other exclusion cri-
teria included: 1) the patient’s films not available for review, 2)
calcifications not identified in the histologic specimen, and 3)
mammographic follow-up of at least 12 months not available.
These criteria ensured that accurate and complete evaluation of
the abnormality of interest occurred and the chance of sampling
error of the abnormality and possible progression were mini-
mized

Cases included in the study were reviewed in a blinded man. +
by a fellowship-trained mammographer. The radiologist used a
Web-based interface to input mammography findings and her
estimate of the likelihood of malignancy into the BN. The struc-
tured entry system mandates the use of BI-RADS descriptors.
Given mammography findings, our system provides post-test
probabilities formulated as a differential diagnosis. For the pur-
poses of this experiment, the system also provides the probabil-
ities associated with the mutually exclusive possibilities of
benign changes, invasive malignancy, in situ disease, or me-
tastases.

Study Endpoints

Surgical pathology at the time of the patient’s ultimate surgical
intervention is the gold standard in this study. We considered ul-
timate surgical intervention to be either lumpectomy with estab-
lished negative margins or mastectomy. The reason that we
considered definitive surgical therapy the gold standard was to
avoid the possibility of sampling error at percutaneous biopsy.
Using this gold standard, we evaluated the ability of the Bayes
net to predict the outcomes of interest: the probability of malig-
nancy of these microcalcifications as well as the likelihood of in-
vasive disease for surgical planning.

Figure 2 - ROC cirve measuring discrimination of malignant
disease
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For evaluation of the performance of both the radiologist and the
expert system in the task of predicting the probability of malig-
nancy, we created receiver operating characteristic (ROC)
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curves. The areas under each ROC curve (AUC) were also cal-
culated and compared.[9] The AUC can be used to measure the
performance of a diagnostic tool in discriminating between pa-
tients with breast cancer from those without it for all possible
cutoff values.

We also created a calibration curve for the radiologist and the
Bayes net. This type of graphical representation has been pro-
posed to measure the calibration or reliability of a system in
demonstrating the relationship between observed and predicted
outcome events. While a calibration curve does not provide a
quantitative measure of reliability of probability predictions, it
gives a graphical representation to capture the intuitive meaning
of calibration of a given system.[10]

For evaluation of the performance of the expert system in distin-
guishing between invasive breast cancer and in situ disease we
created a second ROC curve and calculated the AUC.

Results

The AUC of our expert system in predicting whether microcal-
cifications are malignant, .935, is similar to that found for pre-
diction in the teaching atlas.[6] This is comparable to the AUC
of .938 achieved by the radiologist. (Figure 2) There was no sta-
tistically significant difference between the AUC of the radiolo-
gist and the Bayes net. Therefore, the radiologist and the Bayes
net demonstrate similar abilities to predict the likelihood of ma-
lignancy of microcalcifications.

Figure 3 - Calibration curve for Radiologist
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The calibration curves on the other hand show a different level
of prediction reliability between the radiologist and the Bayes
Net. The calibration curve for this experiment shows the pre-
dictions divided into quartiles. The graphs illustrate the rela-
tionship between observed and predicted outcome event rates.
The error bars represent 95% confidence intervals. Ideal cali-
bration would show that each quartile has an equal predicted
and observed probability (x-axis would equal the y-axis). Fig-
ure 3 shows that the radiologist is fairly well calibrated, while
the expert system is not. The Bayes net tends to predict extreme
probabilities: high probabilities are overestimated and low
probabilities are underestimated. Although the small popula-



tion size included in this study causes us to view this analysis
with caution, it gives a preliminary view of the reliability of the
predictions of the radiologist and the model.

Figure 4 - CROC alibration curve for Bayes net
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Finally, the ROC curve created to determine the ability of the
Bayes net to discriminate between invasive malignancy and in
situ disease is shown in Figure 5. The AUC is .990 demonstrat-
ing almost perfect discrimination.

Discussion

Our goal in this experiment was to confirm that our BN for mam-
mography 1) is capable of predicting the likelihood of malignan-
cy for microcalcifications on mammography, 2) can predict the
likelihood of invasive disease as opposed to in situ changes in or-
der to help guide appropriate surgical management, and 3) is
well-calibrated to the task of predicting malignancy. In addition,
through this project, we hoped to identify ways that we could im-
prove our system,

Our analysis shows that our expert system has approximately the
same ability as a sub-specialist mammographer to discriminate
benign and malignant disease in actual patients as opposed to
teaching cases as demonstrated previously.[6] In addition, it
also performs as well as a full-time, fellowship-trained mam-
mographer in assessing the significance of microcalcifications.
The system does this by using the predictive value of BI-RADS
descriptors included in the model. We hope to improve perfor-
mance of the system by incorporating additional descriptors that
are likely predictive. For example, our model does not include a
descriptor for the temporal evolution of microcalcifications. Of-
ten, the radiologist can infer more aggressive disease if micro-
calcifications are new or increasing.

The system can discriminate which patients are likely to have in-
vasive disease and will likely require removal and analysis of ax-
illary lymph nodes for appropriate staging and prognosis. This
represents an area where the model has the potential to contrib-
ute to clinical decision-making. Often, percutaneous biopsy of
microcalcifications can underestimate the actual disease present
(i.e. percutaneous biopsy will indicate in situ disease but exci-
sional biopsy will reveal invasive malignancy).[11] Unfortu-
nately, in these cases, the patient has to be taken back to the
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operating room for lymph node sampling. It is possible that our
expert system may be able to decrease the rate at which patients
are forced to return for a second surgery by predicting the neces-
sity of lymph node sampling prospectively. Minimally invasive
sampling of lymph nodes using sentinel lymph node biopsy
makes this possibility even more realistic.

Figure 5 - Roc curve measuring discrimination of invasive dis-
ease
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While the model can ascertain the likelihood that microcalcifica-
tions are malignant as well as a fellowship-trained mammogra-
pher, the system may not be as well calibrated a mammographer
in this domain. Several articles have questioned the ability of a
model to simultaneously maximize discrimination and reliabili-
ty.[10, 12] In the case of a probabilistic expert system, it is im-
portant that the predicted probabilities reflect those probabilities
ultimately observed if it is to be used in actual patient care. Cur-
rently, our system underestimates the likelihood of malignancy
when the probability is low and overestimates when the proba-
bility is high as reflected by the calibration curves (Figure 4).
We believe or model requires additional predictive features and
the ability to model coexistent conditions to improve its calibra-
tion accuracy.

Observing the individual cases for which the expert system per-
formed poorly is instructive. Two cases in particular demon-
strate that the Bayes net incorrectly estimates the likelihood of
malignancy. The first case, a 53-year-old female underwent an
11-gauge stereotactic core biopsy for pleomorphic, linear, dys-
trophic, clustered microcalcification. Pathology revealed fibro-
cystic changes including apocrine metaplasia as well as a
coexistent papilloma. Malignancy was estimated as 50% and
90% by the radiologist and the Bayes net respectively. The sec-
ond case involved a 61-year-old patient who underwent needle
localization and excisional biopsy for clustered pleomorphic mi-
crocalcifications accompanied by scattered punctate microcalci-
fications. The patient was diagnosed with both DCIS and
fibrocystic changes. In this case, malignancy was estimated as
20% and .4% by the radiologist and the Bayes net respectively.
In both cases, the expert system had more difficulty accurately
characterizing the constellation of findings because it does not
model the possibility of coexistent diseases. Both of these cases



characterizing the constellation of findings because it does not
model the possibility of coexistent diseases. Both of these cases
demonstrated that two concomitant pathologic diagnoses can be
present in the same area of the breast. More specifically, benign
or malignant disorders can co-exist with the very common un-
derlying condition of fibrocystic change and its variants scleros-
ing adenosis and apocrine metaplasia. This has also recently
been reflected in the literature.[13] This violates the mutual ex-
clusivity mandated by the disease node in our model. In future
work, we plan to improve the performance of our system by
modeling this feature of breast disease.

Conclusion

We believe this small retrospective analysis is encouraging.

We have now demonstrated that the BI-RADS lexicon, when
coupled with our Bayesian model, has great potential to commu-
nicate quantitative probabilistic information beyond teaching
cases to actual patients. Our model relates the benign and malig-
nant breast diseases to BI-RADS descriptors and allows us to in-
tegrate radiological observations in a principled fashion to
discriminate between benign and malignant microcalcifications.
We have identified areas to work on in the future, including im-
proving the calibration of the model and incorporating the coex-
istence of the common underlying condition of fibrocystic
change with concomitant breast disease. Ultimately, we hope
that with further testing and use our model will help aid decision-
making in mammography.
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