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Abstract. We studied the nearest neighbour classification of patient cases with benign positional vertigo,
Meniere's disease, sudden deafness, traumatic vertigo, vestibular neuritis, and vestibular schwannoma. The
classification results were compared to the inference results obtained by an otoneurological expert system
ONE whose inference mechanism somewhat resembles the classical nearest neighbour method. With respect
to the predictive accuracy, the classification results of these two systems agreed. The best predictive accuracy
for the expert system ONE was 79.7% and for the nearest neighbour method 80.5%. However, differences in
the true positive rates for sudden deafness, traumatic vertigo, vestibular neuritis, and vestibular schwannoma
were found. The nearest neighbour classification results will be used in the refinement of ONE's knowledge
base.

1. Introduction

Diagnosis of vertiginous patients requires thorough knowledge of otoneurology; it
provides challenging tasks even for specialists of the field [3]. A n otoneurological expert
system O N E [1] has been developed to assist the diagnostic procedure for peripheral and
central diseases involving vertigo [3], and to provide a tutorial guide for medical students.

The inference mechanism of O N E [1] somewhat resembles the nearest neighbour
method of pattern recognition [7]. The knowledge base of O N E contains a description or a 
pattern for each disease, and the inference mechanism searches the pattern that matches
best to the case to be classified.

In this study, we use the nearest neighbour method to classify patient cases representing
the six largest diagnostic groups of ONE's database [4]: benign positional vertigo,
Meniere's disease, sudden deafness, traumatic vertigo, vestibular neuritis, and vestibular
schwannoma. We compare the results of the nearest neighbour classification to the
inference results obtained by O N E [9].

2. Ma te r i a l

The data of the present study were collected in the Department of Otorhinolaryngology
at Helsinki University Central Hospital. It contained 815 patient cases representing the six
largest diagnostic groups in ONE's database: benign positional vertigo (nbp = 146; 17.9%),
Meniere's disease (nmd = 313; 38.4%), sudden deafness (nSd = 41; 5.0%), traumatic vertigo
(n t v = 65; 8.0%), vestibular neuritis (n v n = 120; 14.7%), and vestibular schwannoma (n v s = 
130; 16.0%). From each diagnostic group, approximately 70% of the cases were randomly



Chapter IV: "Understand the message" D a t a analysis, terminology and language p r o c e s s i n g 451

selected to the training set (ntr=569). The rest 30% of the cases formed the testing set
(me=246).

3 . Methods

3 . 1 . I n f e r e n c e M e c h a n i s m o f O N E

The knowledge base of O N E contains a description for each disease in the form o f
weight and fitness values. The present version covers 18 diseases and disorders that are
described with the use of attributes concerning patient history, symptoms, clinical tests, and
examinations [4]. To each attribute, a weight value expressing the significance of the
attribute for the disease is set. Fitness values assigned to attribute values express the
correspondence between the attribute values and the disease.

The inference mechanism transforms attribute values to scores based on the fitness
values and weights. Let d be a disease and n ( d ) be the number of attributes associated with
d in the knowledge base. The score S(d) for the disease d is calculated as

where x ( i ) is 1, i f the value of t attribute is known for the disease d, otherwise 0; w ( d , i ) is
the weight value for the attribute z; a n d f ( d , i j ) is the fitness value for the value j of the
attribute i. The fitness value varies from 0 to 1.

The diseases with the highest scores are the best fits and suggested by O N E . To handle
uncertainty caused by missing values, O N E generates upper and lower bounds for the
score. The lower bound is calculated using the lowest fitness values for the missing values
and the upper bound using the highest fitness values, respectively. In addition to the scoring
scheme, O N E uses necessary attribute values attached to certain diseases. In order to be
diagnosed as having a certain disease, the case has to conform to the necessary attribute
values set for the disease.

We use the inference results o f O N E obtained in the earlier study [9]. In that study, the
disease with the highest score was considered as the classification result. Neither the upper
or lower bounds of the score nor the necessary attribute values were employed. The
knowledge base contained descriptions for the six largest diagnostic groups. In the present
study, we use the results o f two scoring schemes. In the first scheme ( O N E e ) , the weight
and fitness values were defined by experienced otoneurologists [4]. In the second scheme
( O N E d ) , the fitness values were calculated from the training data. For each attribute i, the
frequency distributions were calculated within the six diagnostic groups. The fitness value
fidJJ) was calculated as the proportion of the frequency f r ( d , i , f ) o f the value j to the
highest frequency f r ( d , i , h ) o f the distribution:

A l l the 170 attributes were associated with the weight 1, except those whose values were
missing from all the training cases of the diagnostic group.

3.2. N e a r e s t N e i g h b o u r C l a s s i f i c a t i o n

S(d) = 
l£Vx(i)w(d,i)f(d9ij)

z ^ x d M d j )

f ( d , i , j ) = 
fr(d,ij)

f r ( d , i , h )

Because our data are mixed having both qualitative and quantitative attributes, we
wanted to use in the nearest neighbour classification a heterogeneous distance function [11]



452 Chapter IV: "Understand the message" Data analysis, terminology and language p r o c e s s i n g

that takes into account the scales of the attributes. We chose the Heterogeneous Value
Difference Metric ( H V D M ) [11] which seems to perform well with mixed real-world data
[6]. H V D M defines the distance between two cases x andy as [11]

H V D M ( x , y ) = j£(da(x,y))2,
a = \

where A is the number of attributes and d a ( x , y ) is the distance between x and y for the a t h

attribute.
For nominal attributes, the distance between two values x and y is defined by a 

simplified, normalised version [11] of the Value Difference Metric ( V D M ) [8]:

,x,c * a,y,c\ ' 

where C is the number of output classes and P a i X t C is the conditional probability that the
output class is c given that the a t h attribute has the value x .

For linear attributes, the normalised distance is the absolute difference between the
values x andy divided by 4<rfl, where oa is the standard deviation of the a t h attribute, i.e.,

d a ( x , y ) = 1—^.

The ordinal attributes were treated as nominal attributes. The distances for the nominal
and the ordinal attributes, and the standard deviations for the other attributes were
calculated from the training set. Classifications for the test cases were calculated on the
basis of the nearest neighbour ( I N N ) and the three nearest neighbours ( 3 N N ) in the learning
set. Three different attribute subsets were used: the subset a with all the 170 attributes
( l N N a and 3 N N a ) , the subset b with 38 attributes [10] ( l N N b and 3 N N b ) , and the subset c 
with five attributes [10] ( 1 N N C and 3 N N C ) .

4. Results

The true positive rate ( T P R C ) was calculated for each diagnostic group as the percentage
of correctly classified cases of the group:

*P°sc o,TPR =100- %
posc

where t p o s c is the number of correctly classified cases of the group c and posc is the number
of all cases in the group. Table 1 presents the true positive rates and their medians for the
inference method of O N E and the nearest neighbour method.

Table 1: True positive rates (%) for ONE and nearest neighbour classification, e = scoring scheme defined
by experts, d = scoring scheme learned from data, a = 170 attributes, b = 38 attributes, c = 5 attributes

Diagnosis N ONEe ONEd l N N a INNb 1NNC 3NNa 3NNb 3NNC

Benign positional vertigo 44 59.1 65.9 68.2 63.6 72.7 68.2 65.9 70.5
Meniere's disease 94 62.8 94.7 92.6 92.6 81.9 94.7 95.7 86.2
Sudden deafness 12 66.7 66.7 25.0 50.0 16.7 16.7 25.0 8.3
Traumatic vertigo 20 95.0 80.0 70.0 75.0 70.0 60.0 85.0 80.0
Vestibular neuritis 37 81.1 75.7 91.9 89.2 75.7 86.5 86.5 83.8
Vestibular schwannoma 39 30.8 66.7 76.9 66.7 71.8 76.9 61.5 59.0
Median 64.8 71.2 73.5 70.9 72.3 72.6 75.5 75.3
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The prediction accuracy ( A C Q was calculated as the percentage of correctly inferred
cases:

A C C = \ 0 0 I ^ l i p O S c % ,
T,c=\POSc

where C is the number of diagnostic groups. The prediction accuracies for O N E e and O N E d
were 62.6% and 79.7%, respectively [9]. The l N N a , l N N b , 1 N N C , 3 N N a , 3 N N b , and 3 N N C

classifications produced the prediction accuracies of 80.5%, 79.3%, 73.6%, 79.3%, 79.3%,
and 74.4%, respectively.

5. Discussion

The nearest neighbour technique was used to classify otoneurological data on the basis
of the nearest ( I N N ) and the three nearest neighbours ( 3 N N ) . In the classification, three
attribute subsets were used. The best true positive rate ( T P R ) obtained by I N N varied from
50.0% (sudden deafness) to 92.6% (Meniere's disease). Benign positional vertigo was
classified best with the five attributes (72.7%). The 38 attributes produced the best TPR for
sudden deafness (50.0%) and traumatic vertigo (75.0%). For Meniere's disease, the subsets
of 38 and 170 attributes yielded the best result (92.6%). The largest attribute set with 170
attributes produced the best results for vestibular neuritis (91.9%) and vestibular
schwannoma (76.9%). The above phenomena relate to the problem of attribute or feature
subset selection [2,5]: The largest attribute set is not necessarily the optimal one. The
search of the three nearest neighbours increased the true positive rate for Meniere's disease,
whereas for sudden deafness, it decreased T P R .

With respect to the prediction accuracy, the classification results of the nearest
neighbour technique and the inference mechanism of O N E agreed. The best predictive
accuracy for the expert system O N E was 7 9 . 1 % and for the nearest neighbour method
80.5%. The better true positive rates for vestibular neuritis and vestibular schwannoma
obtained by l N N a suggest that the refinement o f their weight and fitness values might
enhance ONE's inference capability. The possibilites given by ONE's scoring scheme can
be seen in the true positive rates for sudden deafness and traumatic vertigo.

Future work w i l l include a thorough analysis of the nearest neighbour classification
results. These results w i l l be used to refine the knowledge base of O N E .
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