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Abstract 

The paper describes the key component of the Multimodal Cell Analysis approach, a 
novel cytologic evaluation method for early cancer detection. The approach is based 
on a repeated staining of a cell smear. The correlation of features and data 
extracted from different stainings, and related to relocated individual cells, will 
yield a dramatic increase of diagnostic reliability. 

The necessary fully automatic preprocessing steps are presented: coregistration of 
multimodal images, segmentation, and classification of cell nuclei. Both efficiency 
and robustness of all steps reached at the current stage of research, are high 
regarding medical image material, and strongly support clinical application. 
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1. Introduction 
The widely applied histopathological method for cancer diagnosis requires tissues for 

microscopic investigation. These are removed from the patient by bloody biopsies or 
operation. In contrast, cytopathologic investigations only require cells, obtained non-
invasively and without discomfort. Sediments from diverse body fluids, smears from 
mucosal surfaces or fine needle aspirates from different organs contain enough cells to 
establish valid cancer diagnoses. Thus the compliance of patients to have lesions 
investigated, if they are suspicious for cancer, is higher for cytopathology than for 
histopathology. Furthermore, investigation of cells, as opposed to tissues, often allows an 
earlier diagnosis of cancer and therefore higher rates of cure. Yet, there are at least two 
obstacles to a broad application: the subjective microscopic evaluation of cytologic 
specimens is too time-consuming, and mere morphologic inspection of cells does often not 
offer enough information to achieve sufficient diagnostic accuracy. 

Yet, the combination of different adjuvant diagnostic methods, like DNA-measurements, 
immunocytochemical marker demonstrations or AgNOR-analysis would allow accurate 
cancer diagnosis on a few cells [2]. In our interdisciplinary research we introduced the new 
approach of Multimodal Cell Analysis, which circumvents the limitations of current 
evaluation methods. Fixation of cells on microscope slides allows for repetitive staining, 
with intermediate application of a solvent. Interesting positions on the slides are retrieved 
under the microscope. Images from identical cells but different stainings are then acquired. 
Once exactly aligned, cell nuclei can be multimodally segmented and their cell types can be 
classified, after which the information retrieved from each staining can be evaluated and 
combined for each cell in order to gain a multivariate statistic. This leads to a considerable 
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increase in diagnostic accuracy and allows for valid diagnoses based on a very few cells. 

At the reported stage, our objective was to prove that the automatic image processing 
algorithm could be made robust and efficient enough for the clinical routine. The algorithm 
was tested on a representative set of image series successfully. 

Figure 1 - Multimodal image set of three cells: the intensity of cytoplasm and of erythrocytes around  

the cells differs, (a) MGG, (b) FEU, (c) AGN.  

2. Experimental Design  
So far three cytological stainings have been incorporated into the test environment (see  

fig. 1): The May-Grünwald-Giemsa staining (MGG) shows both nuclei and cytoplasm. The  

Feulgen staining (FEU) stoichiometrically dyes DNA and hence serves for ploidy 
measurement [1]. The silver staining (AGN) is less specific, but it stains active nucleolar 
organizing regions (AgNORs). Their number and area allows conclusions on the intensity 
of protein synthesis and thus cell proliferation [11].  

Seven series, each of 11 to 20 images per staining, were captured. Preparations were  

derived from serous effusions. Two slides contained cells from pleurisy due to chronic  

lymphocytic inflammation, two due to malignant pleural mesothelioma and three slides due  

to metastatic adenocarcinoma. Altogether 108 multimodal colour image triples showing a  

total of 693 nuclei were digitized using a Sony DXC 3-chip CCD camera mounted on a  

Zeiss Axioscope. Image size was 768 * 568 pixels with a pixel resolution of 0.165 fun. The  

software was designed to run unsupervised from the first to the last preprocessing step. 

3. Adaptive Colour Space Transformation  
All stainings show different colours but are nearly monochromatic, since information is 
carried merely in the staining intensity. The colour space conversion is carried out for each 
staining by a cluster analysis [4] of the RGB histogram and subsequent application of the 
Fisher transform [5]. Given initial estimates, the first step determines foreground and 
background colour distributions, with which the second performs the transformation 
yielding optimal foreground-background contrasts. This combination of methods makes the 
colour space transformation adaptive to differences in individual staining results while 
keeping it robust by the addition of a-priori knowledge to the start estimates. 

4. Coregistration  
If only mechanically retrieved, the misalignment of images is still up to 30 pm of 
translation and up to 3° of rotation, whereas subpixel accuracy should be reached. 
Alignment is a precondition to multimodal segmentation. Therefore knowledge about the 
image scene (e.g. positions of the cell nuclei) cannot be employed for coregistration. A 
common method for coregistering two images [ 12] is to construct a function F from the 
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following two components: one image is chosen as the reference image R (here: FEU), the 
other as the object image 0 (MGG resp. AGN), which is passed through an affine 
transformation T(p, 0) with parameter vector p in the first step. Second R and T(p, 0) are 
compared by means of a so called cost function C that measures their dissimilarity. It 
should be sensitive to misalignments while insensitive to other differences. Here a scaled 
variant of the pixelwise L2 norm is utilized. The overall function is 

F(P) = C(R, T (P, O)) 	(1) 
where T, in our case, is a 2D rigid body transformation. F is minimized according to p to 

gain the smallest dissimilarity between R and T(p, 0). The Powell algorithm [ 10] is used 
for numerical minimization. 
The problem of local minima of the cost function was eliminated by use of a multiscale 

environment, the Gaussian pyramid [7]. The quality of C could be improved by masking 
foreground pixels in FEU using the colour distributions from section 3 and adapting the 
numbers of nonzero voxels in the other images appropriately. For each image triple two 
coregistrations were needed (FEU-MGG and FEU-AGN). 215 of 216 coregistrations 
succeeded, allowing multimodal processing of 107 of the 108 images triples (99.1 %). 

5. Segmentation 
A segmentation method that lets a membrane-like contour representation iteratively 

converge toward an underlying image feature is called active contour or snake [8]. Its 
movement is driven by external image forces, usually derived from image edges, and 
internal forces that model features like stiffness or tensibility. Because of these simulated 
physical features the method is known to be robust against noisy or partially missing image 
information. Forces act on and between points distributed along the snake, which are here 
called knots. Both their number and the fraction of image forces versus the inner forces 
make for the degree of freedom of the snake movements. They need to be balanced in order 
to make the snake both flexible enough to enclose the image contour and stiff enough not to 
be partially distracted by other image structures, which is not trivial, particularly if the 
variance in object appearance is high, as with cell nuclei. 

These characteristics of a snake may also be intrinsic to the contour representation: When 
using B-Snakes [3][9], based on B-splines [6], the stiffness of the contour is solely induced 
by the dependency of the knot positions due to the spline polynomials, rendering explicit 
inner forces unnecessary. Stiffness is modeled by the density of knots and the number of 
sampling points between them. The latter assure a fine sampling of the image; they 
influence movements of their neighbouring knots but do not increase the degree of freedom 
of contour movements. This method results in a much smaller number of knots and 
reduction in computational cost. 

Furthermore, the adjustment of the stiffness parameter becomes more intuitive. In our 
implementation the contour representation is initialized with only four knots. After the 
snake has converged, further knots are added only where necessary (fig. 2(a)). This 
behaviour can, for example, be driven by the average quadratic approximation error along 
spline segments between two knots, retaining the snake noise-resistant. 

In every iteration the knots are moved within defined neighbourhoods, here contour 
normals. External forces of different kinds and here, from different modalities, are 
incorporated by a weighted summation. Edge forces are usually implemented by means of 
common image edge filters. The thereby induced loss of information on the edge direction 
disables snakes to differentiate between neighbouring objects, a major cause to the 
regularly criticized high dependency of snakes on initialization. In this work contour 
normals are convolved by a derivated Gaussian, preserving the edge direction and thus such 
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differentiation (fig. 3). As a side-effect, image normals can be made longer without the risk 
of attraction by other objects, facilitating the segmentation of concave objects (fig. 2(b)). 

(a) (b) 

Figure 2 — Two examples of B-Snakes and variable knot density: (a) only ten knots describe the contour, with 
a higher density around the notch, (b) irregular nucleus. 

MGG 

FEU 

AGN 

a) 
	

b) 
	 c) 

Figure 3 — The impact of directed edge filtering; multimodal, directed profiles of two neighbouring nuclei 
(rear grey, front white): (a) identity function, (b) same on an edge-filtered image; all edges are maxima, (c) 
directed edge filtering discriminates between foreground-background edges (minima) and background-
foreground edges (maxima). 

The snakes are initialized using a rough segmentation on binary images generated by 
means of the colour distributions from section 3. After the initialization they are 
superimposed on the grey scale image triple and the segmentation is finished. 

Occasionally a snake encloses two or more nuclei after initialization. This problem is 
solved by two approaches: First, if the nuclei are sufficiently far apart, the snake will move 
into their interspace allowing for automatic separation by means of a distance criterion. If 
the nuclei nearly touch each other, the snake will have two opposite concavities after 
convergence, resulting in the second criterion for splits. 

Figure 4 - Image forces and their impact on segmentation: (a) incorrect segmentation due to inner edges, (b) 
combination of edge force and identity force; the position of the minimum changes from inner edge ("edge") 
to outer edge ("both"), (c) correct segmentation according to (b). 
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FEU proved the most suitable staining for segmentation. The exclusive use of edge forces, 
however, does not allow differentiation between the object border and other edges. Thus the 
snakes broke into objects (fig. 4(a)). The addition of the identity function, i.e. the grey level, 
nearly eliminated this effect, because contour edges lie on a deeper grey level than 
structures within an object (fig. 4(b),(c)). The overall success rate yielded 92.6 % (642 of 
693 nuclei). An image triple with overlaid segmentations is shown in figure 5. 

(a) (b) 

(c) 

Figure 5 - Image triple with overlayed segmentation: a) MGG, b) FEU, c) AGN. All nuclei are correctly 
segmented using FEU, despite partially strong inner edges and some nuclei nearly touching each other. Only 
objects within the common area (black frame) were processed. 

6. Classification 
For the automatic analysis the nuclei need to be classified regarding t6 their cell type. There 
are four different classes of interest in serous effusions: one class for analysis, which 
contains mesothelial cells (normal or neoplastic) and carcinoma cells; and lymphocytes, 
granulocytes, and macrophages, which are all used for calibration. So far a Bayesian and a 
knn-classifier [4] have been tested on a basic set of eight features gained from different 
modalities. The optimal error rate is 12.5 %. 

7. Overall Results, Summary and Perspective 
Disregarding possible correlations between error sources, the product of the single success 

rates may be regarded as a "worst-case" estimation for the overall efficiency: 

99.l%•92.6%•87.5% = 80.3% 
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The reported project was driven by two major objectives: the first one was to develop a 
fully automatic preprocessing algorithm for multimodal sets of cell images acquired by 
means of a fixation technique in order to explore its potential for clinical routine use. The 
outcome clearly supports this application. The second objective was to find out whether 
multimodality could support the steps of segmentation and classification. As for 
classification this is the case because object features were extracted from different 
stainings. Segmentation results were best using the FEU staining only, but improvements 
through multimodality are still likely. 

The segmentation process will be further improved by more general approaches of object 
separation. The success rate of the classification process will be increased by the addition of 
more features, and further research on the classifier will be performed. 

In order to assure user compliance and usability, the graphical user interface has been a 
major component of research from the beginning. It facilitates the validation of the 
diagnostic advantage of Multimodal Cell Analysis, which is currently being undertaken in 
three pilot studies on preparations from serous effusions, oral mucosa, and thyroid. 
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